Cylindrically bounded constant mean curvature surfaces in $\mathbb H^2\times\mathbb R$ - CV des membres de LAMA UMR 8050
Journal Articles Transactions of the American Mathematical Society Year : 2015

Cylindrically bounded constant mean curvature surfaces in $\mathbb H^2\times\mathbb R$

Abstract

In this paper we prove that a properly embedded constant mean curvature surface in H^2*R which has finite topology and stays at a finite distance from a vertical geodesic line is invariant by rotation around a vertical geodesic line.
Fichier principal
Vignette du fichier
cylindrical.pdf (269.32 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00720364 , version 1 (16-12-2022)

Identifiers

Cite

Laurent Mazet. Cylindrically bounded constant mean curvature surfaces in $\mathbb H^2\times\mathbb R$. Transactions of the American Mathematical Society, 2015, 367, ⟨10.1090/tran/6171⟩. ⟨hal-00720364⟩
51 View
31 Download

Altmetric

Share

More