IBISC (Informatique, BioInformatique, Systèmes Complexes)  EA 4526 est le laboratoire STIC de l’Université de Paris Saclay – Université d’Evry, assurant une visibilité dans ce domaine sur le site, répondant aux enjeux du numérique et de l’interdisciplinarité, notamment en Génomique. Il est issu de la fusion de deux laboratoires : le LAMI (UMR 8042) et le LSC (FRE 2494).  La gouvernance du laboratoire est assurée par la direction composée d’un directeur, Nazim AGOULMINE, et d’une directrice adjointe, Lydie NOUVELIERE.

Le laboratoire IBISC se compose de 4 équipes (AROB@S, COSMO, IRA2, SIAM) dont les activités se répartissent en deux axes scientifiques STIC & SMART SYSTEM et STIC & VIVANT. Sans couvrir toutes les activités de recherche en leur sein, chacun des axes se focalise sur un domaine applicatif qui est respectivement : Drone &  Véhicule, et Médecine personnalisée et de précision.

 

  • STIC & SMART SYSTEM : Les recherches définies dans cet axe traitent de la conception de systèmes autonomes et intelligents. La notion de système se rapporte à la fois aux flottes de véhicules routiers ou aériens, aux robots, aux logiciels et services distribués et communicants ou aux composants matériels intelligents munis de capteurs interagissant. Ces dispositifs possèdent comme point commun d’être composés d’un grand nombre d’entités en interaction, dotées d’une autonomie de prise de décision tout en coordonnant leurs actions pour réaliser un objectif commun. La conception maitrisée de tels systèmes complexes pose deux questions majeures: l’une relative aux méthodes pour leur conception et l’autre ayant trait à l’optimisation de leur fonctionnement collectif et global, tout en prenant en compte les fluctuations de leur environnement. Elles conduisent à l’exploration de nouvelles approches combinant des méthodes et des théories de différents champs scientifiques : en automatique, algorithmique et méthodes formelles. Les applications se destinent plus particulièrement au domaine Drone et Véhicule.

 

  • STIC & VIVANT : ces recherches interdisciplinaires couvrent un spectre large de problématiques en biologie à différentes échelles du vivant : analyse de données et de signaux biologiques ou biomédicaux,  modélisation des systèmes biologiques, apprentissage de gestes chirurgicaux et assistance à la personne. Les recherches portent sur le développement de cadres théoriques, de méthodes algorithmiques et de plateformes répondant à ces enjeux. Concernant l’analyse des données et la biologie des systèmes, elles s’appuient sur des modèles d’apprentissage statistique, sur l’algorithmique pour la prédiction de structure, ainsi que sur la conception de modèles et méthodes formels pour l’analyse de la dynamique des réseaux. Pour l’apprentissage de gestes chirurgicaux et l’assistance robotique à la personne, nous développons des systèmes couplant des techniques d’analyse de signaux issus de plusieurs capteurs et de prise de décision. Les applications se destinent plus particulièrement au domaine de la médecine personnalisée et de précision.

Derniers dépôts

Chargement de la page

widget_cartohal

Documents avec texte intégral

1 314

% Documents en Open Access

51 %

Références bibliographiques

1 823

Mots-clés

Deep learning Adaptive fuzzy control Optimization Fuzzy systems Context-awareness State estimation Apprentissage automatique Actuators Pooling function Image processing Model predictive control Réalité virtuelle Tableaux Modelling Lyapunov stability Model checking Disassembly line balancing Collision avoidance Robustness Network inference Identification Tracking control Interaction 3D UAV Artificial intelligence Simulation Complexity Lane reservation Computer vision Heuristic Object detection Neural network Deep Learning Facility location Observers Feature extraction Model-checking Autonomous vehicles Neural networks Operator-valued kernel Formation control Estimation Modeling LMI Trajectory tracking Petri nets Cloud Computing Teleoperation Interval analysis Nonlinear systems Dynamic programming Approximation algorithms Augmented reality 3D interaction Game theory Virtual reality Bi-objective optimization Clustering Clinical gait analysis Approximation algorithm Linear programming Machine learning Robust control Lyapunov methods Stability Cloud computing Nonlinear control Motorcycle Localization Lyapunov theory Fault tolerant control Kernel methods Classification Multi-agent systems Uncertainty Timed automata Vehicle dynamics LMIs Linear matrix inequalities Adaptive control Cerebral palsy Optimal control Segmentation Vehicle lateral dynamics Mechatronics Algorithms Optimisation Calibration Augmented Reality Control Gene expression QoS Pose estimation Breast cancer 3D Interaction Virtual Reality Scheduling Makespan Systems biology CNN