Communication Dans Un Congrès Année : 2022

Entropic Hardness of Module-LWE from Module-NTRU

Résumé

The Module Learning With Errors problem (M-LWE) has gained popularity in recent years for its security-efficiency balance, and its hardness has been established for a number of variants. In this paper, we focus on proving the hardness of (search) M-LWE for general secret distributions, provided they carry sufficient min-entropy. This is called entropic hardness of M-LWE. First, we adapt the line of proof of Brakerski and Döttling on R-LWE (TCC'20) to prove that the existence of certain distributions implies the entropic hardness of M-LWE. Then, we provide one such distribution whose required properties rely on the hardness of the decisional Module-NTRU problem.
Fichier principal
Vignette du fichier
2023-02-20_entropic_hardness_of_module-lwe_from_module-ntru_eprint_revised.pdf (974.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04028179 , version 1 (14-03-2023)

Identifiants

Citer

Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, Weiqiang Wen. Entropic Hardness of Module-LWE from Module-NTRU. 23rd International Conference on Cryptology, Kolkata, India : Progress in Cryptology – INDOCRYPT 2022, Dec 2022, Kolkata, India. pp.78 - 99, ⟨10.1007/978-3-031-22912-1_4⟩. ⟨hal-04028179⟩
283 Consultations
142 Téléchargements

Altmetric

Partager

More