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Résumé — Dolomitisation tardo-diagénétique dans les calcaires de bassins triassiques de l’Apennin
Méridional (Italie) — Les carbonates pélagiques triassiques de l’Unité de Lagonegro, dans l’Apennin
méridional hébergent des corps dolomitiques discordants. Ces dolomies montrent les structures typiques
connues comme “zébra” ou dolomite “à selle”. Dans cette note, on présente les résultats d’observations
de terrains et pétrographiques et les données géochimiques obtenues sur trois affleurements.
Les données de terrain indiquent que les structures de type “zébra” et bréchifiées sont contrôlées par la
stratification très régulière des calcaires micritiques. La dolomitisation a comporté le remplacement du
calcaire et de la précipitation de dolomite cristalline dans les vides sous un champ de contraintes
extensionnelles.
Les températures d’homogénéisation sont comprises entre 80 et 120 °C, avec un mode à (95 ± 10) °C.
Après une correction de pression, elles indiquent une température maximale de formation de la
dolomie d’environ 110-115 °C. Les températures de fusion de la glace indiquent une salinité comprise
entre 2 et 6 wt% NaCl eq, avec une moyenne de 4.2 %. Les valeurs de δ13C sont comparables à celles de
l’eau de mer triassique, tandis que les valeurs de δ18O sont fortement appauvries. Les valeurs du rapport
87Sr/86Sr sont au contraire plus élevées que celles estimées pour l’eau de mer triassique, mais
comparables à celles du Miocène Moyen-Supérieur.
Ces résultats indiquent une dolomitisation accomplie par des fluides relativement chauds avec une
salinité voisine de celle de la mer et une composition isotopique comprise entre celle de l’eau de mer et
celle de saumures de bassin. On propose que cette dolomitisation a été achevée par les eaux expulsées par
les formations qui entourent les carbonates pélagiques triassiques ou celles du mélange sous-jacent.
L’intégration des données sur l’histoire thermique et de la déformation indique, si l’on assume un
équilibre thermique avec les roches encaissantes, que ce phénomène ait eu lieu après le pic
d’enfouissement pendant les premiers stades de l’exhumation. Enfin, puisque les dolomies sont assez
répandues dans la région, il est bien possible qu’une importante circulation de fluides ait intéressé l’entier
fold- and thrust-belt pendant la déformation, y compris les unités de la Plate-forme Apulienne, qui
héberge des importants réservoirs d’hydrocarbures.

Abstract — Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust
Belt (Italy) — The Triassic pelagic carbonates of the Lagonegro Units from the southern Apennines fold
and thrust belt host discordant bodies of dolostone. These rocks show textural features typical of zebra or
saddle dolomites. In this contribution, the results of field observations, petrography and geochemical
analyzes performed on samples from three different outcrops are presented.
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INTRODUCTION

Dolomitization is a replacement process requiring a large
amount of Mg-rich fluids interacting with a limestone precursor.
It is now generally accepted that several mechanisms can be
responsible for such a rock-water interaction. These mecha-
nisms may occur at different stages in the diagenetic evolution
of carbonate rocks, ranging from processes acting soon after
deposition to late-stage, epigenetic processes operating well
after lithification and exhumation (Warren, 2000; Machel,
2004). Among the late-stage models of dolomitization,
replacement by warm to hot solutions in the frontal parts of
orogenic belts has been increasingly recognized in recent
years (Qing and Mountjoy, 1994; Boni et al., 2000a; Swennen
et al., 2003; Gasparrini et al., 2006a). Originally, this model
was introduced to explain the peculiar vuggy dolomites,
often displaying zebra textures and saddle-shaped crystals,
associated with many MVT-type mineralizations of North
America (Jackson and Beales, 1967; Anderson and Macqueen,
1982; Machel et al., 1996). It is presently debated whether
the large scale circulation of fluids is triggered by tectonic
charge or by the hydraulic head induced by regional topogra-
phy (Garven and Freeze, 1984; Oliver, 1986; Bethke and
Marshak, 1990; Deming and Nunn, 1991; Ge and Garven,
1994; Morrow, 1998). Whatever the origin of the fluid-flow,
the dolostone bodies are generally found in the undeformed
foreland at the front of the fold and thrust belt and may be
associated with deep-seated, sub-vertical normal faults
(Taylor and Sibley, 1986; Hurley and Budros, 1990; Berger
and Davies, 1999; Wendte et al., 2009; Lavoie and Chi,
2010; Shah et al., 2010), although several examples of
dolomites formed within the fold and thrust belts itself also
exist (Qing and Mountjoy, 1994; Swennen et al., 2003;
Vandeginste et al., 2005).

This paper illustrates a case study of dolomitization of
Triassic basinal limestones within a Neogene fold and thrust
belt (southern Apennines, Italy). The paper is based on the
analysis of a few outcrops, described in the late 60’s by
Scandone (1967). Nevertheless, no specific research was car-
ried out to unravel the origin and timing of the dolomitic
rocks described by this author. This study presents petro-
graphic, geochemical and fluid inclusions data that, together
with field evidences, strongly suggest that the dolostone bod-
ies were formed during or after the Neogene regional tectonic
shortening, due to the actions of overpressured warm fluids.
A more comprehensive regional study of all the dolomitized
bodies of the same tectonic unit, both in outcrop and in the
subsurface, is presently in progress in order to better define
the relationships of the fluid-flow and the structural history of
the tectonic belt.

1 GEOLOGICAL SETTING

The southern Apennines fold and thrust belt consists of a
stack of several tectonic units made of Mesozoic-Paleogene
successions and their flysch-like Neogene cover, tectonically
superposed onto the buried part of the Apulian Platform
shallow-water carbonates (Mostardini and Merlini, 1986;
Casero et al., 1988; Cello and Mazzoli, 1998). This complex
fold and thrust belt mainly formed as a result of Neogene
deformation of the former Adriatic passive margin during
Europe-Africa plate collision (Mazzoli and Helman, 1994,
and references therein).

From top to bottom, the belt consists of ocean-derived
units, shallow-water carbonates of the Apennine Platform
Units and pelagic and hemipelagic basinal sediments of the
Lagonegro Units. The lowermost part of the Lagonegro

Field data indicate that the peculiar zebra-type rock and brecciated fabrics were controlled by regular
bedding of the micritic, pelagic limestones. The dolomitization resulted in the replacement of the host
limestones and subsequent void-filling precipitation of dolomite in a dilatational stress field.
Homogenization temperatures (Th) are in the range 80 - 120°C, with a clear mode of 95 ± 10°C. When
corrected for maximum pressure, they indicate an upper limit for dolomite formation around 110 - 115°C.
Melting temperatures of ice (Tmi) point to salinities in the range 2-6 wt% NaCl eq, with a mean of 4.2%.
δ13C values overlap those of the Upper Triassic seawater, whereas the δ18O values are significantly
depleted compared to the coeval seawater. 87Sr/86Sr values are higher with respect to Upper Triassic
seawater, and partially overlap Middle-Upper Miocene values.
The performed analyzes indicate a dolomitization process driven by warm fluids (110 - 115°C) with a
salinity close to that of seawater and O-isotope ratios comprised between seawater and formation
waters. It is suggested that the dolomitization was accomplished by formation waters squeezed out or
from surrounding lithologies or from the underlying mélange units. Integration with available thermal
data on the collisional history of the belt suggests that the fluid-flow took place after maximum burial, in
the early stages of exhumation, in the assumption of a fluid in thermal equilibrium with the host rocks.
According to literature data, the dolomitization event was quite widespread. It can be argued that  it was
part of a major fluid-flux associated with fold and thrust belt development, which possibly affected the
Apulian Platform carbonates located in the foreland. The latter, now buried below the nappe stack, hosts
some of the major oil fields of continental Europe.
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Basin succession consists of the Monte Facito Formation,
given by Lower-Middle Triassic shelfal, fine-grained silici-
clastics containing carbonate buildups with dasycladacean
algae and sponges (Scandone, 1967; Ciarapica et al., 1990).
The overlying Calcari con Selce Formation, Upper Triassic
in age, consists mainly of micritic limestones containing thin-
shelled bivalves and radiolarians, with beds and nodules of
chert. Locally they consist of calcarenites, calcirudites and
marls. According to Scandone (1967) the Calcari con Selce
Formation is actually represented by dolostones in many out-
crops from the northern area of the Lagonegro Basin (from
Salerno to Val d’Agri), particularly in the hanging wall of a
major thrust within the Lagonegro Units. Conversely, no
dolostone occurrence is reported in the Lagonegro Basin
cropping out further to the south (Fig. 1). The Scisti Silicei,
Galestri and Flysch Rosso formations represent the truly

deep-water stage of the basin. The term “flysch” is inherited
from old literature, since the latter formation actually repre-
sents pre-orogenetic sediments. True siliciclastic, turbidite
deposits of the compressional stage are represented by the
overlying Miocene sandstones and shales.

The deformation history of the Lagonegro Units was
outlined by Scandone (1972). A more detailed structural study
was performed by Mazzoli et al. (2001 and references
therein), who proposed a different structural evolution. From
Triassic to Cretaceous times, the southern Apennines were in
a passive margin phase (Fig. 2a). Shortening started during
the Miocene, with a first phase of buckling and minor thrusting
that caused the “closure” of the Lagonegro Basin (Fig. 2b).
In Pliocene times, a second phase of thrusting led to the
regional duplication of the Lagonegro Units (Fig. 2c). This
was followed by the emplacement of the allochthonous wedge
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Figure 1 

Simplified geological map and cross section of the southern Apennines (modified after Mazzoli et al., 2008). The study area is located in the
frame bordered by continuous line. The southern Lagonegro Basin area, where no dolostones crop out, is enclosed in the frame with dashed
line.
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above the westernmost portion of the Apulian Platform, a
process which formed the structural traps hosting the major
oil fields of southern Italy (Shiner et al., 2004). Gravitational
readjustments dominated within the allochthonous wedge,
triggering denudation and tectonic exhumation (assisted by
erosion; Mazzoli et al., 2008). Active shortening was taken
up by the underlying Apulian crust, producing basement-
involved inversion at depth.

The burial history of the succession was constrained by
recent studies based on thermal and thermochronological
data from the northern Lagonegro Basin (Aldega et al., 2003,
2005; Corrado et al., 2005; Mazzoli et al., 2008) which
indicate a maximum burial of 3.8 km and a temperature peak
in the range of 130-160°C, reached in the Miocene during the
first thrusting phase. The second phase of thrusting was

accompanied by exhumation. The latter is well constrained
by apatite fission track data that provide cooling ages
clustering around 5.5 Ma (Mazzoli et al., 2008). To the south
(Monte Sirino area) maximum reconstructed burial is in
excess of 5 km and peak temperatures are above 180°C,
while exhumation is substantially younger, apatite fission
track cooling ages clustering in the last 2.5 Ma (Corrado et
al., 2002; Mazzoli et al., 2008).

2 MATERIALS AND METHODS 

The studied succession consists in the upper part of the
Calcari con Selce Formation, close to the boundary with the
overlying Scisti Silicei Formation. The main investigated
sites are located in the surrounding area of Pignola village,
south of Potenza, and more precisely along the road connecting
Pignola to Abriola between km 10.9 and km 11.4 (1 in Fig. 3)
and within an abandoned quarry front along the same road
(2 in Fig. 3). These sites were well illustrated by Scandone
(1967) who observed that within the Calcari con Selce
Formation, dolostone bodies cut across the bedding and in
some cases the boundary between the two lithologies is repre-
sented by fractures. A third investigated site was located further
to the south close to Mount Manca di Vespe (3 in Fig. 3).

A total of 40 rock specimens of both dolostones and
precursor limestones were sampled within the Calcari con
Selce Formation from the three investigated sites which will
be referred as 1) road, 2) quarry and 3) Mount Manca di
Vespe (see Fig. 3). Polished slabs were prepared and stained
with Alizarin red-S. About 30 thin sections (30 to 35 mm
thick) were prepared for conventional and cathodolumines-
cence (CL) microscopy. From the coarser crystalline sam-
ples, double-polished thick sections (100-120 μm thick) were
prepared for Fluid Inclusion (FI) petrography and microther-
mometry. UV-light microscopy was used to characterize the
fluid system (aqueous versus hydrocarbon) of FIs in the
different mineral phases with a 100W Mercury vapor lamp
associated to an polarized microscope.

Conventional and cathodoluminescence (CL) microscopy
was accomplished on all thin sections at IFP Energies
nouvelles (France). Thin sections were studied by the use of
a Nikon LV100 Eclipse POL. The device used for cold CL is
a Technosyn 8200 Mark II (OPEA, France).

Dolomite stoichiometry was calculated on 10 samples by
means of diffractogram analyses, using the cell and Rietveld
refinement method developed at IFP Energies nouvelles
(Turpin et al., this volume). The samples were analyzed with
an analytical X’pert PRO PW 3040/60.

Powders from the different carbonate phases were obtained
by drilling the rock slabs using a dental drill. Analyses to
determine the O, C and Sr isotope ratios were performed at
the Institute für Geologie, Mineralogie und Geophysik of
Ruhr-University (Germany). Oxygen and carbon isotope
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Figure 2

Summary structural model for the evolution of the southern
Apennines from the Triassic to the Plio-Pleistocene (modified
after Shiner et al., 2004). Three different phases of structural
evolution are illustrated: a) Mesozoic-Paleogene passive
margin phase; b) Miocene buckling and first thrusting phase
in the Lagonegro basin; c) Pliocene second phase of thrusting
that led to the doubling of the Lagonegro Units.
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ratios were measured on the CO2 produced after etching with
orthophosphoric acid at 90°C with a Finningan Delta S spec-
trometer. The dolomite acid correction factors from Rosenbaum
and Sheppard (1986) were applied.  Measurements of Sr iso-
tope ratios were carried out on 1 mg of powder in a 2.5 M
HCl. The 87Sr/86Sr was determined by means of a Thermal-
ionization Finningan Mat 262 Mass Spectrometer. The Sr
isotope ratios were then normalized to a ratio value of
87Sr/86Sr = 0.1194. The precision was better than 0.00004.

Fluid Inclusion (FI) microthermometry was carried out
with a Linkam MDS 600 heating-freezing stage, calibrated
with synthetic FIs, and mounted on a Nikon LV100 Eclipse
associated to a 100 W Mercury vapor lamp (IFP Energies

nouvelles). The Linksys 32 software enabled all the
operations for FI microthermometry. The software package
FLUIDS (Bakker, 2003, 2009) was used to further
characterize the fluids from the FI study. AQSO1 was used to
calculate salinities from final melting of ice (Tmi) in the
binary H2O-NaCl system (Bodnar, 1993). The application
BULK allowed to calculate bulk fluid properties (e.g.
density) of individual FIs using the equation of state for
aqueous systems of Krumgalz et al. (1996) and the volume
fractions of the liquid phase of FIs at room temperature. The
program LONER32 was used to calculate the isochore slope
for FIs from the different phases according to the model of
Bodnar and Vityk (1994).
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Simplified stratigraphic column and simplified geological maps of the study area. Numbered spots indicate the location of the sampled sites:
1) road; 2) quarry; 3) Mount Manca di Vespe.
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3 FIELD OBSERVATIONS 

The Calcari con Selce Formation in the investigated sites
consists of dark grey, well bedded (5 to 20 cm) mudstone to
wackestone containing sub-rounded, cm-sized chert nodules
as well as chert lenses, up to 15 cm thick showing good
lateral continuity (up to several meters). The limestone beds
are generally confined by thin marly interlayers. At Pignola,
the limestones host calcite nodules (a local replacement of
the chert), 1 to 8 cm in diameter.

The macroscopic features of the dolostone bodies are well
exposed in the quarry outcrop. The dolostone forms irregular
bodies within the well-bedded limestones of the Calcari con
Selce Formation. The boundaries between the two lithologies
are sharp and cut through the bedding planes (Fig. 4). Tongues
of unreplaced limestone are however present between
dolomitized beds. This shows that the marly, less permeable
interlayers which occur within the limestones, possibly exerted
a control in focussing the dolomitizing fluids.

Chert lenses may be still preserved within the carbonates
that were affected by dolomitization. On the contrary, the

calcite nodules, which formerly replaced the chert, were
completely dolomitized.

Two main dolomite types are recognised in the field:
– a dark to light grey dolomite type, of purely replacive origin

as indicated by the preservation of some sedimentary
features of the precursor carbonate, such as plane-parallel
and convolute laminations and ghosts of radiolarians and
thin-shelled bivalves, and;

– a milky white and void-filling one.
These two dolomite types may form alternating dark grey

and white bands (Fig. 5a) resembling to what in literature is
reported as zebra-dolomites (Beales and Hardy, 1980;
Fontboté and Amstutz, 1983; Arne and Kissin, 1989; Nielsen
et al., 1998). These roughly bed-parallel bands are frequently
confined by fractures (the fratture-diaframma described by

Figure 4

Contact between host limestone (H) and dolostone (D). The
boundary between the two lithologies is sharp and cut
through the bedding planes.

Figure 5

Field photographs of the late dolomites of the Lagonegro
Basin. a) Zebra structures. The white dolomite is very
abundant, the proportion between the grey dolomite and
milky white dolomites is about 1:1. b) Grey replacive
dolomite and white-sparry dolomite cements. The boundary
grey-white dolomite locally correspond with a bedding-
parallel stylolite associated to a thin film of insoluble residue.

ogst100136_Iannace  16/03/12  11:45  Page 64



A Iannace et al. / Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy) 65

Scandone, 1967). The zebra-like structures are not ubiquitous
and seem to be confined in some layers of the succession,
comprised between layers composed of replacive grey
dolomite only. It was observed that, where the carbonates are
thicker bedded, the grey replacive dolomite is dominant and
the zebra-structures tend to be absent, whereas in thinner
beds bedding parallel stylolites are better developed and
concentrated in the grey replacive portion, and zebra-
structures tend to be more abundant. In the latter case, the
proportion between the grey dolomite and milky white
dolomites is about 1:1, i.e. the white, void-filling dolomite is
very abundant (Fig. 5a). Locally stylolites associated to a
thin film of insoluble residue constitute the boundaries
between grey and white dolomite bands  (Fig. 5b).

Locally, bands of void-filling dolomite are oriented obliquely
with respect to the main, bed-parallel zebra (Fig. 6a). This en
echelon vein array geometry is consistent with a simple shear
component of the deformation controlling vein development
(Mazzoli and Di Bucci, 2003; Mazzoli et al., 2004, and
references therein), a feature that has been frequently
described in other zebra-dolomites (Wallace et al., 1994;
Nielsen et al., 1998; Vandeginste et al., 2005; Diehl et al.,
2010). Bedding-parallel simple shear may be related with
flexural slip/flow folding, or be associated with the gliding of
rock panels during thrusting.

Brecciated facies are also frequent (Fig. 6b). They consist
of cm- to dm-large clasts of grey replacive dolomites engulfed

by white dolomite cements. The clasts display a sharp boundary
and are generally broadly rectangular in shape, although
smoothened to curved surfaces are also observed. Evidence of
dissolution was locally observed at the borders of the grey
dolomite clasts.

Dolomitization appears to post-date the development of a
spaced, pressure-solution cleavage that occurs in the precursor
limestone and is preserved with the same geometric pattern in
dolomitized portions of the succession. This cleavage, according
to Mazzoli et al. (2001), developed during the first compression
phase (Fig. 2b).

A set of calcite veins, perpendicular to bedding, sometimes
in en echelon arrays, may be locally present in the unreplaced
limestone close to the dolomitization front. Within the
dolomitized bodies, similar veins are instead filled with
dolomite. All these vein systems probably belong to the en
echelon arrays of veins, described by Mazzoli and Di Bucci
(2003) and  Mazzoli et al. (2004), and interpreted as a result of
NW-SE oriented, minor horizontal extension post-dating early
buckling and associated layer-parallel shortening. The
replacement of these veins by dolomites would suggest again
that dolomitization post-dated the early phases of deformation.

The studied dolostone bodies were affected by post-
dolomitization extensional tectonics, since steep, normal
faults cut through the different dolomite types and display no
geometrical relationship with the dolomitization fronts.

Figure 6

Late dolomites of the Lagonegro Basin. a) Zebra structures with a shear component. b) Polished hand specimen of hydraulic dolomitic
breccias.
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4 PETROGRAPHY 

In the study area, the carbonates of the Calcari con Selce
Formation consist of mud- to wackestone containing
radiolarians and very thin bivalves, commonly recrystallized.
These limestones show a uniform dull orange CL. They are
cross-cut by veins (up to 150 mm in thickness) filled with
dull orange to non-luminescent calcite (Fig. 7a, b). The trace
of these calcite veins stops at the contact with the calcite
nodules (possibly replacing some of the sedimentary chert
nodules), that on the contrary, consist of blocky crystals with
a bright orange CL colour (Fig.7a-d). The transition from
limestone to calcite filling the nodules frequently consists of
euhedral rhombs of dolomite (planar-E texture), 50 to 250 μm
in diameter and with bright red CL, which replace the
limestone micrite, as well as the calcite in the veins (Fig. 7a-d).
These diagenetic phases pre-date the development of the
large dolomitized bodies which are the main focus of this
study.

Three different types of dolomites have been distinguished
according to petrography within the dolostone bodies of
interest. They were called respectively Dol1, Dol2 and Dol3.
Dol1 is volumetrically the most abundant and corresponds to
the grey dolomite observed in outcrops and hand specimens.
It consists of a non-planar-A mosaic of cloudy dolomite
crystals 10 to 60 μm in diameter, showing straight extinction
and dull red, uniform and unzoned CL (Fig.7e, f).

Dol2 is a less abundant though ubiquitous phase in
dolomitized outcrops. It corresponds to most of the white
dolomite recognised in the field. The contacts between Dol1
and Dol2 are not transitional and correspond to an abrupt
increase in crystal size (Fig. 7e, 8a). Dol2 crystals may range
from 800 μm up to several mm in size. They show a non-
planar-A texture and are commonly elongated with main
length parallel to the growth direction (i.e. towards the cavity
centre; Fig. 8a). They show a strong sweeping extinction,
curved crystal faces and cleavage planes, typical of saddle
dolomite (Fig. 8b). Dol2 crystals commonly display cleavage
twins which may be curved as well. The Dol2 crystals are
uniformly cloudy indicating the presence of inclusions
homogeneously distributed within the crystals and have a
dull red and uniform CL undistinguishable from the one of
Dol1 (Fig. 7f). The last crystal generation of Dol2, i.e. the
one closer to the cavity centre, shows a non-planar-C texture
(Fig. 8c). These latter crystals display a scimitar-like shape
and may exhibit a more or less developed zoning due to the
alternation of zones with different FIs content. Typically, the
last growth zone of the Dol2 crystals shows a dull orange CL
(Fig. 8d).

Dol2 is either the last dolomite phase which lines vuggy
pores and fractures or, in other cases, it is followed by Dol3.
Locally, the pores comprised between Dol2 crystals growing
in opposite directions of a cavity, are filled by a micro-
breccia in which angular clasts of Dol2 (100-400 μm in

diameter) are merged within a finer dolomite matrix. More
commonly the clasts of Dol2 are cemented by the later Dol3
(Fig. 8e, f). The presence of these microbreccias indicates
that the dolomites were affected by deformation after their
emplacement.

Dol3 is not always present in the analyzed samples. It
post-dates the white dolomite and is macroscopically recog-
nisable in hand specimens as it shows a translucent appear-
ance. It is composed by clear crystals of dolomite, locally
showing non-planar-C texture and growing in crystallo-
graphic continuity with Dol2. In the latter case the crystals
can be up to several mm in diameter. More commonly, Dol3
crystals fill thin fractures which cut through Dol1 and Dol2
(Fig. 8c, d) and no crystallographic continuity is observed.
Dol3 crystals show no zonations and are dark red under CL
up to non-luminescent (Fig. 8d-f). This phase is also found in
micro-brecciated dolomite samples cementing the angular
clasts of Dol2 (Fig. 8 e, f).

5 FLUID INCLUSIONS

The study of fluid inclusions (FIs) was accomplished on
dolomite cements from the three sampled localities.

One sample containing a calcite nodule pre-dating the
dolomites was investigated as well. The calcite contains
2-phase liquid-rich FIs which showed a behaviour suggesting
that they underwent thermal reequilibration and leakage.
Indeed, the recorded homogenization temperatures (Th)
cover a large range of values and the homogenization mea-
surements repeated on the same FI commonly resulted in
increasing recorded temperatures. These results of microther-
mometry were therefore not worth to be graphically presented.

Dol1 contains abundant primary FIs, but their small size
(< 2 μm) hindered any further characterization.

Dol2 and Dol3 contain FIs of primary origin, which are
concentrated within crystal cores or are distributed along
growth zones. They are 2-phase liquid-rich (degree of fill
above 0.9), irregular to crystallographically controlled (i.e.
one or more sides of the FI parallel crystal borders or
cleavage planes) and up to 7 μm in length. UV-light
microscopy suggested the aqueous nature of the fluids.
Homogenization (Th) occurred in the liquid field. The
nucleation of ice-like phases occurs between – 35 and – 48°C
during the first cooling run. More than half of the FIs are
characterized by metastability of the final melting of ice
(Tmi). In these FIs, the ice melts suddenly at temperatures
above those derived from thermodynamic criteria. These
melting temperatures, which may occur well above 0°C,
have no meaning in terms of fluid salinity (Goldstein and
Reynolds, 1994). Only the results from FIs showing an
unambiguous stable behaviour have been considered.

The main results of FI microthermometry are summarized
in Figure 9a, b. Dol2 and Dol3 cements from the three
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Figure 7

Photomicrographs. Scale bar is 300 μm. a) Dolomite host rock (mudstone) cross-cut by a calcite vein that stops at the contact with a calcite
nodule. The latter is bordered by euhedral rhombs of dolomite. Cross-polarized light; b) CL image of a). The mudstone shows an uniform
dull orange luminescence, whereas the calcite vein is non luminescent; c) Calcite nodule bordered by euhedral rhombs of dolomite. Plane-
polarized light; d) CL image of c). The calcite nodule is bright orange, whereas the euhedral dolomite shows bright red luminescence;
e) Dol1 and Dol2 showing non transitional contact. Plane-polarized light; f) CL image of e) showing Dol1 and Dol2 with undistinguishable
dull red and uniform luminescence.
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Figure 8 

Photomicrographs. Scale bar is 300 μm. a) Abrupt transition from Dol1 to Dol2. Dol2 crystals are elongated towards the cavity centre and
twinned. Cross-polarized light; b) Particular of a Dol2 crystal displaying curved crystal twins and curved cleavage. Cross-polarized light;
c) Dol2 given by curved crystals, uniformly cloudy. Dol3 is present in the vein that cross-cut Dol2 crystals. Plane light photomicrograph;
d) CL image of c). The last growth zone of the Dol2 shows a dull orange CL, whereas Dol3 is non-luminescent; e) Micro-brecciated
dolomite in which angular clasts of Dol2 are cemented by Dol3. Plane-polarized light; f) CL image of e). Dol2 presents a dull red CL with
the last growth zone showing orange CL. Dol3 is non-luminescent.
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sampled localities show a very good overlap of both Th and
Tmi. Most Th values are in the range 80-120°C. This
relatively large range of values could suggest thermal
reequilibration of some FIs. Nevertheless, the frequency
distribution of Th data is very symmetric and Th measured in
FIs of the same assemblage are consistent. These evidences
indicate that the Th variations are more possibly due to the FI
distribution within the crystals (e.g. core versus external part,
different growth zones; Goldstein and Reynolds, 1994). An
overall Th mode at 95°C is established when considering the
three localities together, with no differences between the FIs
of the two dolomite cements (Fig. 9a). In particular, a clear
mode around 95°C can be recorded in the dolomite cements
of the samples collected at the quarry and along the road
(location 1 and 2 respectively in Fig. 3), whereas two modes
are shown at 85°C and 110°C by the samples from the
Mount Manca di Vespe outcrop (location 3 in Fig. 3), with
the first mode being dominant. Most of the Tmi values for
FIs in both Dol2 and Dol3 fall in the range between – 1 to
– 3°C, with main mode at – 2.7°C. No differences were
recorded from one locality to an other. These Tmi values
correspond to salinities (Bodnar, 1993) in the range 2-6 wt%
NaCl eq (Fig. 10), with mean value of 4.2%.

In conclusion, beside minor variations, it can be stated that
Dol2 and Dol3 from the three sampled localities were
precipitated in the burial environment from fluids having
similar temperatures and salinities, which are in the range of
slightly modified to normal marine seawater.

Calculations were accomplished in order to apply a
geologically coherent pressure correction to the homogeniza-
tion temperatures obtained from this study. Bulk densities

were calculated for individual FIs within both Dol2 and
Dol3. The molar volume of these FIs ranges between 18.81
and 19.94 cm3/mol (i.e. density between 0.970 and 0.910
g/cm3). Trapping conditions for the different FIs were calcu-
lated by means of isochores constructed for the Th mode
value (95°C ± 10°C). Both the minimum and the maximum
salinity values (i.e. 2 and 6 wt% NaCl eq, respectively) were
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Figure 9 

Histograms showing FIs data distribution in Dol2 and Dol3 cements from all localities. a) Homogenization temperature (Th) values. b) Ice
melting temperature (Tmi) values.

Figure 10 

Bivariate plots showing the covariance between Th and
salinity data. Salinity is expressed in wt% NaCl eq. Slight
thermal reequilibration affected the samples in which single
FIs assemblages retained consistent data.
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used for this calculation, in order to take into account the
changes in isochore slopes induced by salinity variation.
Considering the maximum burial of 3.8 km, and peak
temperatures of 130-160°C experienced by the studied
succession (Corrado et al., 2005; Mazzoli et al., 2008), we
may assume that hydrostatic pressure conditions prevailed
during dolomitization. According to a hydrostatic pressure
gradient of 10.1 MPa/km (obtained by considering a seawa-
ter density of 1.03 g/cm3) the peak burial depth would have
corresponded to a maximum pressure of 38.38 MPa. In a P-T
diagram the intersection points between the constructed iso-
chores and this maximum pressure give the maximum P-T
condition for dolomite precipitation (Fig. 11). The calculated
maximum trapping temperatures for the different salinities
are equal to Th +15-20°C. True temperature of dolomitiza-
tion must fall in between.

6 GEOCHEMISTRY AND MINERALOGY

The dolomite stoichiometry calculated for 4 samples of
Dol1 and 4 samples of Dol2 give values between 50.3 and

50.9 mol% CaCO3, in agreement with the suspected late
burial origin for the dolomites (Lumsden and Chimahusky,
1980). Two samples of Dol3 are slightly non-stoichiometric
and show values in the range 51.0 to 51.6 mol% CaCO3,
possibly due to the presence of significant Fe in the crystal
lattice, also suggested by the common lack of luminescence
of this dolomite phase. The O and C stable isotope analyzes
performed on the different carbonate phases are summarised
in Figure 12a. In Figure 12b the δ18O values are plotted
against the 87Sr/86Sr ratios. The precursor limestones from
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Figure 11

P-T plot illustrating the maximum pressure correction for the
Th of the dolomite FIs. The isochores were constructed for a
fluid with mean salinity of 4.2 wt% NaCl eq. and for three
different Th (mode value ± 10°C), i.e. 95°C (green line),
85°C (blue line) and 105°C (yellow line). A line of constant
pressure (in red) was built for the maximum burial conditions
(38.38 MPa). The intersection points between this pressure
line and the isochores define the maximum P-T conditions for
FIs trapping. The pinkish square defines the field of
temperature (130-160°C) which characterized the peak burial
conditions of the first compressional phase. The greenish
triangle includes the possible field of temperatures for
dolomitization after maximum pressure correction on the Th
mode value (i.e. 95°C).

Figure 12 

O, C and Sr isotope composition of the different carbonate
phases analyzed. The isotope composition of the Upper
Triassic seawater (Veizer et al., 1999) is reported in the pink
frame. a) Covariation plot between δ18O and δ13C; b)
Covariation plot between δ18O and 87Sr/86Sr ratios. The
isotope composition of Middle-Upper Miocene seawater
(McArthur et al., 2001) is reported in the yellow frame.
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the Calcari con Selce Formation have δ13C and 87Sr/86Sr
values which overlap those of the Upper Triassic seawater
(Veizer et al., 1999), whereas the δ18O values result to be
slightly more negative compared to the coeval seawater.
These values are the result of slight 18O depletion in the
carbonates as a consequence of the temperatures experienced
during burial. The blocky calcite, which replaced some of
the chert nodules, display δ18O values within the burial
range (Choquette and James, 1990), and Sr isotope ratios in
line with Triassic seawater stored as limestones pore water
(Fig. 12 a, b). 

Samples from the three different dolomite phases (Dol1,
Dol2 and Dol3) show δ13C inherited from the precursor
limestones, with only two samples of Dol1 having lower
values. By contrast, they show a large spread of δ18O,
ranging from – 6 to – 13 per mil PDB, with most of the
values falling in the range – 7 to – 11 per mil. Despite such a
dispersion in O-isotope data, the three dolomite phases
overall display an isotopic trend typical of burial dolomites
(Morse and Mackenzie, 1990). This is also confirmed by the
Sr-isotope data which indicate a slightly more radiogenic
nature of the dolomites compared to the precursor limestones
(Veizer et al., 1999). No significant geochemical differences
nor trends were observed from one dolomite phase to another
belonging to the same hand specimen.

The oxygen isotope composition of the fluids responsible
for dolomitization can be constrained by combining the
results of geochemistry and microthermometry (Fig. 13). The
δ18O values of single dolomite cements were plotted against
the mode values of Th for the same cement. It results that the
fluids responsible for Dol2 and Dol3 precipitation had δ18O
values between 0 and 5 per mil SMOW and most commonly
between 1 and 3 per mil. These values could be increased of
about 1.5 to 2 per mil by shifting the dots upward of 15-20°C
if considering the maximum possible temperatures obtained
after pressure correction for peak burial conditions (see
arrows in Fig. 13).

7 DISCUSSION 

The field, petrographic and geochemical characteristics of the
investigated dolostone bodies are adequate to describe them
as non-planar, saddle, burial, epigenetic or high temperature
dolomites (Hewett, 1928; Beales and Jackson, 1966; Radke
and Mathis, 1980; Anderson and Macqueen, 1982; Boni et
al., 2000b; Gasparrini et al., 2006a). All these terms found in
literature commonly refer to dolostone bodies consisting of
grey to black replacive, coarse dolomite containing variously
shaped cavities lined by void-filling, white sparry dolomite.

Generally these rocks are interpreted to be formed from
very saline and relatively warm fluids circulating late during
the diagenetic evolution of carbonates (Radke and Mathis,
1980; Gasparrini et al., 2006b) and are typically associated to
MVT mineralizations (Beales and Jackson, 1966; Anderson
and Macqueen, 1982). In many instances, these fluids ascend
through sub-vertical extensional faults in relatively unde-
formed, cratonic or foreland sedimentary basin (Davies and
Smith, 2006 and references therein). However, several exam-
ples have been described in the last years of zebra-dolomites
formed in the external units of fold and thrust belts (Qing and
Mountjoy, 1994; Boni et al., 2000b; Swennen et al., 2003;
Vandeginste et al., 2005; Gasparrini et al. 2006a, b).
Moreover, it is increasingly clear that the fluid-flow may
occur at different moments of the evolution from burial to
collision and that even fluids with low salinities may be
involved in the dolomitization process (Al-Aasm, 2003;
Ronchi et al., 2010).

Within this wide spectrum of genetic models, the
Lagonegro dolostone bodies represent another example of
dolomitization occurring within a fold and thrust belt, in the
external part of a collisional orogen. The cross-cutting rela-
tionships with cleavage and veins formed during the first
phase of buckling indicate that the dolomites originated after
these tectonic features, i.e. after deep burial of the sedimen-
tary basin. Moreover, the local occurrence of zebra-structures
showing en echelon geometries, suggestive of simple shear
deformation, would agree with a syn-deformational genesis.

The origin of some zebra-dolomites as simple shear-related
structures has been reported by several authors (Wallace
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Plot of precipitation temperature versus δ18O values of Dol2
and Dol3. The δ18O composition of the fluid in equilibrium
with dolomite as function of the temperature was calculated
using the fractionation equation of Land (1983). The δ18O
values of single dolomite sample were plotted against the
mode values of Th for the same sample. Arrows above the
dots indicate the maximum possible pressure correction for
each sample.
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et al., 1994; Davies and Smith, 2006). The en echelon vein
arrays observed at Pignola indicate that some shear-deforma-
tion was probably effective during replacement. However
these features are quite uncommon possibly because they are
overprinted by later structures. In fact, the Pignola outcrop
bears abundant evidence of a genesis of the zebra-structures
mainly as a result of extension and related fracturing of lime-
stone beds in an over-pressured regime. Particularly, the
brecciated fabrics (Fig. 6b) suggest that they formed by
hydraulic fracturing under the action of overpressured fluids.
The fluids ingression must have broken the precursor rock into
pieces, where dolomite replacement caused the grey dolomite
and cementation the white dolomite. Thus, even though some
evidences of dissolution are present, we believe that most of
the space for the precipitation of the white void-filling phase
was created by extension.

The origin of the white, void-filling dolomite bands in an
over-pressured rock has been suggested by many authors
(Boni et al., 2000b; Vandeginste et al., 2005; Gasparrini et
al., 2006a, b; Diehl et al., 2010). In an alternative interpreta-
tion, Merino et al. (2006) have suggested that the white
bands represent displacive veins, i.e. veins that pushed aside
the host dolostone as they grew. According to the latter
author, for each white band, a stylolite should form in the
adjacent grey band in order to compensate for the volume
added by the white veins growth. However in the investi-
gated outcrops, the association of zebra banding with stylo-
lites is by no way systematic, therefore the model of Merino
et al. (2006) is not favoured.

The position of the Calcari con Selce Formation, calcareous
and intensely fractured, sandwiched between the fine-clastic
Monte Facito Formation (below) and the siliceous and fine-
clastic Jurassic to Lower Cretaceous formations (Scisti Silicei
and Galestri, above), is particularly favourable for focussing
fluid-flow and engendering over-pressure during tectonic
shortening. Noteworthy is that overpressures have been actu-
ally encountered during well operation in the mélange zone
which separates the Lagonegro Units and the tectonically
underlying Apulian Platform reservoir carbonates (Mazzoli
et al., 2001; Shiner et al., 2004).

The timing of dolomitization may be constrained by
referring to available thermometric data from the southern
Apennines (Aldega et al., 2003, 2005; Corrado et al., 2002,
2005; Mazzoli et al., 2008). A first phase of buckling and
associated reverse faulting took place in the Miocene with the
development of slaty cleavage in the pelitic units (Mazzoli
et al., 2001; Shiner et al., 2004) at an approximate depth, in
the Val d’Agri area, of 3.8 km and peak temperatures of
130-160°C. A second phase of thrusting coincided with the
beginning of exhumation and NNE-directed shortening and
led to the tectonic doubling of the Lagonegro Units. This
phase is dated 5.5 to 2.5 Ma (Mazzoli et al., 2008).

According to the previously calculated maximum trapping
temperatures (see Sect. 5 and Fig. 11), even by taking into

account the maximum possible trapping conditions, the
dolomitizing fluid had temperatures lower than those reached
during peak burial in the first deformation stage. Instead, the
calculated temperatures fit in with the second phase of defor-
mation, soon after exhumation had started at an approximate
temperature of 110-115°C. An upper limit for the timing of
dolomitization is provided by apatite fission track data
(Corrado et al., 2005; Mazzoli et al., 2008) which indicate
that the succession experienced temperatures of 100-110°C
between 5 and 4 Ma under 3-4 km of burial. These calcula-
tions are made in the assumption that the dolomitizing fluids
were in thermal equilibrium with the host rock. In the studied
area, no evidence for a hydrothermal origin can be found,
such as relationships of the dolostone bodies with deep-seated
normal faults. Nevertheless, with the present knowledge,
hydrothermal conditions for the fluids cannot be completely
ruled out.

The fluids responsible for dolomitization had a range of
salinities close to that of seawater and were slightly more
radiogenic than Upper Triassic seawater. The oxygen isotope
composition inferred for the dolomitizing fluids (Fig. 13) is
comprised between values characteristic of seawater and those
of saline formation waters, even by taking into account the
maximum possible pressure correction for the homogenization
temperatures.

Most models of regional fluid-flow in foreland basins
assume two main sources: meteoric waters and saline formation
waters (Garven and Freeze, 1984; Qing and Mountjoy, 1994;
Al-Aasm, 2003). In the Lagonegro Units, the possibility of a
massive input of meteoric waters from the already emergent
chain is not consistent with geochemical data.

Ronchi et al. (2010) compared the geochemistry of fluids
for similar case of syntectonic dolomitization in the Southern
Alps versus central Apennines. They found evidence of
mixing of meteoric waters with deep basinal brines in the
Alpine belt, whereas in the central Apennines data point to
the action of saline formation waters alone. These authors
assumed that meteoric recharge would be in agreement with
the higher relief of the Alpine belt during collision, that
probably caused increasing rainfall and provided the
hydraulic head which allowed a deeply penetration of surface
waters. By contrast, these factors were absent in central
Apennines with consequent absence of meteoric recharge
(Ronchi et al., 2010). The southern Apennines fold and thrust
belt could represent a further case of a low relief belt, lacking
a significant meteoric influx in the deep subsurface.

Two possible sources for the dolomitizing fluids of the
Lagonegro Units can be envisaged. Fluids could relate to
pore waters squeezed out from the surrounding Triassic and
Cretaceous fine-clastic formations (Monte Facito and
Galestri, respectively). In this case, however, because of the
prolonged water-rock interaction in the subsurface, more
radiogenic and more saline fluids would be expected com-
pared to the low salinity and only slightly radiogenic fluids
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inferred from the present study data. The other probable fluid
source could be represented by marine formation waters
expelled from the Miocene formations involved in the
mélange. It is significant, in this respect, that Sr isotope val-
ues reported for the studied dolomites are close to those of
Middle-Upper Miocene seawater (see Fig. 12b; McArthur et
al., 2001). These two scenarios should be taken as working
hypotheses, to be tested after a larger data set is collected and
a quantitative approach is attempted.

According to the available regional geology literature,
dolostones within the Calcari con Selce Formation occur only
in the northern area of the Lagonegro Basin (Fig. 1). Here, the
Lagonegro Units consist of two main thrust sheets, the
dolomite being restricted to the upper one (Scandone, 1967).
A reasonable explanation for this distribution could be that the
fluid-flow may have been focussed up-dip by the geometry of
the thrust surfaces. Nevertheless, it must be pointed out that
the outcrops from the southern area, which lack dolostone
occurrences, suffered a deeper burial (Mazzoli et al., 2008). A
possible scenario to explain this regional dolostone distribution
should take into account the different exhumation timing
between the northern and southern parts of the Lagonegro
Basin.

The wide distribution of dolostone bodies in the Lagonegro
Units, as reported in the literature (Scandone, 1967), suggests
that the fluid-flow leading to dolomitization was a major
phenomenon affecting the fold and thrust belt. Based on the
examples from north America (Betkhe and Marshak, 1990;
Leach et al., 2001; Gregg, 2004), this kind of massive fluid-
flow within the fold and thrust belt could have reached also
the foreland. In the southern Apennines, the foreland of the
Miocene fold and thrust belt was represented by shallow-water
carbonates of the Apulian Platform. These were subsequently
buried beneath the nappe stack, during late deformation stages,
providing the structural traps hosting major oil fields (Casero
et al., 1991; Mattavelli et al., 1993; Sciamanna et al., 2004;
Shiner et al., 2004). Thus, it could be expected that the
dolostone bodies which are reported in the Apulian subsurface
(Murgia et al., 2004) might have the same origin, this giving
economic significance to the fluid-flow that took place along
with the southern Apennines belt formation.

CONCLUSIONS

The Triassic pelagic carbonates of the Lagonegro Units from
the southern Apennines fold and thrust belt host discordant
dolostone bodies showing fabric and petrographic character-
istics typical of late burial saddle dolomites displaying zebra-
like structures. Field evidences indicate that the rock fabric
was controlled by regular bedding of the micritic, pelagic
limestones; it was the result of replacement and void-filling
precipitation in an environment characterized by high pore
fluid pressure. The geochemistry of the dolomite samples

indicates an origin by warm fluids (110-115°C) with a salinity
close to that of seawater and O-isotope composition comprised
between seawater and formation waters. Integration with
available thermal data into the regional deformation history
by assuming a fluid in thermal equilibrium with the host rocks
suggests that the fluid-flow took place after maximum burial,
in the early stages of exhumation, between 5 and 4 Ma and
under 3-4 km of burial. The location of the dolomitized
Calcari con Selce Formation between relatively impermeable
clastic formations was instrumental to the focussing of over-
pressured fluids.

It is suggested that dolomitization was accomplished by
squeezing out of formation waters from the surrounding
clastic formations, or from Miocene marine pore-waters from
the deeper mélange units. 

According to regional geology literature, the dolomitization
was a widespread event. This major fluid influx is associated
with the development of the Neogene fold and thrust belt. It
could be argued that dolomitization may have affected also
the Apulian Platform carbonates located in the foreland. The
latter, now buried below the nappe stack, host the major oil
fields of continental Europe. A complete regional and geo-
chemical study, presently in progress, will allow a better
understanding of the factors controlling the dolomitization
process, also providing some clues for exploration in this
complex petroleum system.
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