Poster De Conférence Année : 2024

Integration of Large Language Models into Multi-Agent Simulations: Swarm Intelligence and Emergent Behavior

Résumé

The convergence of artificial intelligence and complex system modeling has opened new opportunities for exploring swarm intelligence and emergent behaviors. Traditional multi-agent simulations rely on predefined rule sets, limiting adaptability. By integrating Large Language Models (LLMs), we shift from rigid systems to dynamic, knowledge-driven interactions. This work leverages LLMs to guide agent behavior in realtime, offering insights into self-organization and collective intelligence. Using the NetLogo simulation environment, we explore ant colony foraging and bird flocking, demonstrating how LLMs can facilitate emergent behaviors inspired by natural phenomena.

Results
Conclusion
Methodology Experiment 1: Ant Colony Foraging Simulation

 Setup: The simulation models ants foraging for food in a twodimensional environment using structured prompts generated by ChatGPT-4.

 LLM Integration: ChatGPT-4 processes environment feedback to dictate ant behaviors like moving forward, picking up food, and following pheromone trails.

 Prompt Design: Zero-shot prompts ensure each agent response is stateless, relying solely on real-time inputs.

Fichier principal
Vignette du fichier
Poster_Swarm_Intelligence_with_LLMs_EUTOPIA-SIF_2024.pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04797968 , version 1 (22-11-2024)

Identifiants

  • HAL Id : hal-04797968 , version 1

Citer

Cristian Jimenez Romero, Thanos Manos, Christian Blum, Alper Yegenoglu. Integration of Large Language Models into Multi-Agent Simulations: Swarm Intelligence and Emergent Behavior. Marie Curie - EUTOPIA SIF Cohorts meeting 2024, Oct 2024, Venice, Italy. ⟨hal-04797968⟩
42 Consultations
11 Téléchargements

Partager

More