Dynamics-Based Identification of Hybrid Systems using Symbolic Regression - Equipe diagnostic, supervision et COnduite
Communication Dans Un Congrès Année : 2024

Dynamics-Based Identification of Hybrid Systems using Symbolic Regression

Swantje Plambeck
  • Fonction : Auteur
  • PersonId : 1445127
Maximilian Schmidt
  • Fonction : Auteur
  • PersonId : 1445128
Goerschwin Fey
  • Fonction : Auteur
  • PersonId : 1445129
Audine Subias

Résumé

Symbolic regression has shown potential in the identification of physical systems. Hybrid systems, which combine both continuous and discrete behavior, are a relevant extension of purely physical systems, used in many fields, including robotics, biological systems, and control systems. However, due to their complexity, finding an accurate model is a challenge. This paper presents a novel approach to learning models of hybrid systems using symbolic regression. Our method leverages the power of genetic programming to automatically discover accurate and interpretable mathematical models in the form of hybrid systems from observed data. Symbolic regression detects transitions between different continuous behavior of a system directly based on the dynamics, instead of pure distances of observed trajectories. Furthermore, models generated by symbolic regression can be used to predict future system behavior, detect anomalies, and identify the underlying dynamics of the system while providing a human-readable representation. Our results demonstrate that symbolic regression can effectively identify the underlying dynamics of a real system represented in a hybrid model, providing a valuable tool for system identification and diagnosis.
Fichier sous embargo
Fichier sous embargo
0 2 5
Année Mois Jours
Avant la publication
samedi 1 mars 2025
Fichier sous embargo
samedi 1 mars 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04794430 , version 1 (20-11-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04794430 , version 1

Citer

Swantje Plambeck, Maximilian Schmidt, Goerschwin Fey, Audine Subias, Louise Travé-Massuyès. Dynamics-Based Identification of Hybrid Systems using Symbolic Regression. DSD/SEAA Conference, Aug 2024, Paris, France. ⟨hal-04794430⟩
3 Consultations
1 Téléchargements

Partager

More