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Résumé — Sur le thermo-management optimal d’un véhicule électrique hybride avec un sys-

tème de récupération de chaleur — Une approche généralisée pour combiner la gestion de l’énergie

(supervision du groupe motopropulseur) et le thermo-management dans les véhicules hybrides élec-

triques est proposée. Un système hybride incluant le post-traitement des polluants et un système de

récupération de la chaleur à l’échappement du moteur thermique est simulé pour plusieurs scénarii,

y compris le cas de départ à froid. Des stratégies de gestion de l’énergie optimales sont dérivées à

partir du Principe de Minimum de Pontriaguine (PMP). Inspirée par les facteurs d’équivalence pour la

consommation électrique que l’on retrouve dans la stratégie ECMS, la notion d’équivalent en carbu-

rant des flux d’énergie thermique est introduite. Les stratégies dérivées du PMP sont comparées avec

une stratégie heuristique basée sur des règles. Les bénéfices en termes d’économies de carburant et

réduction des émissions polluantes que l’on trouve pour différents scénarii sont encourageantes.

Abstract — On the Optimal Thermal Management of Hybrid-Electric Vehicles with Heat Recovery

Systems — A general framework to combine optimal energy management (powertrain supervisory

control) and thermal management in Hybrid Electric Vehicles (HEV) is presented. A HEV system with

engine exhaust aftertreatment and exhaust heat recovery system is simulated under various scenarios,

including warm and cold start. Optimal strategies are derived from Pontryagin Minimum Principle

(PMP). The concept of fuel equivalent of thermal energy variations – similar to the equivalence

factors for battery energy of standard Equivalent Consumption Minimization Strategy (ECMS) – is

introduced. The PMP-based strategies are compared with a heuristic, rule-based strategy. The benefits

in fuel economy and reduction of pollutant emissions that are obtained for several scenarios are very

promising.

INTRODUCTION

The contribution of hybrid-electric powertrain technology to

future mobility is expected to grow. On one hand, such

propulsion systems can improve the rather poor thermal

efficiency of standard internal-combustion engines. On the

other hand, they pave the way to a partial electrification

of individual mobility by combining short-range purely

electric travel with long range driving capability (plug-

in and extended-range concepts). One distinguishing fea-

ture of HEVs is the need for a nontrivial energy manage-

ment strategy in order to control the energy flow within

the vehicle. This supervisory control task has attracted a

considerable amount of research in the last fifteen years



602 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 4

(surveys [1-3]). Common energy management strategies are

based on heuristic considerations inspired by the expected

behavior of the propulsion system. Moreover, optimized

strategies have been introduced that are based on the

definition of a cost function to be minimized and optimal

control to achieve it. The offline version of this paradigm

is widely used in the automotive industry to assess the per-

formance of various solutions and to pre-calibrate the online

energy management strategies [4-8]. State-of-the-art meth-

ods for offline optimization of energy management strate-

gies are dynamic programming and the direct application of

Pontryagin’s minimum principle (PMP). The optimization

problem is usually formulated as follows:

– the cost function is either fuel consumption or engine-

out emissions, or a combination of both [9-11], although

in [12] the battery ageing has been considered as well;

– the only system dynamics considered are those of the

battery State of Charge (SOC);

– the global constraint to the state variable reflects charge-

sustaining (final SOC equals initial SOC) or charge-

depleting (final SOC is nearly zero [13]) operation.

Recent works have been aimed at extending the stan-

dard optimization problem to consider additional scenarios,

including multiple electric sources [14, 15], drivability con-

straints [16, 17] and additional dynamics. Indeed the HEV

system has other dynamics than SOC that may be relevant

for overall optimization. The most important is obviously

the vehicle longitudinal dynamics and thus vehicle speed.

However, its optimization is usually out of the scope of

energy management and rather concerns look-ahead drive

control (or predictive cruise control) [18, 19]. Next in rele-

vance (and the object of this paper) are temperature levels,

since thermal phenomena have longer characteristic times

than mechanical or electrical phenomena. Temperature is a

key factor in many phenomena:

– engine warm-up: fuel consumption and engine-out emis-

sions depend on temperature levels (oil, coolant, block);

– engine cool-down: in HEVs the engine can be turned off

and as a result its temperature decreases;

– activation (light-off) of the catalytic converter: effective

conversion requires a certain threshold temperature; cat-

alyst temperature dynamics are correlated with those of

the engine;

– heat supplies to cabin heater or other uses (demist,

defrost);

– heat accumulation systems (tanks, phase-change

materials);

– heat recovery systems (Rankine-cycles,

thermoelectricity).

Figure 1 shows a schematic of a HEV including its main

thermal dynamics, including the engine (coolant, oil and

block) temperature θe, a heat accumulation system (θacc), a

cold accumulation system (θa/c) engine exhaust and catalyst
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Figure 1

Schematics of a HEV depicting relevant dynamics as "reser-

voirs" (circles), as well as power flows (arrows) and power

converters (blocks).

system (θc) and a heat recovery system (θr). Power flows

connecting these "thermal reservoirs" are equally depicted.

Besides the early contribution [20], a few recent HEV

studies considered at least one thermal dynamic in the opti-

mization strategy. The study [22] represents a first attempt to

include the dynamics of θe in a PMP-based optimization and

to quantify the fuel corresponding economy benefit. On the

other hand [23], describes the implementation of an optimal

online strategy, sensitive to θc, on a test bench and its advan-

tages over simple heuristics. In [21], stochastic dynamic

programming is applied to a plant model that considers θc as

a state variable. The same dynamics are considered in [24]

but later they are neglected in the controller. The main focus

is on minimizing a combination of fuel cost and cost of

urea injected in a SCR system, with a limit on tailpipe NOx

emission.

In this paper, a more comprehensive framework for

PMP-based offline optimization with inclusion of thermal

dynamics is presented. Section 1 presents control-oriented

modeling of three dynamics:

– engine thermal dynamics;

– exhaust and catalyst thermal dynamics;

– Rankine-cycle dynamics.

Section 2 presents four optimization scenarios S0–S3, one

heuristic strategy RB and four optimal strategies, namely,

PMP0–PMP3, which include up to two thermal dynamics.

In Section 3, the various strategies are compared for scenar-

ios S0–S3 and simulation results are presented.
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1 MODELING

1.1 Full-Order Model (FOM)

The system considered here is a combined (power-split)

hybrid vehicle (1 360 kg curb weight) equipped with a

70 kW gasoline engine, two motors/generators (50 kW

and 30 kW) and a 6.9 Ah Li-ion battery. A detailed

model of the system was developed and implemented in

AMESim [25] (1). The detailed model, labelled here as

FOM (Full-Order Model), simulates the mechanical, elec-

trical and thermal phenomena in the HEV, including driver

response, combustion mode, temperature corrections for

fuel consumption and engine-out emissions, engine torque

response, engine control loop dynamics, inertia of electric

machines, thermal capacity of engine oil, engine coolant cir-

cuit, external cooling circuit with radiator and heat exchang-

ers, exhaust system including three-way catalytic converter,

cabin heater and electric auxiliaries. The submodels of var-

ious components are linked with each other based on their

mechanical, electrical, thermal couplings and on the basis of

a physical ("forward") causality.

Due to its comprehensive nature and complexity, the

FOM is impractical for control and optimization pur-

poses. Instead, a reduced-order counterpart (ROM) has been

derived. Generally speaking, the main thermal dynamics are

approximated by lumped temperature levels, while all of the

other dynamics are neglected and the corresponding static

relationships are used. The choice of the thermal levels

to consider depends on the particular optimization scenario

under study. Three cases are described in the following sub-

sections.

1.2 Engine Temperature

The effect of engine temperature on the fuel consumption

rate m f is modeled in the ROM as:

m f (u, θe) = m◦f (u) · fcons(u, θe) (1)

where u is the engine operating point (see below), fcons(·)

is an extra-consumption factor that takes into account the

increase of friction and the increase of fuel injected per cycle

at low temperatures. Data for warm-engine fuel consump-

tion m◦
f

are derived from engine tests and implemented in the

same way as in the FOM. Data for fcons are derived from:

– extra injection rate tabulated as a function of coolant tem-

perature;

– engine FMEP tabulated as a function of speed and oil

temperature, see Figure 2a.

Engine-out emission rates also depend on θe in the ROM,

according to the relationship:

m j,e(u, θe) = m◦j(u) ·

(

1 + ( f j − 1)
θe − θe,cold

θe,warm − θe,cold

)

(2)

(1) This work has been carried out in the EU-funded project HICEPS, see

http://www.hi-ceps.eu/tutto.htm
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Figure 2

Tabulated data of the engine, a) injection-related cold

consumption factor, b) thermal power losses at two operating

points (P1: middle-load operating point, P2: high-load operat-

ing point), c) exhaust temperature, d) equivalence ratio.

where j = {CO,HC,NOx}, f j’s are cold emission factors,

θe,cold is a reference cold temperature and θe,warm is the warm

engine temperature. Data for warm-engine emission rates

m◦
j

are derived from engine tests and implemented in the

same way as in the FOM. Other parameters are listed in

Table 1.

TABLE 1

Engine and exhaust parameters

Parameter Value

fCO 2.2

fHC 1.8

fNOx 0.8

θe,∞ 87 ◦C

θe,warm 70 ◦C

θe,cold -25 ◦C

HCO -10.1 MJ/kg

HHC 45.8 MJ/kg

HNOx -12.5 MJ/kg

AFRst 14.5

In the ROM, only the temperature level θe is consid-

ered, which lumps the thermal capacity of both the oil and

coolant. This dynamic model reads:

Ceθ̇e = Pth,e(θe) −Ge · (θe − θ0) − Pth,aux (3)

where Ce is an equivalent thermal capacity, Ge an equiva-

lent thermal conductivity, θ0 is the ambient temperature and

Pth,e is the sum of friction power dissipated into heat and

thermal power transferred from the engine gas to the coolant
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Calibration of the ROM against the FOM, a) engine tempera-

ture, b) cumulative fuel consumption.

(see Fig. 2b) and Pth,aux is the thermal power drained by the

cabin heater. The dependence on speed and torque is not

explicited. The external cooling system is not modeled, thus

temperature θe is just supposed to be limited by the value

θe,∞ at which an ideal thermostat is activated, θe ≤ θe,∞.

Numerical values for Ce and Ge have been fitted against

the full-order model. Figure 3a shows the results of such

fitting as a comparison between the FOM coolant temper-

ature and the ROM θe with Ge = 1 W/K, Ce = 54 kJ/K.

The corresponding cumulative fuel consumption M f is plot-

ted in Figure 3b. These variations are calculated along the

NEDC (New European Driving Cycle) with a cold start. The

engine’s speed and torque values calculated by the FOM,

with the energy management strategy RB (see Sect. 2.1),

are fed into the ROM and its temperature, fuel consumption

rate, etc. outputs are compared with the outputs of the FOM.

1.3 Catalyst Temperature

Emissions out of the catalyst are modeled in the ROM as:

m j(u, θe, θc) = m j,e(u, θe) · (1 − η j(θc,φ)) (4)

where φ = φ(u) is the equivalence ratio of the engine com-

bustion and η j(·) is the conversion efficiency of j-th pol-

lutant. These data are implemented as in the FOM, see

Figure 2d for the equivalence ratio and Figure 4a, b for the

conversion efficiency.

The equivalent catalyst temperature θc is described by the

dynamic model:

Cc(θc) · θ̇c = Pth,ec − Pth,cr −Gc · (θc − θ0) + Pch,c (5)
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Tabulated data of the exhaust system, a) CO conversion effi-

ciency (t1–t3: θc = {216, 262, 773} ◦C), b) NOx conversion

efficiency (t1–t3: θc = {205, 265, 405} ◦C), c) Rankine cycle

efficiency, d) power input to the Rankine system (normalized

to its maximum value).

where:

Pth,ec(u, θe) = mexh · cexh(θexh) · θexh (6)

Pth,cr(u, θe, θc) = mexh · cc(θc) · θc (7)

and mexh = m f ·
(

AFRst

φ
+ 1
)

. The exhaust temperature

θexh = θexh(u) is tabulated as a function of speed and torque

as in the FOM, see Figure 2c. The heat released by the

chemical reactions in the catalyst is Pch,c =
∑

j Pch, j, where

Pch, j = −H j · η j · m j,e. All of the specific heat at constant

pressure c and the catalyst capacity Cc = Mc·cc(θc) are taken

from the FOM where they are tabulated against respective

temperature levels.

Numerical values for Mc and Gc have been fitted

against the temperature of the catalytic wall predicted by

the FOM. A comparison is shown in Figure 5a. Correspon-

dingly, Figure 5b shows tailpipe CO emission rate as pre-

dicted by the FOM and the reduced-order model. As in the

previous section, these results have been calculated over a

NEDC, where the engine speed and torque values predicted

by the FOM with strategy RB have been passed to the ROM

as inputs. Additional model parameters are listed in Table 1.

1.4 Rankine-Cycle Heat Recovery

In both the full-order model and the reduced-order model,

the Rankine-cycle power output is:

Pel,r = Pth,r1 · ηr(Pth,r1) (8)

where ηr(·) is the Rankine system efficiency, see Figure 4c

and Pth,r1 is the thermal power transferred from the exhaust
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Calibration of the ROM against the FOM, a) catalyst tempera-

ture, b) cumulative CO emission.

pipe downstream of the catalyst to the Rankine cycle

through the exchanger. The maximum value of Pth,r1 is a

tabulated function of the available enthalpy in the exhaust

gas, Pth,cra = mexh · cc(θc) · (θc − θre f ), where θre f = 100◦C,

see Figure 4d. However, the Rankine system’s activation

depends on the exchanger temperature θr . The system is

only active when θr > 150◦C and fully active, i.e., the whole

power (8) is produced, when θr > 170◦C.

The dynamics of θr read:

Crθ̇r = Pth,cr − Pth,r2 −Gc · (θr − θ0) (9)

where Pth,r2 = mexh · cexh(θc) · θr .

Numerical values for Cr and Gr have been fitted

against the temperature trajectories calculated by the FOM.

The comparison is shown in Figure 6a. Correspondingly,

Figure 6b shows the Rankine-cycle output power as pre-

dicted by the FOM and the reduced-order model, using the

same validation procedure as in the previous sections. The

Rankine output power affects the electric power balance at

the electric node. Neglecting the battery internal losses:

Pel,b = Pel,m(u, t) − Pel,g(u, t) + Pel,aux(t) − Pel,r(u, θr) (10)

2 ENERGY MANAGEMENT

2.1 Rule-Based Strategy (RB)

The heuristic stragey takes into account, in a sequential

fashion, several managing rules dictated by vehicle-level

and component-level specifications. For simplicity’s sake,

it can be roughly described by two threshold parameters,

Pdem,b and Pstart,e (losses in the electric chain are neglected
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Schematic of the heuristic strategy RB: variation of Pdem,b as

a function of battery SOC.

in this description). The former parameter is a power contri-

bution from the battery, which is subtracted from the driver’s

power demand Pme,v as if it were to be delivered by the

engine. Actually, the resulting P̃me,v
△

= Pme,v − Pdem,b is

compared with Pstart,e; if P̃me,v < Pstart,e and several other

conditions are met, the engine will be turned off, otherwise it

will be turned on. Both Pdem,b and Pstart,e are parameterized

as a function of SOC. Moreover, Pdem,b is also a function of

battery temperature and catalyst temperature. In particular,

the battery is forced to accept recharge (Pdem,b = Pb,min),

as long as the catalyst temperature is below the light-off

value θc,lo, so to enforce high engine loads and a fast rise

of catalyst temperature. Figure 7 qualitatively depicts these

variations.

2.2 Strategies Based on Pontryagin’s Minimum
Principle (PMP0–PMP3)

The optimal control strategies are based on Pontryagin’s

Minimum Principle. The problem is defined by a cost func-

tion that is to be minimized over a cycle and by the boundary
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conditions. Four scenarios are considered in the following

sections:

– warm engine, focus on consumption, no heat recovery

(S0);

– cold start, focus on consumption, no heat recovery (S1);

– cold start, focus on emissions, no heat recovery (S2);

– cold start, focus on consumption, Rankine-based heat

recovery (S3).

2.3 Baseline PMP (PMP0)

Scenario S0

The cost function to be minimized is:

J =

∫ T

0

m f (ωe, Te) dt (11)

Since the system is a combined HEV, the control vector is

u = [Te,ωe]. The system dynamic is:

ξ̇ =
Ib(u, t)

Q0

(12)

with the global constaint ξ(T ) = ξ(0). A physical constraint

links the power at the engine, motor, generator and final

drive shafts, so that the battery power is a function of the

control input and the power demand Pme,v(t).

Strategy PMP0

Define the Hamiltonian function as:

H̃(u, ξ, s, t) = m f (u) − λ(t)ξ̇(u, t) (13)

The Euler-Lagrange equation is then:

dλ

dt
= −

dH̃

dξ
= λ

dξ̇

ξ
(14)

Under the approximation that −
dξ̇
ξ
≈ 0, λ is constant. The

Hamiltonian is rewritten as:

H(u, s, t) = Pch, f (u) + s(t)Pel,b(u, t) (15)

by setting Pel,b = −ξ̇QbUb,oc and s
△
= λH f /(QbUb,oc), where

Qb is the battery nominal capacity and Ub,oc its open-circuit

voltage.

2.4 PMP with Engine Thermal Dynamics (PMP1)

Scenario S1

The cost function is the same as (11), but now the fuel con-

sumption rate m f = m f (u, θe).

Strategy PMP1

To optimally manage the system in cold-start cycles,

the strategy PMP1 adjoins the dynamics of θe to the

Hamiltonian:

H̃(·) = m f (u) − λ(t)ξ̇(u, t) − µ(t)θ̇e(u, θe, t) (16)

To keep a formulation of the Hamiltonian in power units

similar to that of (15), a new state variable is conveniently

defined as −Ceθe, so that its variation is described by the

thermal power Pth,e = −Ceθ̇e. Consequently, the Hamilto-

nian reads:

H(·) = Pch, f (u) + s(t)Pel,b(u, t) + p(t)Pth,e(u, θe, t) (17)

The Euler-Lagrange equation reads:

dp

dt
=−

dH

d(−Ceθe)
=

dH

Cedθe

=
1

Ce

(

dPch, f

dθe

+ p
dPth,e

dθe

)

(18)

The strategy PMP1 is equivalent to that presented in [22].

2.5 PMP with Engine and Exhaust Thermal Dynamics
(PMP2)

Scenario S2

The cost function is now a weighted sum of fuel consump-

tion and emission rate:

J =

∫ T

0

















1 −
∑

j

β j

















m f (u, θe)+
∑

j

β jm j,c(u, θe, θc)dt (19)

where j = {CO,HC,NOx}. Since the temperature window

for reduction in the catalyst is the same for all three pol-

lutants, in the following, the set β1 = β, β2 = β3 = 0 is

used.

Strategy PMP2

Similarly to PMP1, the Hamiltonian is obtained as:

H(·) = (1 − β)Pch, f (u, θe) + βPch,CO(u, θe, θc)

+ s(t)Pel,b(u, t) + p(t)Pth,e(u, θe, t) (20)

+ q(t)Pth,c(u, θe, θc)

where Pch, j
△
= m j,cH f . A new thermal power is defined as

Pth,c
△
= −Ccθ̇c. Its dependence on θe is neglected. The Euler-

Lagrange equations read:

dp

dt
=

1

Ce

(

(1 − β)
dPch, f

dθe

+ β
dPch,CO

dθe

+ p
dPth,e

dθe

)

(21)

dq

dt
=

1

Ce

(

β
dPch,CO

dθc

+ q
dPth,c

dθc

)

(22)

Note that the approach in [24] reduces to an approximation

of PMP2 with p ≡ 0, q ≡ 0, while β (actually representing

β3 in that paper) varies to achieve different compromises

between fuel cost and (NOx) emissions. On the other hand,

the strategy used in [23] is equivalent to PMP2 with β = 1

and p ≡ 0, but q(t) � 0.
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2.6 PMP with Engine, Exhaust and Heat Recovery
Dynamics (PMP3)

Scenario S3

Cost function as in S1.

Strategy PMP3

The Hamiltonian reads:

H(·) = Pch, f (u) + s(t)Pel,b(u, t) +

p(t)Pth,e(u, θe, t) + r(t)Pth,r(u, θr) (23)

where Pth,r
△

= −Crθ̇r . The Euler-Lagrange equations read:

dp

dt
=

1

Ce

(

dPch, f

dθe

+ p
dPth,e

dθe

)

(24)

dr

dt
=

1

Cr

(

−dPel,r

dθr

+ r
dPth,r

dθr

)

(25)

3 SIMULATION RESULTS

In this section, results of HOT simulation runs for scenar-

ios S0–S3 are presented and compared with strategy RB.

Scenario definitions are listed in Table 2. In particular, fuel

economy, emissions, SOC variations and temperature varia-

tions are analyzed. In order to compare different trajectories

leading to different values of final SOC, fuel economy data

are corrected to take into account overall SOC deviations

with respect to the initial value. Corrected fuel economy

is found by interpolation between actual runs with opposite

SOC balance or using the equivalence factor s to convert

residual electrochemical energy into fuel.

TABLE 2

Definition of test scenarios S0–S3, with respect to a Cold Start (CS), the

value of β, the presence of a Rankine System (RS). Y/N: Yes/no.

Scenario CS β RS

S0 N 1 N

S1 Y 0 N

S2a Y 1 N

S2b Y 0.25 N

S3 Y 1 Y

3.1 Hybrid Optimization Tool (HOT)

The optimal strategies are calculated with the software HOT

(Hybrid Optimization Tool) developed at IFP Energies Nou-

velles and presented, e.g., in [26]. HOT uses a generic

HEV structure that can be parameterized to represent var-

ious hybrid architectures, including the combined architec-

ture of the system considered here. Until the 2011 version,

only strategy PMP0 was applied. The optimal value of the

equivalence factor s is found using the bisection method. A

new feature introduced in 2011 includes the possibility of

setting strategies PMP1 to PMP3.
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S0: comparison of strategies RB and PMP0 on the NEDC,

a) engine output power, b) battery SOC.

3.2 Scenario S0

In this scenario, the strategies RB and PMP0 are compared.

The latter is defined by the constant equivalence factor s.

The optimal value found for the NEDC is s = 2.925.

Figure 8a shows the engine output power with the two

strategies, while the corresponding SOC trajectories are

plotted in Figure 8b. The strategy RB tends to use the

engine more frequently and at lower loads. Consequently,

the battery SOC varies less. In contrast, PMP0 leads to

purely electric operation for a larger portion of the cycle.

A charge-sustaining operation is obtained by operating the

engine at high loads in the final, higher-efficiency section of

the NEDC.

The fuel consumption with strategy RB is 4.52 L/100 km

(SOC correction is negligible). With PMP0 it is 4.40 before

SOC correction (Hybird Optimization Tool), and 4.26 after

correction. The gain in fuel economy due to optimization is

about 6%. One reason for this gain is the increased average

engine efficiency, which is evaluated as 0.33 with RB, 0.34

with PMP0. Actually, the engine is operated at a few points

with a relatively good efficiency with PMP0, while RB tends

to follow a prescribed line in the speed-torque plane that

maximizes the efficiency for every power output ("optimal

operating line"). Since the choice of output power is driven

by SOC considerations, RB operates the engine at points

where the efficiency is low also. Such a behavior is clearly

visible in Figure 9.

3.3 Scenario S1

In this scenario, the strategies RB, PMP0 and PMP1 are

compared. The latter implies a constant s and a variable p(t).



608 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 4

1 000 2 000 3 000 4 000 5 000 6 000
−20

20

40

60

80

120

140

0.140.16 0.16 0.160.18 0.18 0.18

0
.2

0.2 0.2
0.2

0
.2

2

0.22 0.22
0.22

0
.2

4

0.24 0.24
0.24

0.26

0.26 0.26
0.26

0
.2

8

0.28 0.28
0.28

0.28

0.3

0.3 0.3

0.3

0.3

0.30
.3

0
.3

2

0.32
0.32

0.32

0.32
0.32

0.32

0.32

0.32
0.34

0.34

0.34

0
.3

4

 

 

100

ηe

T
e

(N
m

)

ωe (rpm)

PMP0

RB
0

0

Figure 9

S0: comparison of strategies RB and PMP0 on the NEDC,

engine operating points.

The two values s and p(0) are found using the following

algorithm:

– set p(0);

– set s;

– perform a cycle using PMP1;

– if ξ(T ) � ξ(0), adjust s and return to 2;

– if J is not min, adjust p(0) and return to 1.

Figure 10a shows the dependence between p(0) and the

corresponding optimal s for the NEDC. Such a dependence

is explained by observing that increasing p(0) makes the

recharging of the thermal reservoir θe faster, thus the engine

tends to be used more often. To counteract this trend, s

must decrease in order to favor the discharge of the battery.

Such a basic behavior is predicted by the "toy" model of the

Appendix and it is potentially relevant for online applica-

tions, as discussed further. For the NEDC, the values found

by the algorithm above are s = 2.91 and p(0) = 1.

Strategy RB changes with respect to scenario S0 because

it is sensitive to temperature. The priority now is to heat the

catalyst. In contrast, the strategy PMP1 tends to "recharge"

the thermal reservoir θe but less aggressively, since the cost

function is given by the fuel consumption. This behavior

is clearly visible in Figure 11a, b, showing the battery SOC

and engine temperature trajectories obtained with the two

strategies.

The fuel consumption with strategy RB is 4.82 L/100 km

before SOC correction and 4.89 after correction. With

PMP1 it is 4.53 before correction and 4.67 after correction.

The reduction due to optimization is 4.5%. Interestingly, if

strategy PMP0 is used in this scenario, the fuel consumption

is 5.09 L/100 km, thus higher than when strategy RB is used.
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S1: comparison of strategies RB and PMP1 on the NEDC, a)

optimal s, b) fuel consumption, c) catalyst light-off time, as a

function of p(0).
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This fact confirms the interest of using a thermal-sensitive

strategy for scenarios implying thermal transients.

Emissions are not included in the cost function in this

scenario. However, the faster temperature rise obtained

using PMP1 is also beneficial for emission reduction. Out-

of-catalyst emissions are not modeled in S1, however the

influence of the strategy can be forecasted by observing the
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warm-up time twu, defined operatively as the time at which

θe = 45◦C. Figure 10c shows that the twu decreases for an

increase of p(0). Using the calibration p(0) = 1 that opti-

mizes fuel consumption, the warm-up time is reduced with

respect to PMP0 and thus the tailpipe emissions are likely to

be reduced as well.

3.4 Scenario S2

In this scenario, strategy RB’s behavior is the same as in

scenario S1. The fuel consumption on the NEDC is 4.89 L/

100 km and the CO emission is 1.88 g.

The behavior of strategy PMP2 is dependent on the

choice of β. The case β = 1 (minimization of the emis-

sion) is considered first. As a basis of comparison, strat-

egy PMP0 with an equivalence factor s = 0.28 would lead

to a CO emission of 1.51 g. This result is obtained by

concentrating the engine-on phase toward the last part of the

cycle, rather than speeding up the rise of catalyst temper-

ature, see Figure 12a, b. Using strategy PMP1 (q(t) ≡ 0),

a result virtually identical to PMP0 is obtained, which is

symptomatic of the engine temperature’s relatively weak

influence on the tailpipe emissions.

A slightly better result of 1.46 g is obtained using the

strategy PMP2 and p(t) ≡ 0, for example by setting

q(0) = −0.1 and s = 50. Now the strategy starts the engine at

the very beginning of the cycle, when the vehicle is stopped,

see Figure 12a, b. The power produced is partially charged

into the battery, while the temperature of the catalyst rises

rapidly. After this phase, the engine is kept off during the

rest of the cycle. Using the complete PMP2 strategy, for

example with p(0) = 0, q(0) = 0, the results are virtually

identical.

For β = 0.25 (minimization of a weighted sum of fuel

consumption and emissions), the cost function with strat-

egy RB is 303 g. Despite its neglection of relevant dynam-

ics, strategy PMP0 is already capable of attaining a similar

result. With a choice s = 2.965 (and p(t) = q(t) ≡ 0),

1.67 g of CO and 4.87 L/100 km of fuel (corresponding to

402 g) are obtained, with a cost function of 302 g. Again,

this result is obtained by limiting the engine-on phases and

concentrating them toward the end of the cycle, rather than

fastening the rise of catalyst temperature, since PMP0 is not

temperature-sensitive (see Fig. 13a, b).

With PMP1 (q(t) ≡ 0), a slightly better result is obtained

with p(0) = 0.8, s = 2.125, namely, 2.15 g CO and 395 g

of fuel (4.78 L/100 km) for a cost function of 296 g. With

respect to the previous case with β = 1, fuel consumption is

now included in the cost function and it is dependent on θe,

from whence the positive effect given by the introduction

of such dynamics in the Hamiltonian. Indeed, the pattern

of engine-on phases resembles that of PMP1 in scenario S1,

Figure 11a. The rise of temperature is faster than with PMP0

but less aggressive than with RB. By switching to strategy

PMP2, no further improvement has been found.
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to engine-on phases, while temperature decrease or zero CO
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on the NEDC, a) catalyst temperature, b) cumulative CO emis-

sion. Phases with CO increase or temperature rise correspond

to engine-on phases, while temperature decrease or zero CO
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3.5 Scenario S3

For this scenario, strategy RB does not change. The over-

all results are only slightly different, with respect to the

scenarios S1–S2, because now the SOC is affected by the

recovered electric power. Fuel consumption is 4.71 after

correction, while the amount of energy recuperated by the

Rankine system is 220 kJ.
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S3: comparison of strategies RB, PMP0, PMP1 and PMP2 on

the NEDC, a) Rankine pipe temperature, b) Rankine electric

power. Phases with CO increase or temperature rise corre-

spond to engine-on phases, while temperature decrease or zero

CO emission characterize engine-off phases.

With strategy PMP0, p(t) = r(t) ≡ 0, the fuel consump-

tion is 4.89 L/100 km, thus higher than with RB. The rise

of temperature in the exhaust pipe is actually too slow to

allow enough electric power to be recovered. This behavior

is clearly visible in Figure 14a, b. Since the recovered power

is zero for pipe temperatures below 150◦C, the first contri-

bution to recovery occurs later with PMP0 than with RB.

In contrast, the use of strategy PMP1 (p(0) = 1, r(t) ≡ 0)

leads to a reduction in fuel consumption that amounts to

4.50 L/100 km. However, introducing the exhaust pipe tem-

perature dynamics and thus switching to PMP3 (s = 2.91,

p(0) = 1 and r(0) = 0), only leads to minor improvements.

Fuel consumption with PMP3 is actually 4.49 L/100 km

after correction. Exhaust pipe temperature follows closer

that obtained with strategy RB, the only difference being the

early battery-charging phase commanded by RB but not by

PMP3. Given that the energy recovered is slightly higher

with the heuristic strategy (220 kJ with RB, 210 kJ with

PMP3), the benefit in fuel economy is explained by a better

average efficiency of the components using PMP3.

3.6 Overall

The results presented in the previous sections are summa-

rized in Table 3. The table allows a comparison among

the various strategies in terms of performed cost function,

i.e., fuel consumption for scenarios S0, S1, and S3 and the

combined criterion for scenario S2. The benefits of using

PMP1 instead of PMP0 appears clearly. On the other hand,

the role of PMP and, to some extent, PMP3 is less clear and

deserves further investigation.

TABLE 3

Performance criteria for the various scenarios considered

Scenario Units RB PMP0 PMP1 PMP2 PMP3

S0 L/100 km 4.52 4.26 - - -

S1 L/100 km 4.89 5.09 4.67 - -

S2a g 1.88 1.51 1.51 1.46 -

S2b g 303 302 296 296 -

S3 L/100 km 4.71 4.89 4.5 - 4.49

CONCLUSIONS AND PERSPECTIVES

The combination of powertrain energy management with

powertrain–vehicle thermal management in HEVs is a top-

ical control problem. Several heuristic strategies are being

developed to approach this problem. Similarly to the con-

tribution of optimal energy management to exploit the fuel

economy potential of HEVs, optimal energy–thermal man-

agement could reveal highly beneficial to approach engine

warm-up and cool-down, catalyst light-off, thermal acces-

sories, heat accumulation, heat recovery.

In the paper, a general framework for optimal energy–

thermal management has been presented. A system with

a heat recovery system has been simulated under various

scenarios, including cold start and heat recovery. Optimal

strategies based on the Pontryagin Minimum Principle have

been compared with a heuristic, rule-based strategy. The

benefits in fuel economy and reduction of pollutant emis-

sions that have been obtained are very promising. In a

warmed-up cycle, PMP outperforms the heuristic strategy

of 6% in fuel economy. For a cold-start cycle, the benefit

of PMP is of 4.5%. In the presence of a Rankine-cycle heat

recovery system, the benefit in fuel economy of is also about

5%. If emissions are considered, about 20% reduction is

obtained with the PMP in a cold-start cycle. Finally, when a

combination of fuel economy and emission reduction is con-

sidered as a criterion, the PMP-based strategy outperforms

the heuristics as well.

The key factor of PMP strategies when cold-start condi-

tions or a heat recovery system are considered is the addition

of thermal dynamics to the instantaneous cost function, i.e.,

the Hamiltonian function to be minimized. The offline esti-

mation of the respective Lagrange multipliers or equivalence

factors is very critical because, contrarily to the equivalence

factor for battery energy, the equivalence factors for thermal

energy vary during the cycle with an unstable dynamics.

In the paper, the optimal initial values of these equiva-

lence factors has been found with a combination of shoot-

ing methods and direct search. Further work is necessary to

derive a more general method that is capable of dealing with

the problem complexities cited above. Further work is also

needed to derive noncausal, i.e., online applicable strategies.

For the online applications, the equivalence factor of battery

energy (s) could be adapted as in standard ECMS, while the

equivalence factors for thermal energy would be related to s

through an offline-identified linear relationship as observed

in Figure 10.
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APPENDIX

The following "toy" model illustrates the main features of

the optimisation scenario S1. Consider a system described

by the following equations:

L(t) =
1

2
au(t)2

− bθ(t) (26)

ξ̇(t) = D(t) − u(t) (27)

θ̇(t) = cu(t) − kθ(t) (28)

Consider an optimal control problem consisting of

minimizing:

J =

∫ T

0

L(t)dt (29)

with the global constraint:

∫ T

0

ξ̇(t)dt = 0 (30)

Thus L plays the role of Pch, f , ξ̇ of Pel,b, u of Pme,e, D of

Pme,v, θ of θe, while T is the cycle duration. The model

parameters a, b, c and k completely define the study.

Solution

Build the Hamiltonian by adjoining the two dynamics with

the multipliers s and p,

H =
1

2
au(t)2

− bθ(t)+ s(D(t)− u(t))+ p(cu(t)− kθ(t)) (31)

Euler-Lagrange equations:

ṡ = 0 (32)

ṗ = −
∂H

∂θ
= b + kp(t) =⇒ (33)

=⇒ p(t) = −
b

k
+

(

p(0) +
b

k

)

ekt (34)

Pontryagin Minimum Principle:

∂H

∂u
= au(t) − s + cp(t) = 0 =⇒ (35)

=⇒ u(t) =
s − cp(t)

a
=

s

a
+

c

a

b

k
−

c

a

(

p(0) +
b

k

)

ekt (36)

Global constraint:
∫ T

0

D(t)dt
△

= Ed =

∫ T

0

u(t)dt =⇒ (37)

=⇒ s = −
bc

k
+

c

kT

(

p(0) +
b

k

)

(ekT
− 1) +

aEd

T
(38)

from whence:

u(t) = M − Nekt (39)

with:

M
△

=
c

akT

(

p(0) +
b

k

)

(ekT
− 1) +

Ed

T
(40)

N
△

=
c

a

(

p(0) +
b

k

)

(41)

and:

θ̇ = cM − cNekt
− kθ =⇒ (42)

=⇒ θ(t) =
cM

k
−

cN

2k
ekt
+

(

cN

2k
−

cM

k

)

e−kt (43)

Now J = f (p(0)). Thus find the optimal p(0) as:

dJ

dp(0)
= 0 =⇒ p(0) = −

b

k
+

a

c
N, (44)

where:

N =

bc

k2 (ekT
− 1) − bc

k2 (ekT
+ e−kT

− 2)( 1
kT
+

1
2
)

a
2k

(e2kT
− 1) − a

k2T
(ekT
− 1)2

(45)

After simple manipulations, one finds that N = bc

akekT and

thus p(T ) = 0, as predicted by optimal control theory under

the circumstance that the state variable θ is not constrained

at time T . As a further consequence,

H(t) = −
a

2
M2
+ sD(t) +

a

2
N2
− aNM (46)

with:

M =
Ed

T
+

N

kT
(ekT
− 1) (47)

The following properties of this toy model are also rele-

vant for the real application:

– the dependence between s and p(0) is linear and

increasing; increasing p(0) would make the engine

recharge the thermal reservoir faster; the charge sustain-

ing requires an increase of s to balance;

– the Hamiltonian solely depends on the disturbance D(t);

that circumstance could be used to evaluate p(t) directly

from the Hamiltonian, instead of integrating the Euler-

Lagrange equation.
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