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Résumé — Vérification expérimentale du modèle pétroélastique au laboratoire – Substitutions de

fluides et effets de pression — Le modèle poroélastique est une composante centrale dans les workflows

permettant l’interprétation des données de sismique répétitive (ou sismique 4D) en vue de mettre en
évidence les mouvements de fluide et/ou les variations de pression lors de l’exploitation des réservoirs.
Ce modèle doit prendre en compte à la fois les effets de substitution de fluides et les effets de variation de
pression sur les paramètres sismiques mesurés (vitesses, impédances). Cet article décrit une vérification
expérimentale au laboratoire de ce modèle. Concernant les effets de substitution de fluides, le modèle de
Biot-Gassmann est le plus utilisé. Ce modèl considère que le module de cisaillement est indépendant de
la nature du fluide saturant, quand celui-ci est non visqueux, et relie les variations des modules
d’incompressibilité de la roche due à la substitution de fluides aux paramètres du milieu poreux et des
fluides saturants. La validation expérimentale, portant donc sur les deux aspects, montre sur un
échantillonnage varié de grès et de calcaires poreux que le module de cisaillement de la roche est
indépendant du fluide saturant peu visqueux. Cette indépendance est vérifiée, même dans le cas de
fluides visqueux (viscosité inférieure à 104 cP), si la pression différentielle est élevée (fermeture des
microfissures) ; l’écart entre le module d’incompressibilité mesuré et calculé est toujours faible ; le
module d’incompressibilité des cristaux formant une roche monominérale (calcaire, grès propre) déduit
de la formule de Gassmann est proche des valeurs données dans la littérature pour ces minéraux ; lors de
mesures sous une même pression différentielle, mais avec des pressions de pore différentes, les écarts
observés sur les modules d’incompressibilité sont comparables à ceux prévu par la formule de Biot-
Gassmann en prenant en compte la variation du module d’incompressibilité du fluide saturant sous l’effet
de la pression de pore (non linéarité). Ces trois dernières observations convergent vers la validation de la
formule de Biot-Gassmann pour le module d’incompressibilité. Concernant les effets de pression, le
paramètre pertinent est la pression différentielle Pdiff = Pc – Pp, c’est-à-dire la différence entre la pression
de confinement Pc et la pression de pore Pp. Plus précisément, nous démontrons que les vitesses des ondes
P et S dépendent uniquement de la pression différentielle Pdiff, et non individuellement des pressions Pc et
Pp. Cette pression, en contribuant à fermer les micro-défauts mécaniques (contacts entre grains,
microfissures), a des conséquences très variables sur les vitesses et les atténuations, suivant l’abondance
relative de ces micro-défauts. Les roches calcaires, quelle que soit la pression, sont souvent très peu
sensibles à cet effet, à cause de la facilité avec laquelle le carbonate cimente les micro-défauts. Les grès
consolidés sont souvent sensibles à la pression différentielle et les roches inconsolidées (sables) très
sensibles. La relation Vitesse vs Pdiff est généralement du type loi puissance et l’exposant de cette relation
est un excellent moyen de quantifier la sensibilité d’une roche à la pression.
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INTRODUCTION

The correct interpretation of the time-lapse seismic data
during the exploitation of reservoirs rests on the availability
of a relevant petroelastic model that is able to correctly
describe the simultaneous effect of fluid substitution and
pressure variations on seismic properties (e.g., Calvert,
2005). Here, we report experimental verification in the
laboratory of the two most popular petroelastic models,
namely Biot-Gassmann’s poroelastic theory for describing
fluid substitution effects (e.g., Bourbié et al., 1987) and
Hertz-Mindlin theory for describing the pressure dependence
of the seismic velocities (e.g., Mavko et al., 1988). 

The paper is divided in four parts. First, we introduce both
underlying theories. Then, we describe the experimental
results regarding fluid substitution. Experimental results on
the pressure dependence of the velocities are shown in the
third section. Finally, the paper ends with some concluding
remarks.

1 THEORETICAL ASPECTS

The macroscopic stress-strain laws of an isotropic porous
medium saturated by a single fluid can be found for instance
in Bourbié et al. (1987): 

(1)

(2)

where σij and εij are the components of the average increments
of the stress tensor and strain tensor, respectively, over a
Representative Elementary Volume (or REV) Ω of the
porous medium. Tr ε designates the trace of strain tensor and
δij the components of the unit symmetric tensor of rank 2, or
Kronecker tensor (δij = 1 if i = j and δij = 0 if i ≠ j ). The para-
meter p is the pore pressure increment over the pore volume
part Ω(fl) of the REV. If u and U are respectively the mean
macroscopic overall displacement and the mean displace-
ment of the fluid phase both over the REV Ω of the porous
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Abstract — Experimental Verification of the Petroelastic Model in the Laboratory – Fluid Substitution

and Pressure Effects — The poroelastic model is a major component in the workflows for the

interpretation of time-lapse (or 4D) seismic data in terms of fluid repartition and/or pressure variation

during the exploitation of reservoirs. This model must take into account both the fluid substitution effect

and the pressure variation effect on the measured seismic parameters (velocities, impedance). This paper

describes an experimental verification in the laboratory of this model. Regarding fluid substitution, Biot-

Gassmann model is the most popular model. This model assumes that the shear modulus is independent

of the nature of the saturating fluid, as long as this latter is not viscous and give the expression of the

variations of the bulk modulus of the rock due to fluid substitution as function of the parameters of the

rock frame and of the saturating fluids. The experimental validation, dealing with these two items,

demonstrates on various samples of sandstone and limestone that the shear modulus of the rock is

independent of the not too viscous saturating fluid. This is verified even with viscous fluids (viscosity as

large as 104 cP) if the differential pressure, that is to say the difference between the confining pressure

and the pore pressure, is high (closure of the mechanical defects); the bulk modulus of the crystal

constituent of mono-mineral rocks (limestone, clean sandstone) is close to tabulated values; under fixed

differential pressure but variable pore and confining pressures, the variation of the rock bulk modulus

can be explained by the nonlinearity of the fluid bulk modulus. These three types of experimental results

constitute unambiguous corroborations of Biot-Gassmann theory. Regarding pressure effects, the

relevant parameter is the differential pressure Pdiff = Pc – Pp, that is to say the difference between the

confining pressure Pc and the pore pressure Pp. More precisely, this means that P-wave and S-wave

velocities only depend on the differential pressure Pdiff = Pc – Pp, and not in an independent way on Pc and

on Pp. Increasing the differential pressure Pdiff tends to stiffen the rock by closing the mechanical defects

(grain contacts, microcracks, microfractures...). The consequence on velocities and attenuations is

variable according to the relative abundance of these mechanical defects in the rock sample. Limestones

are often weakly pressure dependent, whatever the pressure level. This is due to the ease with which

mechanical defects can be cemented by carbonate crystals. Consolidated sandstones are often sensitive

to the differential pressure Pdiff and the unconsolidated geomaterials (sands) are very pressure sensitive.

The pressure dependence of the velocities is often well approximated by a power law. The exponent of

this power law, often called the Hertz exponent, is a good way to quantify the pressure sensitivity of the

rock velocities.
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medium, the increase of fluid content ς over Ω is defined by
(Bourbié et al., 1987):

ς = – φ div(U – u) (3)

where φ designates the porosity and div the divergence of the
considered vector. Equations (1) and (2) are the most general
linear isotropic equations linking the dynamic parameters,
namely the stress σij and the pore pressure p, and the kinematic
parameters, namely the strain εij and the increase of fluid
content ς.

The physical interpretation of the additional physical
constants is the following. 

First, let us consider a “drained experiment”, for which the
pore pressure is kept constant in the pore volume part Ω(fl) of
the REV of the porous medium, that is to say p = 0 in
Equation (1). Thus K(dr) and µ can be respectively interpreted
as the bulk modulus and the shear modulus of the “drained”
rock, the superscript (dr) standing for “drained”. 

The coefficient α in Equation (1) is related to the concept
of effective stress for the bulk volumetric strain in the field of
soil or rock mechanics (e.g., Bourbié et al., 1987; Coussy,
1995). In these contexts, if one corrects in Equation (1) the
stress σij by the quantity αpδij one obtains an alternative
stress σ’ij:

σ’ij = σij + αp (4)

satisfying the regular Hooke’s stress-strain law. This alternative
stress is nothing but the so-called “Biot effective stress”
(e.g., Carroll, 1979; Bourbié et al., 1987; Thompson and
Willis, 1987) and the dimensionless coefficient α is referred to
as the Biot effective stress coefficient (Bourbié et al., 1987).
The elastic coefficients K(dr) and µ and the dimensionless
coefficient α only depend on the porous medium.

In Equation (2), the scalar M, which has the dimension of
a pressure, is the only material constant which depends on
the properties both of the porous medium and of the saturating
fluid. Under the condition of non-deforming frame (i.e.,
Tr ε = 0), Equation (2) becomes:

p = Mς (5)

Thus, the coefficient M is the pressure to be exerted on the
saturating fluid to increase the fluid content ς by a unit value
in a non-deforming frame.

Now, let us consider an “undrained” experiment, in which
the fluid content in a Representative Elementary Volume Ω
of the porous medium is kept constant (e.g., Bourbié et al.,
1987; Wang, 2000). This corresponds to the condition ς = 0
in Equation (2). This leads to an expression of the pore pres-
sure increment p which, when substituted in Equation (1),
gives a new linear relation between the stress and the strain:

(6)σ α µ ε δ µεij

dr

ij ijK M Tr= + −
⎛

⎝
⎜

⎞

⎠
⎟ × +( ) 2 2

3
2

where:
K(dr) + α2M = K(u) (7)

and µ can be straightforwardly interpreted as the bulk modulus
and the shear modulus of the “undrained” rock, the super-
script (u) standing for “undrained”. Note the equality of the
drained shear modulus and the undrained shear modulus,
which implies the independence of the shear modulus of the
rock with respect to the properties of the saturating fluid.
This is one of the most important results of the poroelastic
theory. The other important result is the link between the
undrained bulk modulus K(u) and the drained bulk modulus
K(dr) summarized by Equation (7).

Furthermore, Brown and Korringa (1975) and Gassmann
(1997) give the link between the macroscopic parameters α
and M of Equations (1, 2) and (7) and the microscopic para-
meters of the constituents (solid grain, fluid) and of the pore
(porosity). Bourbié et al. (1987) give:

(8)

(9)

where K(gr) and K(fl) designate the bulk moduli of the grain
constituent and of the saturating fluid, respectively. The two
previous equations associated with Equation (7) are the
famous Biot-Gassmann equations, widely used in fluid
substitution problems of seismic monitoring (e.g., Calvert,
2005). 

The link with the previous equations and the seismic
waves is the following. Since seismic waves involve so quick
processes that the fluid has no time to escape from the pores,
it is often assumed that the experimentally measured wave
moduli of the fluid-saturated rock are not very different from
the undrained P- and S-waves moduli (Bourbié et al., 1987;
Mavko et al., 1998) and are related to the undrained bulk and
shear moduli by the relations:

(10)

where V
P

(sat) and V
S

(sat) are the ordinary P-wave and S-wave
velocities and ρ the density of the fully saturated rock.

Up to now pressure dependence of the seismic velocities
was not considered. Both confining pressure Pc and pore
pressure Pp (not to be confused with the pore-pressure incre-
ment induced by the seismic wave) vary in the subsurface
and modify any physical property of rocks. In the framework
of an idealized rock-physics model, Gurevich (2004) demon-
strated that seismic velocities essentially depends on the
differential pressure Pdiff = Pc – Pp (the difference between
the confining pressure Pc and the pore-pressure Pp) and not
in an independent way on Pc and on Pp. This will be shown
experimentally in the next sections.
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One of the simplest model assumes a power law for the
dependence of the velocities with the differential pressure
Pdiff:

(11)

where VP(Pdiff i) and VS(Pdiff i) (i = 1, 2) are the P-wave an
S-wave velocities, respectively, at the differential pressure
Pdiff i (i = 1, 2). The exponents hP and hS of the power laws of
Equation (11) are called the Hertz exponents, respectively of
the P-wave velocity and of the S-wave velocity, with refer-
ence to the German physicist Heinrich Hertz who demon-
strated by calculation that in a stack of isodiametral spheres,
in elastic contact, velocity varies with the pressure according
to a power law, and that for P-waves, the exponent is hP = 1/6
(Mavko et al., 1998). In rocks Hertz exponents differ from
this theoretical value. Experimental measurement of Hertz
exponents in various types of rocks are reported in the next
sections.

2 EXPERIMENTAL RESULTS ON FLUID SUBSTITUTION

2.1 Conventional Experimental Verification
of the Petroelastic Model

Here, we illustrate the conventional procedure for experimentally
checking the poroelastic equations of the previous section.
First, P- and S-wave ultrasonic velocities on the “room dry”
and on the saturated rock sample are measured by “first
break” technique. The first break technique corresponds to
the simplest and most common way to measure a velocity. It
consists in picking the arrival time of the start (first break) of
an acoustic signal which has propagated in the rock sample.
The sample density ρ and the porosity ϕ are independently
measured using conventional techniques (Bourbié et al.,
1987). The fluid properties (density, bulk modulus) are either
obtained from physical tables (Anderson, 1971; Batzle and
Wang, 1992; Tamura et al., 1994; Daridon et al., 1999;
Plantier et al., 2002) or also independently measured. Then,
knowing the type of rock or analyzing the rock sample it is
possible to identify the main mineral constituents and to give
reasonable value for the bulk modulus and the density of the
grain constituent (Bass, 1995; Zinszner and Pellerin, 2007).
Some values are given in Table 1.

As previously said, the wave moduli of the saturated rock
are identified with the undrained P- and S-waves moduli related
to the undrained bulk and shear moduli by Equation (10).

Last, the drained bulk and shear moduli rock are wrongly
identified with the bulk and shear moduli of the “room dry”
rock in the literature, as clearly detailed by Mavko et al.

(1998). This procedure has been checked on a large database
(312 rock samples) available in the open literature. 

We plot in Figure 1 the measured P-wave (figure on the
left side) and S-wave (figure on the right side) ultrasonic
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velocities as functions of the corresponding undrained veloci-
ties using the Biot-Gassmann equations of the previous sec-
tion. More precisely, the theoretical undrained velocities are
computed in the following way. First, the P- and S-wave
velocities are measured with the “first break” technique on
the “room dry” rock samples and the corresponding rock
density measured independently. These data are converted
into bulk and shear moduli which are identified with the
drained bulk modulus K(dr) and shear modulus µ, as men-
tioned above. Then, assuming K(fl) = 2.25 GPa (saturating
fluis is water) and K(gr) = 37 GPa (quartz grain) for sand-
stones, K(gr) = 73.3 GPa (calcite grain) for limestones and
K(gr) = 94.9 GPa (dolomite grain) for dolomites the undrained
bulk modulus is computed using Equations (7, 8) and (9),
and the undrained P- and S-wave velocities using Equation
(10) with independently measured density of the fluid-
saturated rock sample.

The rough correlation observed in Figure 1, especially for
the P-wave velocity (correlation coefficient ≈ 0.83), could lead
to question the applicability of the poroelastic theory for ultra-
sonic experiments in the laboratory. In fact, it has been demon-
strated by Rasolofosaon et al. (2008) in carbonates that the
agreement between experiment and theory can be greatly
improved by carefully adapting the experimental procedures.

This is illustrated in the next sections on various types of
rocks (i.e. sandstones, dolomites, limestones, and dolomitic
limestones).

2.2 Experimental Procedure and Corroboration
of the Theory

In this part, we briefly describe the alternative experimental
set-up and procedure and illustrate three types of experimental
verifications of Biot-Gassmann equations on rock samples.

2.2.1 Experimental Set-Up and Procedure

The experimental set-up is that used by Rasolofosaon and
Zinszner (2004a) and shown in Figure 2. The measurement
cell corresponds to a standard device for measurement under

TABLE 1

Average values of the density, the bulk and shear moduli
of the main mineral constituents of the sedimentary rocks

(Bass, 1995; Zinszner and Pellerin, 2007)

Mineral
Density Bulk modulus Shear modulus

(kg/m3) (GPa) (GPa)

Quartz 2 650 37 45

Calcite 2 710 70 30

Dolomite 2 870 80 50

Siderite 3 960 120 50

Clay (average) 2 750 25 9
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confining pressure. The rock sample, 40 mm in diameter and
40 to 80 mm in length, is placed in a Viton sheath which
partly covers the two measurement heads each containing an
ultrasonic transducer. In our experiment, we use double P
and S transducers (two half-moon ceramics) yielding very
high quality signals.

Once equipped, the cell is filled with oil which when
pressurized allows a maximum confining pressure Pc of
70 MPa. A pump controls the pore pressure Pp inside the
sample. The condition Pp < Pc must always be observed in
order to preserve the Viton sheath and to avoid to put the
rock in tension. The cell allows to measure P- and S-waves
ultrasonic velocities (central frequency around 500 kHz)
under controlled pore and confining pressures. 

Regarding the experimental procedures, we emphasized the
fluid substitution technique and the velocity measurements.
During the various fluid substitutions, the rock sample is not
moved and stays in the measurement cell. Measurements are
always performed under 100% saturation with the considered
fluid or fluid mixtures. This allows to avoid any modification
of the acoustic coupling between the rock sample and the
measurement device and, as a consequence, to achieve more
accurate and more comparable measurements. We use various
types of saturating fluids (e.g., water, ethanol, kerosene,
soltrol... and mixture of liquids) of contrasted physical prop-
erties as illustrated by Table 2 (Rasolofosaon and Zinszner,
2004a).

Any chemical reaction with the rock must be avoided. As
a consequence, the choice of the saturating liquid mainly
depends on the presence of clay in the rock sample. For
limestones and clean sandstones, one can easily use liquids

with bulk modulus K (fl) in the range 0.7 GPa (pentane) to
3.2 GPa (ethylene glycol) and even 4.8 GPa (glycerol). In
clayey sandstones it is safer to use brine or hydrocarbons, and
the range of possible values for K (fl) is narrower (maximum
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Figure 1

Measured first-break velocities (a: P-wave, b: S-wave) as functions of the theoretically predicted velocities using poroelastic equations on
water-saturated rocks (312 samples of sandstones, dolomites, limestones, and dolomitic limestones from the open literature).

Figure 2

Photograph and diagram of the cell for acoustic measurement
under controlled pore and confining pressures.



Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 2308

K (fl) corresponding to brine is 2.4 GPa) but still enough to
accurately test the theory.

Regarding velocity measurements, in order to avoid errors
related to “path dispersion” due to heterogeneities of dimen-
sion non-negligible compared to the wavelength, especially in
limestones (Cadoret, 1993; Cadoret et al., 1995; Rasolofosaon
and Zinszner, 2008), we performed phase velocity measure-
ments using the spectral ratio technique (e.g., Pouet and
Rasolofosaon, 1993). Compared to the simplest and also the
most used technique, namely the first break technique, the
phase velocity technique allows to limit the effect of the rock
heterogeneity on the ultrasonic measurements, as demonstrated
by Rasolofosaon and Zinszner (2008) in limestones.

In the next sub-sections, we illustrate three types of
experimental verifications of the poroelastic equations on rock
samples.

2.2.2 Relation between Bulk Moduli of Rock and Fluid

The first type of experimental verification, illustrated by
Figure 3, is about the link between the undrained moduli (bulk
moduli in black circles and shear moduli in grey triangles) of
the saturated rock and the bulk modulus of the saturating
fluids reported in Table 1. The considered rock is Estaillades
limestone, a highly porous rock (φ = 30%) with an average
permeability (k = 180 millidarcy). This bioclastic limestone

has a bimodal porous network with abundant intergranular
porosity and large microporosity contained in the bioclasts.
We note the good agreement between experimental data and
the theoretical predictions (solid line for the bulk modulus
and dashed line for the shear modulus). For the model, we
took for the drained bulk modulus K (dr) and shear modulus µ
the limit of the measured bulk and shear modulus of the rock
for vanishing fluid modulus K (fl) instead of measuring the
wave moduli of the dry rock, the “room dry” condition being
not well controllable.

We also note in Figure 3 a nearly linear dependence of the
undrained bulk modulus K (u) the fluid-saturated rock with the
bulk modulus K (fl) of the saturating fluid. This can straight-
forwardly be deduced from the poroelastic equations. As a
matter of fact if one assumes that the solid grain is much less
compressible than the saturating fluid:

K (fl) << K (gr) (12)

which is quite a reasonable assumption in most practical
situations in Rock acoustics (compare K (gr) values in Tab. 1

with K (fl) values in Tab. 2). Under this assumption, Equation
(9) becomes:

M ≈ K (fl)/φ (13)

Equation (13) reported in Equation (7) gives:

(14)

The simplified Equation (14) means that the undrained bulk
modulus K (u) is approximately a linear function of the bulk

K K Ku dr fl( ) ( ) ( )≈ +
α
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Figure 3

Experimental undrained bulk modulus (black circles) and
shear modulus (grey triangles) as functions of the bulk
modulus of the saturating fluid. Poroelastic theoretical
predictions are in solid line for bulk modulus and in dashed
line for shear modulus.

TABLE 2

The saturating fluids used in this work and their physical properties,
namely from left to right bulk modulus (in GPa), density (in kg/m3)

and viscosity (in 10-3 Pa.s)

Liquid
Bulk modulus Density Viscosity

(GPa) (kg/m3) (10-3 Pa.s)

Pentane 0.72 625 0.25

Heptane 0.88 683 0.40

Hexane 0.90 675 0.30

Ethanol 1.12 795 1.20

Soltrol 1.16 752 1.50

Kerosene 1.40 804

Bromoform 75% ethanol 1.55 1 720

Trichlorethylene 1.73 1 461

Albelf 1.90 863 170

Polyal 1.92 845 1 100

Ethanol 40% ethy. glyc. 2.11 957 5

Water 2.25 1 000 1

Brine 25 g/L 2.30 1 020 1

Bromoform 2.45 2 800

Aniline 2.90 1 019 5

Ethylene glycol 3.23 1 112 19

Glycerol 4.80 1 263 1 500
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modulus K (fl) of the saturating fluid, which is clearly shown
in Figure 3 and commonly observed in all the rock samples
that we studied.

2.2.3 Shear Modulus Independent of the Saturating Fluid

As pointed out in the first section, one of the most important
results of the poroelastic theory is the independence of the
shear modulus of the rock with respect to the properties of
the saturating fluid, more specifically the viscosity. This is
clearly illustrated by Figure 4 on sintered quartz (left) and
Fontainebleau sandstone (right). In sintered quartz the viscosity
of the saturating fluid clearly has no measurable influence on
the shear modulus. Only the level of differential pressure Pdiff,
the difference between the confining pressure Pc and the pore
pressure Pp, modifies the shear modulus of the rock. As
widely known, an increase of Pdiff induces a stiffening of the
rock (increase of bulk and shear moduli) by closing the cracks
and compliant pores (Mavko et al., 1998). The effect is weak
on sintered quartz because sintering tends to eliminate most of
the cracks. In Fontainebleau sandstones, and in all the rocks
that we analyzed, the independence of the shear modulus
of the rock with respect to the viscosity of the saturating
fluid is observed for sufficiently large differential pressure
Pdiff (typically > 5 MPa), that is to say when a sufficient
number of compliant pores is closed.

2.2.4 Verification on the Bulk Modulus 
of Grain Constituent

Up to now, the bulk modulus of the grain constituent K (gr)

was inferred from the knowledge of the mineralogical
composition of the rock sample.

The bulk modulus K (gr) of the grain constituent, together
with the fluid bulk modulus K (fl), the drained bulk modulus
K (dr) and the porosity ϕ of the rock are the basic input para-
meters of the Biot-Gassmann Equations (8) and (9).
Although not commonly done, one can compute K (gr) from
the measured values of the undrained bulk modulus K (u), the
drained bulk modulus K (dr), the fluid bulk modulus K (fl) and
the porosity φ appearing in Equations (7, 8) and (9), using the
relation:

(15)

This computation is useful for checking experimentally the
validity of Biot-Gassmann equations because the bulk
modulus K (dr) of the main mineral constituents of the sedi-
mentary rocks are known (see Tab. 1). These theoretical
values can be compared to the values obtained from the
experiments.

Note that the value of K (gr) obtained by Equation (15) is
very sensitive to small variations of the input parameters. 

Without going into a systematic analysis, we can give a
simple numerical example. Figure 5 considers a typical non-
clayey sandstone and a typical limestone, both water-saturated
and with porosity equal to 0.2. The drained bulk modulus
K (dr) is kept constant and equal to 17 GPa for the sandstone
and 19 GPa for the limestone. One immediately observes the
large error induced on the estimation of bulk modulus of
the grain constituent K (gr) by a variation of less than 10% of the
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Shear modulus (in GPa) of the saturated medium as function of the logarithm of the viscosity of the saturating fluid (in centipoise) under 6
fixed levels of differential pressures (1, 2, 5, 10, 20 and 40 MPa). a) Case of sintered quartz, and b) case of Fontainebleau sandstone. The
different lines correspond to linear fits on the corresponding data.
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value of the undrained bulk modulus K (u) of the rock about
an average value. The induced error is larger than 45% for
the sandstone and reaches 100% for the limestone. Such a
result is very encouraging for our approach of validation of
the proposed experimental procedure. For instance, this will
allow to favorably interpret deviations as large as 10% to
20% between the experimentally determined K (gr) and the
corresponding theoretical value read in Table 1.

The two next tables allows a quality control of the proposed
experimental procedure using the experimental estimation of
K (gr). Table 1 compares estimations of K (gr) deduced from
ultrasonic velocity measurements using three techniques on
water-saturated Estaillades limestone under four different

confining pressures, namely 1, 2, 5 and 10 MPa. Three mea-
surement techniques are the most common technique, name
the first break technique, the correlation technique and the
spectral ratio technique, for phase velocity measurement. In the
correlation technique, the signal to be analyzed is compared,
by time correlation, with a reference signal of known transit
time.

We notice that the first break technique and the correlation
technique systematically overestimate K (gr). Only, the phase
velocity measured by the spectral ratio technique gives a
correct estimation the bulk modulus of the grain constituent.

The overestimation of K (gr) by the correlation technique
and the first break technique is simply due to the overestima-
tion of the undrained bulk moduli K (u) of the fluid-saturated
rock, resulting themselves from the overestimation of the
P-wave velocity. This is why we think that the disagreements
between experimental results and the predictions of Biot-
Gassmann theory reported in the literature, at least in the
laboratory, are mainly due to unsuitable experimental
techniques, especially with respect to velocity measurements.
If phase velocity are correctly measured the experimental
results are clearly consistent with the poroelastic theory, as
illustrated also by Table 4 in Fontainebleau sandstone.

TABLE 4

Bulk modulus (in GPa) of the grain constituent deduced 
from ultrasonic velocity measurements in the laboratory on Fontainebleau

sandstone with quartz as the only grain constituent
(correct value of K(gr) for quartz is 37 GPa). The rock sample is saturated
by 8 different fluids and 5 different confining pressures are considered,

namely 2, 5, 10, 20 and 40 MPa

Pdiff

2 MPa 38 39 31 28 33 31 35 36

5 MPa 37 36 33 33 33 30 34 36

10 MPa 32 33 32 32 32 32 33 36

20 MPa 33 35 34 35 35 33 35 35

40 MPa 37 35 35 34 34 35 36

In contrast with the previous experiment here, eight different
saturating fluids were used, and five different confining pres-
sures are imposed, namely 2, 5, 10 and 20 MPa. Here again,
we note that all the experimentally deduced grain-constituent
stiffness K(gr) using Equation (15) are surprisingly not very
different from the bulk modulus of quartz, namely 37 GPa
(see Tab. 1) the only constituent of this rock.

The new experimental procedures have been checked on a
database containing 76 rock samples of various types. We
chose the following groups of rocks:
– Fontainebleau sandstone (different porosities φ = 0.2, 0.14

and 0.07), a well-sorted very clean (nearly 99.8% quartz)
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on the value of the exact undrained bulk modulus K(u) for
typical sandstone (black squares) and limestone (black
circles).

TABLE 3

Bulk modulus K(gr) (in GPa) of the grain constituent deduced
from ultrasonic velocity measurements in the laboratory on water

saturated Estaillades limestone with calcite as a major grain constituent
under 4 different differential pressures, namely 1, 2, 5 and 10 MPa.

Three velocity measurements techniques, namely first break peaking
(the most commonly used), correlation technique, and phase spectrum
analysis, are compared. Only, the last technique gives the correct value
(70 GPa for Calcite) of the bulk modulus Kgrain of the grain constituent

using the poroelastic equations

Measurement

technique
Pdiff = 1 MPa Pdiff = 2 MPa Pdiff = 5 MPa Pdiff = 10 MPa

First break 115 116 116 104

Correlation 193 135 128

Phase 79 89 64 69
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sandstone composed of sub-spherical grains of quartz of
roughly 250 µm diameter with a simple porous network
(e.g., Bourbié et al., 1987);

– Weakly (Vosges) and moderately (Meule) clayey sandstones.
Only a few number of samples were available. Numerous
other samples were rejected because the measurement
technique was slightly different from that imposed in the
present study. However, a large buch of acceptable mea-
surements were available on the remaining samples. These
sandstone samples exhibited porosities around 0.20 to
0.25 (5 samples);

– a large group of samples (23) of weakly to moderately
porous limestones (φ < 0.3). The main interest of such a
collection of samples is to allow a statistical analysis on
mono-mineral (calcite) carbonates, sometimes considered
to be not really appropriate for the validation of Biot-
Gassmann theory;

– about fifteen very porous (φ > 0.3) limestones, which
often cause major experimental in the correct recording
of S-waves.
In spite of the diversity of the new selection of rock samples,

Biot-Gassmann equations are clearly much better corroborated
(correlation coefficient > 0.98), as illustrated by Figure 6, to
be compared with Figure 1 with the same type of plot.

3 EXPERIMENTAL RESULTS ON PRESSURE
DEPENDENCE

This section deals with the pressure dependence of the
velocities. First, we experimentally verify that velocities

essentially depends on the differential pressure Pdiff = Pc – Pp

(the difference between the confining pressure Pc and the
pore-pressure Pp), and not in an independent way on Pc and
on Pp. Then, we illustrate the relevancy of Hertz-type model
of pressure dependence of the velocities. Finally, we quantify
and discuss Hertz coefficients in outcrop and core samples.

3.1 Importance of the Differential Pressure

The simplest way to unambiguously show the relevancy of
the differential pressure Pdiff = Pc – Pp for the pressure depen-
dence of the velocities is to measure the P- and S-wave
velocities under different states of pore pressure Pp and con-
fining pressure Pc and to check the pressure pairs (Pc, Pp) that
keep the considered velocity unchanged. Our experimental
set-up shown in Figure 2 allowing to measure the ultrasonic
velocities under controlled pore and confining pressures, we
investigated on each rock sample the various pressure states
(diamond points) plotted in Figure 7. Note that the condition
Pp < Pc is always observed.

At each pressure state, we measured both P- and S-wave
velocities. The pressure grid was dense enough to allow plot-
ting iso-velocity maps such as those illustrated by Figure 8 in
Meule sandstone saturated with Albelf. 

This is just an example but is typical of all the rocks that
we have analyzed. One clearly sees that the iso-velocity lines
are practically parallel to the first diagonal Pc = Pp, which
means that P-wave (Fig. 8a) and S-wave (Fig. 8b) velocities
only depend on the differential pressure Pdiff = Pc – Pp, and
not in an independent way on Pc and on Pp. The link with the
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differential pressure and the effective pressure concept
introduced in Equation (4) and in the corresponding com-
ments is the following. In fact, the effective pressure (we use
pressure instead of stress for simplicity of the explanation) is
not an absolute concept but is relative to the effective physical
property under consideration. More precisely, the effective
pressure P

eff

(Π) = Pc – n(Π)Pp, relative to a physical property Π, is
a linear combination Pc – n(Π)Pp of the confining pressure Pc

and of the pore pressure Pp that leaves the physical property

Π unchanged, in spite of the separate and simultaneous
change of Pc and Pp. The constant n(Π) is called the effective
stress coefficient relative to the physical property Π. For the
bulk volumetric strain n(Π) is equal to Biot’s poroelastic

coefficient (e.g., Nur and Byerlee, 1971;

Robin, 1973), which is the case in Equation (4). In contrast,
for the porosity and for the drained bulk modulus n(Π) is equal
to 1 in idealized model (e.g., Zimmermann, 1991; Gurevich,
2004). In other words, for these physical properties the
effective pressure is equal to the differential pressure. Our
experimental data on various rock samples, not all shown
here, show that n(Π) relative to the elastic velocities of the
fluid-saturated rocks does not differ much from 1.

In detail, this is not exactly verified for the case of high
pore pressure Pp (that is to say close to the diagonal Pc = Pp)
and small level of confining pressure Pc, especially for the
P-wave. We give an explanation of this phenomenon in the
comments of the next figures.

Figure 9 also illustrates in a different way the importance
of the differential pressure Pdiff in the pressure dependence of
the velocities. We plotted the experimental P-wave velocity
(Fig. 9a) and S-wave velocity (Fig. 9b) in water-saturated
Vosges sandstone as functions of the confining pressure Pc,
for five levels of the differential pressure, namely Pdiff = 1, 2,
5, 10 and 20 MPa. Experimental data are plotted in dashed
lines with different symbols corresponding to different levels
of Pdiff. The main result, totally in agreement with Figure 8,
is the relative constancy of the velocities with respect to
confining pressure for fixed differential pressure Pdiff. This is
particularly well verified for S-wave velocity (right figure)
and to a lower extent for the P-wave velocity.
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Figure 8
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The central influence of the differential pressure Pdiff on
the velocities is classically explained in the following way
(Bourbié et al., 1987; Mavko et al., 1998). An increase of the
confining pressure Pc tends to close the mechanical defects
(i.e., grain contacts, micro-cracks, micro-fractures...) contained
in the rock, thus to stiffen the rock, and as a consequence to
increase the seismic velocities, without greatly affecting its
porosity. In contrast, the pore pressure Pp in the saturating
fluid tend to open the pores, especially the flat compliant
pores (constituting the mechanical defects). This is the major
effect. The effect of the pore pressure Pp on the S-wave veloci-
ties is nearly exactly equilibrated by the effect of the confining
pressure Pc (Fig. 9b). This does not hold exactly for the P-wave
velocities (Fig. 9a). We observe a moderate increase of
P-wave velocity with confining pressure for fixed differential
pressure, the smaller Pdiff the larger the phenomenon.

This can be clearly explained by an additional effect, not
classically taken into account, namely the dependence of the
bulk modulus of the saturating fluid (brine in this case) with
the pore pressure Pp. In effect, in moderately pressure-
dependent porous media Biot-Gassmann equations still
roughly holds, but all the coefficients now depend on the
pressure level. First of all, the pressure dependence of the
grain constituent modulus is negligible compared to that
induced by other constituents (i.e., fluid content, pores...)
(Guyer and Johnson, 1999; Johnson and Rasolofosaon,
1996; Rasolofosaon and Yin, 1996). Beside the major role
of the compliant features (e.g., grain-to-grain contacts, low-
aspect-ratio cracks, joints...), omnipresent in rocks, in the
pressure dependence of the velocities, the contribution of the
nonlinearity of the saturating fluid must not be neglected.

Figure 10 shows the increase of the Bulk modulus K(fl) of
five different saturating liquids, namely Water, Ethylene gly-
col, Soltro, Methanol and Heptane, as function of the pore
pressure Pp. This is known as the nonlinear elasticity of the
liquids (Anderson, 1971; Daridon et al., 1999; Plantier et al.,
2002; Tamura et al., 1994). If this effect is neglected, the
undrained bulk modulus K(u) of the liquid-saturated rock
should not depend on the pore pressure Pp for fixed differen-
tial pressure Pdiff, which is clearly contradicted by the experi-
mental result on P-waves (Fig. 9a). Furthermore, the
observed increase of K(u) with the confining pressure Pc, or
equivalently with decreasing pore pressure Pp; for fixed dif-
ferential pressure Pdiff can be perfectly predicted by a taking
into account not only the fluid substitution and the depen-
dence with Pdiff of the velocities, summarized by Hertz-type
Equation (11), but also the dependence of the fluid bulk mod-
ulus K(fl) on the pore pressure Pp, illustrated by Figure 10 and
due to the nonlinear elasticity of the saturating liquid. This is
well illustrated by Figure 9, where the theoretical predictions
taking into account the nonlinearity of the saturating liquid,
plotted in solid lines, are in a reasonable agreement with the
experimental results in water-saturated Vosges sandstone.
The model correctly predicts a slight increase of the P-wave
velocity with confining pressure Pc, for fixed differential
pressure Pdiff. In effect, the pore pressure Pp simultaneaously
increases with the confining pressure Pc to ensure a constant
differential pressure Pdiff. As a consequence the pore pres-
sure increase induces an increase of the bulk modulus K(fl) of
the saturating fluid, as shown by Figure 10, which results in
the increases of the undrained bulk modulus K(u) and of
the P-wave velocity, according to Equations (10) and (14).
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This does not affect the S-wave velocity because the shear
modulus is not affected by the presence of the fluid, as exten-
sively demonstrated in a previous section and illustrated by
Figures 3 and 4.

3.2 Relevancy of Hertz-Type Model

Figure 11 illustrates the relevancy of a power law for the
dependence of the velocities with the differential pressure
Pdiff. Ultrasonic P-wave velocity (Fig. 11a) and S-wave
velocity (Fig. 11b) are plotted as functions of the differential
pressure in Log-Log scale. Five rock samples are considered
and can be considered as representative of the rock samples
that we analyzed. The data points are represented by various
symbols and the solid lines are the corresponding linear
regression curves.

The agreement between a theoretical power law (linear
regression in Log-Log scale) and the experiment results is
reasonable enough to avoid the further refining of the pressure-
dependent model.

3.3 Hertz Coefficients in Rocks

3.3.1 General Remarks

Figure 11 not only illustrates the relevancy of the Hertz-type
model for describing the pressure dependence of the veloci-
ties, but also summarizes the main trends of rock behaviour:
– Lavoux limestone illustrates the clear trend of limestones

from outcrops to exhibit no or weak dependence of the
velocities (P and S) with the differential pressure;

– the sandstones, except Fontainebleau sandstone, follow a
power law in the investigated pressure interval. However,
one can notice some trend of stabilization for high differ-
ential pressure (larger than 60-70 MPa). The slopes of all
the linear regression lines are not very different from each
other with Hertz exponent hP of the order of 50 × 10-3 for
P-wave. Hertz exponent hS for S-wave is substantially
larger, with values around 80 × 10-3.
For this study, we collected numerous data from the

literature and data from our laboratory at IFP Energies nou-
velles. Neither the measurement accuracy nor the pressure
interval for the computation of Hertz exponents (between 5 et
40 MPa in most rock samples) were the same for all these
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Figure 11

Ultrasonic P-wave velocity a) and S-wave velocity b) as
functions of the differential pressure in Log-Log scale in five
rock samples. Solid lines are linear regression curves.



data. However, the great number of measurements statistically
makes up for these weaknesses. The results are synthesized
for outcrop and core samples as histograms in Figures 12 and
13, respectively in sandstones and in limestones. The first
result is the difference between core samples and outcrop
samples. Core samples statistically exhibiting larger Hertz
exponents than outcrop samples will be studied separately.

3.3.2 Outcrop Samples

The observations made on the rock samples of Figure 11 are
confirmed by the histograms of Figures 12 and 13. Velocities

in Limestones are weakly sensitive to pressure (hP and hS of
the order of 15 × 10-3 and 25 × 10-3 respectively). For sand-
stones Hertz exponents are notably larger, with modal values
of the order of 40 × 10-3 for hP, and 60 × 10-3 for hS.

If one tries to clarify the link between Hertz exponent and
some petrophysical parameters, the results are not really con-
vincing. For instance, the link between porosity and Hertz
exponent is fuzzy, as illustrated by Figure 14. Hertz exponents
for outcrop samples (black symbols) and in core samples
(empty symbols) are plotted as functions of the porosity in
sandstone (Fig. 14a) and in limestones (Fig. 14b). P-wave
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Histograms of Hertz exponents for P-wave (left) and S-wave (right) in outcrop and reservoir samples of brine-saturated sandstones.
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Histograms of Hertz exponents for P-wave (left) and S-wave (right) in outcrop and reservoir samples of brine-saturated limestones.
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corresponds to circles and S-wave to triangles. The straight
lines are linear fit on the experimental data. Solid lines corre-
spond to core samples and dashed lines to outcrop samples.
Grey lines correspond to P-wave and black lines to S-wave.
Sandstones exhibit some correlation, as shown by the small
slope of the linear fit curves both in outcrop and core sam-
ples. Porosity does not seem to be a key parameter. In effect,
if one classifies the porosity in two types, namely from one
side the sub-spherical stiff pores, representing the major part
of the porosity in reservoir rocks, and from the other side the
thin compliant pores (e.g., grain-to-grain contacts, low-
aspect-ratio cracks, joints...). The latter type of pores,
although representing a minute part of total porosity, is the
main cause of the dependence of the velocities with the dif-
ferential pressure (Walsh et Brace, 1966). Practically, these
thin compliant pores do not contribute to the total porosity of
reservoir rocks (obviously the situation is different in the case
of compact rocks). As a consequence, it is not surprising that
there is a lack of evident link between the total porosity and
Hertz exponent.

The micas seem to play a major role in some sandstones.
Even a small number of very small crystals can induce strong
dependence of the velocities with differential pressure, or
equivalently corresponding large Hertz exponents. Our
observations were mainly made on core samples. It would
be interesting to study on outcrop samples the actual
consequences of the processes of alteration and stress
relaxation on the mica effect.

3.3.3 Core Samples – Stress-Relaxation Effects

During the recovery of the core samples the rock undergoes a
sudden variation of stresses (relaxation). The mechanical

damages undergone by the rock sample can get worse due to
the alteration of some minerals (mostly clay minerals) during
the drying process. Thus, the mechanical representativeness
of core samples is clearly questionable. It is often admitted
that putting the core sample under a differential pressure Pdiff

(sometimes larger than the differential pressure in the reser-
voir) allows to compensate for this effect on the velocities.
But what about Hertz exponents which precisely characterize
the pressure sensitivity.

Some experimental work (e.g., Meglis et al., 1991;
Rasolofosaon and Zinszner, 1989; Holt et al., 1994; Schutjens
et al., 1995) emphasize this mechanical damage due to stress
relaxation. Another illustration is the statistical comparison
between Hertz exponents measured in core samples and thos
measured in outcrop samples, illustrated by Figures 12 and
13. The outcrop rock samples have undergone a very slow
stress relaxation (at the geological time scale), and thus have
been protected from the sudden mechanical damage. One
notices in Figures 12 and 13 that Hertz exponents are, in
average, substantially larger in core samples than in outcrop
samples, both for P-wave and for S-wave. Although there
may be some bias in sampling both outcrop and core samples
(complicated by recovery problem for the latter) our results
statistically provide a rough but unambiguous proof of the
effect of core damaging on Hertz exponents. The core dam-
age as a result of stress unloading during coring from wells
and uplifting have been pointed out by many authors (e.g.,
Rasolofosaon and Zinszner, 1989; Holt et al., 1996; Nes
et al., 2000).

The mechanical damage of core samples is a major issue
regarding the measurement of mechanical properties in the
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Figure 14

Hertz exponents for P-wave (circles) and for S-wave (triangles) in outcrop samples (black symbols) and in core samples (empty symbols) as
functions of the porosity in brine-saturated sandstone a) and in water-saturated limestone b). The straight lines are linear fit on the
experimental data.
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laboratory. Possible initiation for tackling the problem could
be the study of analogue rock samples, that is to say outcrop
samples geologically equivalent to the considered reservoir
rocks.

CONCLUSION

The experimental results presented in this paper unambiguously
demonstrate the corroboration of Biot-Gassmann equations
for reservoir rocks of medium porosity, both in sandstones
and in limestones, under minimum differential pressure
(typically > 10 MPa) and saturated with fluids of viscosity
smaller than 104 cP (limit of the studied range of viscosity).
The uncertainty on the experimental validation is in the limit
of the accuracy of the mesurements (typically a few percent
on the wave moduli, that is to say half of this range for the
velocities). The experimental check was done with ultrasonic
waves (500 kHz). All the the theoretical developments show
that the use of Biot-Gassmann theory is much more justified
at smaller frequencies (i.e. sonic and seismic frequency
bands). Thus, one can conclude that with respect to fluid sub-
stitution Biot-Gassman equations can be safely used in the
interpretation of time-lapse seismic data, as illustrated by
Calvert (2005).

Regarding pressure effects, the first result is that the relevant
parameter is the differential pressure Pdiff = Pc – Pp, that is to
say the difference between the confining pressure Pc and the
pore pressure Pp. More precisely, this means that P-wave and
S-wave velocities only depend on the differential pressure
Pdiff, and not in an independent way on Pc and on Pp.
Increasing the differential pressure Pdiff tends to stiffen the
rock by closing the mechanical defects (grain contacts,
microcracks, microfractures...). The consequence on veloci-
ties and attenuations is variable according to the relative
abundance of these mechanical defects in the rock sample.

Limestones are often weakly pressure dependent, what-
ever the pressure level. This is due to the ease with which
mechanical defects can be cemented by carbonate crystals.
Consolidated sandstones are often sensitive to the differential
pressure Pdiff and the unconsolidated geomaterials (sands) are
very pressure sensitive.

The pressure dependence of the velocities is often well
approximated by a power law. The exponent of this power
law, often called the Hertz exponent, is a good way to quan-
tify the pressure sensitivity of the rock velocities. From a
practical point of view the estimation of Hertz exponent in
rock samples can be jeopardized by two major factors:

– during the sample recovery the rock samples experience a
sudden relaxation of the geological stresses which often
tend to artificially overestimate the Hertz exponents due to
the presence of the microcracks induced by the recovery
process;

– the measurement of Hertz exponent involve the study of
rocks under different states of differential pressures,
inducing substantial variations of the attenuation/disper-
sion of the elastic waves in the rock samples. As a conse-
quence, such velocity dispersion imply the frequency
dependence of Hertz exponent, which is not commonly
appreciated. Experimental demonstration as well as practical
consequences have been recently described (Rasolofosaon
and Zinszner, 2011).
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