Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework - Équipe Méthodes et Algorithmes en Commande
Article Dans Une Revue Automatica Année : 2024

Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework

Résumé

In this work, we introduce a class of impulsive switching signals described via functional inequalities which govern the switching among different modes with state resets. By choosing the parameters of the inequalities appropriately, we can recover several known classes of switching signals and also allow for signals that depend on time, mode or state of the system. Signals from this class can also be generated online via the use of an auxiliary timer while the dynamical system is running. Via a multiple Lyapunov functions approach, we provide sufficient conditions on the functional parameters of the switching signal which ensure that the equilibrium is globally asymptotically stable (GAS) for autonomous impulsive switched system. In case of inputs, similar methodology is used to provide sufficient conditions for input-to-state stability (ISS) and integral-input-tostate stability (iISS) uniformly over the proposed class of impulsive switching signals. As case studies, we consider switched systems which do not satisfy ISS (respectively, iISS) property for switching signals with arbitrarily large dwell-times but they are shown to be ISS (resp. iISS) for our proposed class of impulsive switchings signals described via functional inequalities.

Fichier principal
Vignette du fichier
main.pdf (315.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04707528 , version 1 (24-09-2024)

Identifiants

Citer

Shenyu Liu, Aneel Tanwani. Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework. Automatica, 2024, 171, pp.111928. ⟨10.1016/j.automatica.2024.111928⟩. ⟨hal-04707528⟩
90 Consultations
14 Téléchargements

Altmetric

Partager

More