N

N

Implementing a Domain Specific Embedded Language
for lowest-order variational methods with Boost Proto

Jean-Marc Gratien

» To cite this version:

Jean-Marc Gratien. Implementing a Domain Specific Embedded Language for lowest-order variational
methods with Boost Proto. 2012. hal-00788281

HAL Id: hal-00788281
https://ifp.hal.science/hal-00788281

Preprint submitted on 14 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://ifp.hal.science/hal-00788281
https://hal.archives-ouvertes.fr

Implementing a Domain Specific Embedded Language for
lowest-order variational methods with Boost Proto

Jean-Marc GRATIEN
IFPEN
1 et 4 av Bois Préau
92588 Rueil-Malmaison, FRANCE
jean-marc.gratien@ifpen.fr

ABSTRACT

In this paper we propose an original implementation for a
large family of lowest-order methods to solve diffusive prob-
lems with a FreeFEM-like domain specific language targeted
at defining discrete linear and bilinear forms. We discuss
how by using the Boost Proto framework we have devel-
opped the back-end and the front-end of the language.We
validate the proposed DSEL design by the implementation
of several academic problems. The overhead of the language
is evaluated by comparing with a more traditional imple-
mentation.

General Terms

Concepts and Generic Programming

Keywords

DSEL, Generative programming, Framework, Boost Proto

1. INTRODUCTION

Industrial simulation software have to manage: (i) the
complexity of the underlying physical models, usually ex-
pressed in terms of a PDE system completed with algebraic
closure laws, () the complexity of numerical methods used
to solve the PDE systems, and finally (74) the complexity
of the low level computer science services required to have
efficient software on modern hardware. Robust and effective
finite volume (FV) methods as well as advanced program-
ming techniques need to be combined in order to fully ben-
efit from massively parallel architectures (implementation
of parallelism, memory handling, design of connections).
Moreover, the above methodologies and technologies become
more and more sophisticated and too complex to be handled
by physicists alone. Nowadays, this complexity management
becomes a key issue for the development of scientific soft-
ware. Some frameworks already offer a number of advanced
tools to deal with the complexity related to parallelism in
a transparent way. Hardware complexity is hidden and low

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

C++Now Aspen CO, USA, May 13-18, 2012

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

level algorithms which need to deal directly with hardware
specificity, for performance reasons, are provided. They of-
ten offer services to manage mesh data services and linear
algebra services which are key elements to have efficient par-
allel software. However, all these frameworks often provide
only partial answers to the problem as they only deal with
hardware complexity and low level numerical complexity
like linear algebra. The complexity related to discretization
methods and physical models lacks tools to help physicists to
develop complex applications. New paradigms for scientific
software must be developed to help them to seamlessly han-
dle the different levels of complexity so that they can focus
on their specific domain. Generative programming, compo-
nent engineering and domain-specific languages (either DSL
or DSEL) are key technologies to make the development
of complex applications easier to physicists, hiding the com-
plexity of numerical methods and low level computer science
services. These paradigms allow to write code with a high
level expressive language and take advantage of the efficiency
of generated code for low level services close to hardware
specificities. Their application to Scientific Computing has
been up to now limited to Finite Element (FE) methods, for
which a unified mathematical framework has been existing
for a long time. Such kind of DSL have been developped for
finite element or Galerkin methods in projects like Freefem,
Getdp, Getfem++, Sundance, Feel++, Fenics project. We try
to extend this kind of approach to lowest order methods to
solve the PDE systems of geo modeling applications. A re-
cent consistent unified mathematical frame allows a unified
description of a large family of these methods, and enable
then, as for FE methods, the design of a high level language
inspired from the mathematical notation, that could helps
physicist to implement their application writing the mathe-
matical formulation at a high level, hiding the complexity of
numerical methods and low level computer science services
guaranty of high performance. We have developped such
language, that we have embedded in the C++ language, on
top of Arcane plateform [15], with the Boost Proto library
[16], a powerful framework providing tools to design DSEL.
We focus on the main ingredients of the language and detail
how using the Boost Proto framework we have implemented
in a user friendly declarative way our new language. We
check the capability of our DSEL to allow the description
and the resolution of various and complex problems with
different lowest-order methods. We validate the design of
the DSEL on the implementation of several academic prob-
lems. We present some numerical results and compare the
performance of their implementation with the DSEL to their

hand written counterpart, evaluating in that way the over-
head of the language in order to illustrate the interest of the
C++ language as the host language for our DSL.

The paper is organized as follows : in the first section we
present the mathematical domain targetted by the proposed
DSEL, in the second session we discuss the implementation
of the DSEL with Boost Proto framework then in the last
session we validate our approach with numerical results.

2. MATHEMATICAL SETTING

The unified mathematical frame presented in [11, 12] al-
lows a unified description of a large family of lowest-order
methods. The key idea is to reformulate the method at hand
as a (Petrov)-Galerkine scheme based on a possibly incom-
plete, broken affine space. This is done by introducing a
piecewise constant gradient reconstruction, which is used to
recover a piecewise affine function starting from cell (and
possibly face) centered unknowns.

For example, considering the following heterogeneous dif-
fusion model problem(2):

-V (kVu) = f
u=0

in Q,
on 0X,

with source term f € L?(Q), k piecewize constant.

The continuous weak formulation reads: Find u € Hg(Q)
such that

a(u,v) =0 Yo € Hy(Q),
with
a(u,v) < Yu-vo.
Q

In this framework, for a given partition 73 of , a spe-
cific lowest-order method is defined by (i) selecting a trial
function space Up(7r) and a test function space Vi, (7),
(ii) defining for all (un,vs) € Uy XV}, a bilinear form ap, (up, vp)
and a linear form by (vs), Solving the discrete problem con-
sists then in finding uy € U}, such that:

an(un,vn) = bn(vn) Yun € Vh,

The definition of a discrete function space Uy, is based on
three main ingredients :

e 7}, the mesh representing 2, Sy, a submesh of 7;, where
vS € Sp,ITs € Tn, SCTs ;

e V;, the space of vector of degree of freedoms with com-
ponents indexed by the mesh entities (cells, faces or
nodes) ;

e &, a linear gradient operator that defines for each vec-
tor v, € Vj, a constant gradient on each element of Sy,
and V}, the broken gradient operator.

Using the above ingredients, we can define for all v, € V,,
a piecewise affine function v, € U, C [Pcll(Sh) such that:
VS eS8, SCTs, Ts € T, Vx € S,

vn(X)|s = vrg + Gn(va)|s-(x — x1g).

Usually three kind of submesh S}, are considered : 7} the
mesh itself, P;, the submesh with pyramidal subcells based
on the face entities of 7;, and N} with subcells based on the
nodes of 7j,.

We denote Tj the space of degree of freedoms with com-
ponents indexed by cells and [F}, the space of degree of free-
doms with components indexed only by faces. Ussually the
following choices are considered:

Vh = Fh or Vh = Th X [Fh, (1)

With this framework, the model problem can be solved
with various methods :

o the cell centered Galerkin (ccG) method and the G-
method with cell unknowns only ;

e the hybrid finite volume method with both cell and
face unknowns that recover the mimetic finite differ-
ence (MFD) and mixed/hybrid finite volume (MHFV)
family.

The G-method [4].

The trial space for is obtained with (i) Sp = P, (ii) Vi, =
Ty, (iil) and &, = &% a gradient operator, piecewise con-
stant on the elements S € Py, base on the L construction,
detailed in[4]. The method reads then :

Find up, € V¥ s.t. af (un,vn) = /Q fon for all vy, € [Pg(’]'h),

where af (un, vn) = Yrer, JpiaViunynplvn] with .

The cell centered Galerkin method [9, 10].

: We introduce the linear gradient operator &5 °" : Tj, x
Fr — [PY(75)]¢ such that, for all (v?,v”) € T) x F; and
all T € Ty,

oy n 1
&5 (v v)r = = Y [Fla-1(ve —vr)nre. (2)
Tla =
T

The discrete space for the ccG method is obtained with:
(i) Sp = Th, (i) YV, = Ty, (iil) &, = 6;°% with &}°® such
that

Vv € Vp, ®ch(vh) = @%reen(vh, T%L (Vh)). (3)

where T% is a linear trace reconstruction operator on the
faces of 7.
Let for all (un,vn) € V% x V78,

def

ccg 1€1

a;® (un,vn) = / KV hun-Viaon
Q

= 3 [UnVawyonr o] + [l {sVooone]

FeFy

+ 3 0= [i,

FeFy,
(4)
The method reads :

Find up, € V;,°® s.t. a; 8 (un,vp) = / fon for all v, € V8.
Q
(5)
The hybrid finite volume method.
recovers the SUSHI scheme[14, 13, 8, 7]. The discrete

space with hybrid unknowns is then obtained with: (i) Sp =
Ph, (ii) Vi = T, x Fy, (iil) &, = & with & such that,

for all (v} ,vi) € Tp xFp, all T € 75 and all F € Fr,

T _F
Vh,Vh

T

hyb
&Y Vi,V

no()|7’T,F = 6;?86“(hf)|T+th(VhT»Vhf)‘7’T,F(nT)"7F'
6

where the linear residual operator ty, : T, x Fj, — PY(Py,) is
defined as follows: For all T' € 7, and all F' € Fr,

dz
dr,r

T
Vi,V

(VT Ve = 7 [0 — o1 — S5 (T vE) - (xr — 1)

This method with hybrid unknowns reads :
Find uy, € thyb s.t. aiusm(uh, vp) = / fop for all vy, € V;‘yb,
Q

with

sushi
ap,

(uh,vn) d:ef/ﬂﬁvhuh'vhvm (7

and V), broken gradient on Pj,.

3. IMPLEMENTATION

The framework described in §2 allows a unified descrip-
tion for a large family of lowest methods and as for FE/DG
methods, it enables the design of a high level language in-
spired from the mathematical notation. Such language en-
ables to express the variational discretisation formulation of
PDE problem with various methods defining bilinear and lin-
ear forms. Algorithms are then generated to solve the prob-
lems, evaluating the forms representing the discrete prob-
lem. The language is based on concepts (mesh, function
space, test trial functions, differential operators) close to
their mathematical counterpart. They are the front end of
the language. Their implementations use algebraic objects
(vectors, matrices, linear operators) which are the back end
of the language. Linear and bilinear forms are represented by
expressions built with the terminals of the language linked
with unary, binary operators (+,-,*,/,dot(.,.)) and with
free functions like grad(.), div(.) integrate(.,.). The
purpose of theses expressions is first to express the vari-
ational discretization formulation of the user problem but
also to solve and find the solution of the problem by evalu-
ating them with specific context.

In the first part of this section, we present the different
C++ concepts defining the front end of our language, their
mapping onto their mathematical counterpart and their links
with algebraic objects corresponding to the back end of the
language. We then introduce the DSEL that enables to ma-
nipulate these concepts to build complex expressions close
to the mathematical discretisation formulation of continuous
PDE problems. We finally explain how, evaluating these ex-
pressions, we can generate source codes that solve discrete
problems.

For our diffusion model problem (2), such DSEL will for
instance achieve to express the variational discretization for-
mulation 5 with the programming counterpart presented in
listing 1.

Listing 1: Diffusion problem implementation

MeshType Th;
Real K;

auto Vh = newSUSHISpace(Th);
auto u = Vh—>trial ("U");
auto v = Vh—>test ("V");
BilinearForm a =

integrate (allCells (Th),dot (K«grad(u),grad(v)));
LinearForm b =
integrate (allCells (Th), fxv);

3.1 Algebraic back-end

In this section we focus on the elementary ingredients used
to build the terms appearing in the linear and bilinear forms
of §2, which constitute the back-end of the DSEL presented
in §3.3.

Mesh.

The mesh concept is an important ingredient of the math-
ematical frame. Mesh types and data structures are a very
standard issue and different kinds of implementation already
exist in various framework. We developped above Arcane
mesh data structures a mesh concept defining
(i) MeshType::dim the space dimension, (ii) the subtypes
Cell, Face and Node for mesh element of dimension re-
spectively MeshType: :dim, MeshType: :dim-1 and 0. Some
free functions like allCells(<mesh>), allFaces(<mesh>),
boundaryCells(<mesh>), boundaryFaces (<mesh>),
internalCells(<mesh>), internalFaces(<mesh>) are pro-
vided to manipulate the mesh and to extract different parts
of the mesh.

Vector spaces, degrees of freedom and discrete vari-
ables.

The class Variable with template parameters ItemT and
ValueT manages vectors of values of type ValueT and pro-
vides data accessors to these values with either mesh el-
ements of type ItemT, integer ids or iterators identifying
these elements. Instances of the class Variable are man-
aged by VariableMng, a class that associates each variable
to its unique string key label corresponding to the variable
name.

Linear combination, linear and bilinear contribution.

The point of view presented in §2 naturally leads to a finite
element-like assembly of local contributions stemming from
integrals over elements or faces. This procedure leads to ma-
nipulate local vectors indexed by mesh entities represented
by the concept of class LinearCombination. Associated
to an efficient linear algebra, this concept enable to create
LinearContribution (local vectors) and BilinearContribution
(local matrices) used in the assembly procedure of the global
matrix and vector of the global linear system.

3.2 Functional front-end

Function spaces.

Incomplete broken polynomial spaces defined by (2) are
mapped onto C++ types according to the FunctionSpace con-
cept. The key role of a FunctionSpace is to bridge the gap
between the algebraic representation of DOFs and the func-
tional representation used in the methods of §2. This is
achieved by the functions grad and eval, which are the C++
counterparts of respectively the linear operators &, and Ry,.
More specifically,

(i) for all S € Sp, grad(S) returns a vector-valued linear
combination corresponding to the (constant) restric-

tion Gpls;

(ii) for all S € S, and all x € S, eval(S, x) returns
a scalar-valued linear combination corresponding to
Rhn|s(x) defined according to (2).

The linear combinations returned by grad and eval can be

used to build LinearContributions and BilinearContributions

as described in the previous sections.

Function space types also define the sub types
FunctionType, TestFunctionType and TrialFunctionType
corresponding to the mathematical notions of discrete func-
tions, test and trial functions in variational formulations.
Instances of TrialFunctionType and FunctionType are as-
sociated to a Variable object containing a vector of DOFs
stored in memory associated to a string key corresponding
to the variable name. For functions, the vector of DOFs
is used in the evaluation on a point z € () while for trial
functions, this vector is used to receive the solution of the
discrete problem. Test functions implicitely representing the
space basis then are not associated to any Variable objects,
neither vector of DOFs. Unlike FunctionType, the evalua-
tion of TrialFunctionType and TestFunctionType is lazy
in the sense that it returns a linear combination. This lin-
ear combination can be used to build local linear or bilinear
contributions to the global system, or enables to postpone
the evaluation with the variable data.

The BilinearForm and LinearForm concept represent
the linear and bilinear forms described in 2. They allow to
define expressions using test and trial functions, unary and
binary operators.

3.3 DSEL implementaion

The main goal of the DSEL is to allow a notation as close
as possible to the mathematical notation presented in §2.
This section focuses bilinear forms, as the ingredients for
linear forms are essentially similar. The exposition is not
meant to be exhaustive, but instead to present a few signif-
icant examples from which others can be inferred. We first
define our DSEL giving some production rules that enable
to create trial and test expressions as well as bilinear terms
using the Extended Backus—Naur Form (EBNF)[1], then we
detail how the DSEL has been implemented using the tools
provided by the Boost Proto framework.

3.3.1 Language definition

Terminals and Keywords.

The DSEL Terminals are composed of a number prede-
fined types categorized in the following families: (i) the
BaseType family for the standard C++ types representing
integers and reals; (ii) the VarType family for all discrete
variable types defined in §3.1; (iii) the MeshGroupType fam-
ily for types representing collection of mesh entities such as
the ones listed in §3.1; (iv) the Function, TestFunction and
TrialFunction families representing the functions, test and
trial functions defined in §3.2.

The DSEL is based on some predefined keywords listed
in table 1 semantically closed to their counterpart in the
matematical framework.

Trial and test expressions.

Trial (resp. test) expressions are obtained as the product
of a coefficient 7, (resp. 7,) by a linear operator £, (resp.
L,) acting on a trial (resp. test) function. The coefficient
can result from the algebraic combination of constant values
and Variables evaluated at item I. Listing 2 defines the pro-
duction rules that enable to create coefficient expressions in-
volving, in particular, constant values, Variables over Cells
and products thereof.

Listing 2: Examples of production rules for the co-

efficient ~

BaseExpr = BaseType | BaseExpr * BaseExpr;

VarExpr = VarType | BaseExpr % VarExpr | VarExpr = VarExpr;
CoefExpr = BaseExpr | VarExpr;

To obtain trial and test expressions, we introduce linear
operators acting on test and trial functions. A few examples
are provided in Listing 3, and include (i) grad, the gradient
of the trial/test function; (ii) trace operators like jump and
avg representing, respectively, the jump and average of a
trial/test function across a face. Besides linear operators,
the production rules for trial and test expressions in Listing 3
include various products by coefficients resulting from the
production rules of Listing 2 (dot denote the vector inner
product).

Listing 3: Production rules for trial and test expres-
sions

LinearOperator = 7grad” | 7jump” | 7avg”;

TrialExpr = TrialFunction |
CoefExpr * TrialExpr |
“dot (" CoefExpr, TrialExpr”)” |
LinearOperator” (" TrialExpr”)" ;

TrialExpr = TestFunction |
CoefExpr * TestExpr |
dot ("CoefExpr, TestExpr”) |
LinearOperator” (" TestExpr”)

Bilinear forms.

Once test and trial expressions are available, bilinear terms
can be obtained as contraction products of trial and test ex-
pressions or as sums thereof, as described in Listing 4.

Listing 4: Production rules for bilinear terms

BilinearTerm = TrialExpr * TestExpr |
dot (”TrialExpr, TestExpr”) |
CoefExpr * BilinearTerm |
BilinearTerm + BilinearTerm ;

Bilinear forms finally result from the integration of bilin-
ear terms on groups of mesh items (cf. Table 3.1). Produc-
tion rules for bilinear forms are given in Listing 5.

Listing 5: Production rules for bilinear forms

IntegrateBilinearTerm = “integrate (”MeshGroup, BilinearTerm”)”;
BilinearForm = IntegrateBilinearTerm
IntegrateBilinearTerm + BilinearForm ;

3.3.2 Language implentation with Boost Proto

We have based our implementation on the boost: :proto
library by Niebler [16], a powerful framework to build DSEL
in C4++. This library provides a collection of generic con-
cepts and metafunctions that help to design a DSL, its gram-
mar and tools to parse and evaluate expressions. It provides
tools for constructing, type-checking, transforming and ex-
ecuting expression templates [3, 5, 17], more specifically, it

expr<tag: :integrate>

S

expr<tag::dot>

N

expr<tag::mult> expr<tag::grad>

n/ expr<tag::grad>

Figure 1: Expression tree for the bilinear form de-
fined at line 7 of Listing 1. Expressions are in light
gray, language terminals in dark gray

provides: (i) an expression tree data structure, (ii) a mech-
anism for giving expressions additional behaviors and mem-
bers, (iii) operator overloads for building the tree from an
expression, (iv) utilities for defining the grammar to which
an expression must conform, (v) an extensible mechanism
for immediately executing an expression template, (vi) an
extensible set of tree transformations to apply to expression
trees. This framework enable to design a DSEL in a declar-
ative way with mechanisms based on concepts like: (i) tag,
(ii) meta-function, (iii) grammar, (iv) context (v) and trans-
form, structures, (see more details in the framework docu-
mentation [16]). In this section, we detail how we have trans-
lated our language formal definition §3.3.1 in proto objects
that enable to define expressions, the language Grammar,
Context and Transform structures to evaluate expressions
and implement algorithms.

Language front ends.

The language front ends is defined by (i) the terminals,
(ii) the keywords listed in 1, (iii) and the grammar based on
the production rules of Listings 2, 3, 4, and 5.

Expressions are implemented with proto expression tree
structures where each node is an object of type
proto: :base_expr identified by a Tag and where the leafs
of the tree are occupied by Terminals (cf. Listing 2), meshes
(cf. Listing 5), test and trial functions (cf. Listing 3).

The bilinear form a§"" defined by (7) has the program-
ming counterpart given in Listing 1 and the corresponding
expression tree is detailed in Fig. 1.

Tag structures and meta functions.

The implementation of a proto expression tree is based
on Tag structures and on associated meta-functions that
enable to create nodes, implement Grammar or Transform
structures.

The boost: :proto framework already provides standard
Tags for standard unary and binary C++ operator (cf tables
2) and meta-functions (like proto: :result_of::tag_of<.>,
proto::result_of::child_c<.,.>or
proto: :result_of::value<.>) to easiliy navigate in expres-
sion trees.

We have completed them with tags representing : (i) the
different types of the DSEL terminals (the leafs of the tree)

; (ii) the DSEL keywords corresponding to the nodes of the
tree.

Listing 6: Tags definition

namespace fvdsel {
namespace tag {
//! DSEL terminal tags
struct basetype{} ;
struct meshvartype{} ;
struct testfunctiontype{} ;

struct trialfunctiontype{} ;
struct meshzonetype{} ;
struct nulltype{} ;

//! DSEL keyword tags
struct dot{} ;
struct grad{} ;
struct jump{} ;
struct avg{} ;
struct integrate{} ;

}

FVDSL domain definition.

We have defined the domain FVDSLDomain (Listing 7) where
all expressions are encapsulated in a FVDSLExpr that com-
form to the grammar FVDSLGrammar detailled in §3.3.2. This
mechanism enables then to the framework to overload most
of C++ operators.

Listing 7: FVDSL expression domain definition
template<typename Expr> struct FVDSLExpr;

struct FVDSLGrammar

. proto::or.< proto::terminal<boost::proto::_>,
proto::nary_expr<boost::proto::_,
proto :: vararg <FVDSLGrammar>
>
> {}

// Ezpressions in the pde domain will be wrapped in FVDSLExpr<>
// and must conform to the FVDSLGrammar
struct FVDSLDomain
: proto::domain<proto:: generator <FVDSLExpr>,
FVDSLGrammar> {};

template<typename Expr>
struct FVDSLExpr
. proto::extends<Expr, FVDSLExpr<Expr>, FVDSLDomain>
{
explicit FVDSLExpr(Expr const &expr)
: proto::extends<Expr,

FVDSLExpr<Expr >,
FVDSLDomain>(expr)

{1
BOOST_PROTO_EXTENDS_USING_ASSIGN (FVDSLExpr)

DSEL keywords.

The DSEL keywords listed in table 1 are associated to spe-
cific tags. For each tag, we have implemented a free function
that creates an associated tree node, a meta-function that
generates the type of that node, and a grammar element
that matches expressions and dispatches to the
proto: :pass_through<> transform, as Primitive Transform
(cf [16], 3.3.3). For instance, Listing 8 illustrates the def-
inition of the unary free function grad(.) creating nodes
associated fvdsel::tag::grad and the definition of
fvdsel: :gradop<ExprT> the meta-function that matches
grad expression or dispatches transforms. Listing 9 illus-
trates the definition of the binary free function dot(.,.)
creating nodes associated to the tag fvdsel: :tag::dot and
the definition of fvdsel: : dotop<LExprT,RExprT> the meta-
function that matches inner product expression or dispatches
transforms.

Listing 8: free function and meta-function associ-
ated to fvdsel::tag::grad

//! grad metafunction

template<typename A> template<typename T> struct is_base_ type ;
typename proto::result_of:: make_expr< fvdsel::tag::grad, template<typename T> struct is_mesh_var ;
FVDSLDomain, template<typename T> struct is_mesh_group
A const & template<typename T> struct is_function ;
>::type template<typename T> struct is_test_function ;
grad (A const &a) template<typename T> struct is_trial_function
return proto:: make_expr<fvdsel::tag::grad, template<typename T>
FVDSLDomain>(boost :: ref(a)); struct IsFVDSLTerminal
} : mpl::or.<
fvdsel ::is_function_type <T>,

//! grad metafunction fvdsel base type <T>,

template<typename T> fvdsel ::is_mesh_var <T>,
struct gradop : proto ::transform< gradop<T> > fvdsel ::is_mesh_group <T>
{ >

// types {};

typedef proto::expr< fvdsel tag:: grad,
proto::listl< T >

> type; In listing 11 we can compare the implementation of the
typedef proto::basic_expr< fvdsel::tag::grad, .
proto::listl < T > DSEL grammar with the BaseTypeGrammar, MeshVarTypeGrammar,
s proto-grammar: TegtFunctionTerminal, TrialFunctionTerminal,
// meinber cmsseS/siwm/givns CoefExprGrammar and BilinearGrammar structures to the
template<typename xpr, . .
typename State EBNF definition of the production rules 2, 3, 4, and 5 spec-
typename Data>
struct impl ifying bilinear expressions.
proto :: pass-through<gradop >::template impl<Expr,
State ,
Data> . . oy .
{}s Listing 11: Bilinear expression grammar
}s
namespace fvdsel {
struct BaseTypeGrammar
proto::terminal< proto::convertible_to<Real> >
Listing 9: Free function and meta-function associ- S
ated to fvdsel::tag::dot struct MeshVarTypeGrammar
proto::and_< proto::terminal<proto ::_>,
template<typename L,typename R> proto::if_< fvdsel::is_mesh_var<proto::_value >() > >
typename {}
proto::result_of :: make expr<
fvdsel :: tag :.: dot struct TestFunctionTerminal
, FVDSLDomain proto::and_< FunctionTerminal ,
, L const & proto:: if_< fvdsel::is_test_function <proto::_value >() > >
, R const & {}
>::type
dot (L const &l ,R const& r) struct TrialFunctionTerminal
proto ::and_< FunctionTerminal,
return proto:: make_expr< fvdsel::tag::dot, proto::if_-< fvdsel::is_trial_function <proto::_value >() > >
FVDSLDomain >(boost::ref (1), {}
boost ::ref(r));
} struct CoefExprGrammar ;
template<typename LeftT ,typename RightT> struct CoefExprGrammar
struct dotop : proto::transform< dotop<LeftT , RightT> > proto::or_<
{ BaseTypeGrammar ,
// types MeshVarTypeGrammar ,
typedef proto::expr< fvdsel::tag::dot, proto :: plus<CoefExprGrammar ,
proto::list2 < LeftT, CoefExprGrammar >,
RightT > proto:: multiplies <CoefExprGrammar,
> type; CoefExprGrammar >,
typedef proto::basic_expr< fvdsel::tag:: dgt, proto:: divides <CoefExprGrammar ,
proto::list2 <LeftT, CoefExprGrammar>
RightT> >
> proto_grammar ; {r
// member classes/structs/unions struct TrialBExprGrammar
template<typename LExpr, proto::or-< TrialFunctionTerminal,
typename RExpr, proto:: multiplies <CoefExprGrammar ,
typename State, TrialExprGrammar >,
~ typename Data> fvdsel :: jumpop<TrialExprGrammar >,
struct impl) fvdsel :: avgop<TrialExprGrammar >,
proto :: pass_through<dotop >::template impl<LExpr, fvdsel :: gradop<TrialExprGrammar >,
RExpr, fvdsel :: traceop <TrialExprGrammar>
State , >
Data>
{} {}
} o
struct TestExprGrammar
: H : H : B to :: - TestF ot Te inal ,
Table 3 lists the main keywords with their associated tags proto::or-< TestFunctionTermina
’ proto :: multiplies <CoefExprGrammar ,
free functions and meta-functions. TestExprGrammar>,
fvdsel :: jumpop<TestExprGrammar >,
fvdsel vgop<TestExprGrammar >,
fvdsel gradop<TestExprGrammar >,

fvdsel :: traceop <TestExprGrammar>
Grammar definition. O g

The Grammar of our language is based on the production
rules detailed in §3.3.1. Proto provides a set of tools that

struct BilinearGrammar

struct PlusBilinear

enable to implements each production rule in a user friendly . proto::plus< BilinearGrammar, BilinearGrammar >
declarative way. Terminal structures are detected with the 0

3 3 ot 3 : struct MinusBilinear
meta’_funCtlon deﬁned mn hStlng 10 Ea’Ch prOdUCtlon rUIe 18 : proto::minus< BilinearGrammar , BilinearGrammar >
implemented by a grammar structure composed with other {3
grammar structures, proto pre-defined transforms (cf table struct MultBilinear

. : proto:: multiplies< CoefExprGrammar, BilinearGrammar >

2) or some of our specific transforms (cf table 3). O

struct BilinearGrammar

. . . . proto::or_<
Listing 10: terminal meta-function proto:: multiplies <TrialExprGrammar ,

TestExprGrammar >,
fvdsel :: dotop<TrialExprGrammar ,
TestExprGrammar >,
PlusBilinear ,
MinusBilinear ,
MultBilinear

{1

3.3.3 Evaluation contexts and transforms

Language back ends : expression evaluation, algorithm
implementation.

The DSEL back ends are composed of algebraic structures
(matrices, vectors, linear combinations) used in different
kind of algorithms based mesh entities iterations, matrices,
vectors evaluation or assembly operations. The implemen-
tation of theses algorithms will be based on the evaluation
and manipulation of FVDSLDomain expressions. Such evalu-
ations are based on two kind of Proto concepts : Context
and Transform structures.

e A Context is like a function object that is passed along
with an expression to the proto::eval() function. It
associates behaviors with node types. proto::eval()
walks the expression and invokes your context at each
node.

e A Transform is a way to associate behaviors, not with
node types in an expression, but with rules in a Proto
grammar. In this way, they are like semantic actions
in other compiler-construction toolkits.

Algorithms are implemented as specific expression tree eval-
uation, as a sequence of piece of algorithms associated to
the behaviour of FEwaluation contert on each node or on
Transforms that match production rules. Theses pieces of
algorithm are written respectively in the operator() () of
the structure Context::eval for Contert objects, in the
operator () () of callable transforms objects for . Trans-
forms.

For instance, in the expression defined in listing 1,

allCells(Th), K, u, v are terminals of the language. integrate,

dot and grad are specific keywords of the language associ-

ated to the tags fvdsel: :tag: :integrate, fvdsel: :tag: :dot

and fvdsel::tag::grad. The binary operator * is associ-
ated to the tag proto::tag: :mult
At evaluation, the expression is analyzed as follows :

1. The root node of the tree, associated to the tag
tag: :integrate is composed of an MeshGroup expres-
sion (allCells(Th)) and the BilinearTerm expression
(dot (Kxgrad (u) ,grad (v)));

2. The integration algorithm consists in iterating on the
elements of the al1Cells(Th) collection and in evalu-
ating the bilinear expression on each cell. This bilinear
expression is composed of: (i) a TrialExpr expression

K+*grad(u); (ii) a TestExpr expression : grad(v)
(iii) a binary operator associated to the tag : tag: :dot
The evaluation of the TrialExpr expression and of the
TestExpr expression on a cell return two linear combi-
nation objects which, associated to the binary opera-
tor tag lead to a bilinear contribution which is a local
matrix contributing to the global linear system of the

linear context with a factor equal to the measure of
the cell.

To implement the integration algorithm associated to lin-
ear variational formulation, we have used both Contezt and
Transform structures. A BilinearContext object, referenc-
ing a linear system back end object used to build the global
linear system with different linear algebra packages has been
developped to evaluate the global expression. On an Inte-
grate node, this object call a IntegratorOp transform on the
expression tree. In listing 12, we detail the implementation
of this transform that matches in our example the expres-
sion with the tag fvdsel::tag: :integrate, the MeshGroup
expression allCells(Th) and the term
dot (Kxgrad (u) ,grad (v)).

Listing 12: Integrator transform

struct Integrator : proto::callable

/ /... callable object that will use a BilinearIntegrator transform on
// a bilinear expression
typedef int result_type;

template<typename ZoneT,
typename BxprT,
typename StateT ,
typename DataT>
int
operator () (ExprT const& expr,
ZoneT const& zone,
StateT& state ,
DataT const& data) const

//call a transform that analyze EzprT
//and dispatch to the appropriate transform
return 0 ;
}
} o

struct IntegratorOp
proto::or_<
proto :: when<

fvdsel :: IntegratorGrammar ,
fvdsel::Integrator (proto:: _child_c <2>,
proto:: _child_c <1>,

proto:: _state ,
proto :: _data
)
>
proto :: when<
proto :: plus<IntegratorOp ,IntegratorOp >,

IntegratorOp (proto :: _left ,
IntegratorOp (proto:: _right ,
proto:: _state ,
proto::_data
proto::_data)

{}

In the callable transform Integrator, analyzing the inte-
grate expression term, when a bilinear expression is matched,
another transform BilinearIntegrator (listing 13) match-
ing a DotExpr associated to fvdsel::tag: :dot and the pro-
duction rules matching the test and trial part of the bilin-
ear expressions. The algorithm (listing 14) is called by the
callable transform DotIntegrator. Note that the
BilinearContext is passed along the expression tree with
the proto::_data structure.

Listing 13: BilinearIntegrator transform

struct MultIntegrator : proto::callable

typedef int result_type;
template<typename TrialExprT ,
typename TestExprT,
typename StateT ,
typename DataT>
int
operator () (TrialExprT const& lexpr ,
TestExprT const& rexpr,
StateT& state ,
DataT const& data) const

// call integrate algorithm
// with tag proto::tag::mult
return integrate<proto::tag:: mult>(getMesh(data),
getGroup (data),
lexpr ,
rexpr,
GetContext (data)) ;
}
o
struct Dotlntegrator proto:: callable
typedef int result_type;
template<typename TrialExprT ,
typename TestExprT ,
typename StateT ,
typename DataT>
int
operator () (TrialExprT const& lexpr ,
TestExprT const& rexpr ,
StateT& state ,
DataT const& data) const

// call integrate algorithm

// with tag proto::tag::dot

return integrate<proto ::tag::dot>(getMesh(data),
getGroup (data) ,
lexpr ,
rexpr ,
GetContext (data)) ;

o

struct BilinearIntegrator
proto::or_-<

proto ::when< proto:: multiplies<TrialExprGrammar ,
TestExprGrammar >,
MultIntegrator (proto:: _left , / /! lexpr
proto:: _right , /1 rexpr
proto:: _state , //! state
proto::_data /)1 con-
text
) >,
proto :: when< fvdsel ::dotop<TrialExprGrammar ,
TestExprGrammar >,
DotIntegrator (proto:: _child_c <0>, //! left
proto::_child_c <1>, //! trial
proto:: _state , //! state
proto ::_data //! con-
text
)
>,
proto ::when< proto :: plus<BilinearGrammar ,
BilinearGrammar >,
BilinearIntegrator (proto:: _right ,
BilinearIntegrator (proto:: _left ,
proto::_state ,
proto :: _data),
proto:: _data
)
>
>
{}

Listing 14 is a simple assembly algorithm. We iterate on
each entity of the mesh group and evaluate the test and
trial expression on each entity. For such evaluation, we
have defined different kind of context objects. The structure
EvalContext<ItemT> enables to compute the linear combi-
nation objects that return the evaluation of test or trial ex-
pression, which associated to the binary operator tag lead
to a bilinear contribution, a local matrix contributing to the
global linear system of the linear context with a factor equal
to the measure of the cell. Note that the BilinearContextT
is parametrized by a phase_type parameter that enables to
optimize and factorize global linear system construction :
intermediate computations can be stored in a cache system
and be reused. For instance when a global linear system is
built, the global system dimensions setting phase, the sparse
structure matrix definition and the matrix filling phase can
be separed. The first two phases can be easily factorized for
several filling phases in iterative algorithms.

Listing 14: Integration assembly algorithm

template<typename ItemT,
typename TestExprT,
typename TrialExprT,
typename tag_op ,
typename BilinearContextT >
void integrate (Mesh const& mesh,
GroupT<ItemT> const& group,
TrialExprT const& trial ,

TestExprT const& test ,
BilinearContextT& ctx)

static const Context::ePhaseType phase =
BilinearContextT :: phase_type ;
auto matrix = ctx.getMatrix ();

for (auto cell group)
EvalContext<Item> ctx (cell) ; //! eval context on mesh item
auto lu = proto::eval(trial ,ctx) ;//! trial linear combination
auto lv = proto::eval(test ,ctx)); //! test linear combination

BilinearContribution<tag_op> uv(lu,lv) ;

assemble<phase >(matrix , / /! matriz
measure (mesh, cell), //! cell measure
uv) / /! bilinear contribution

In the same way the evaluation of a linear form expression
with a linear context leads to the construction of the righ
hand side of a global linear system.

Once the global linear system built, it can be solved with
a linear system solver provided by the linear algebra layer.

4. APPLICATIONS

Our benchmark is based on the following exact solution
for the diffusion problem (2):

o o

u(x) = sin(wz) sin(my) sin(rz), K=

S O =
O = O

on the square domain Q = [0, 1]* with
f(z,y, z) = 3nwsin(mx)sin(ny)sin(mz).

We compare the following methods: (i) the DSEL imple-
mentations of the ccG method (5) provided in Listing 15;
(ii) the DSEL implementation of the SUSHI method with
face unknowns (6) provided in Listing 16; (iii) the DSEL
implementation of the G method (17) provided in Listing 17

Listing 15: ccG method implementation
MeshType Th;

Real Kj

auto Vh = newCCGSpace(Th);

auto u = Vh—>trial ("U");

auto v = Vh—>test ("V");

auto lambda = etasxval(gamma)/val (H(Th));

BilinearForm a =
integrate (allCells (Th),dot (Kxgrad(u),grad(v))) +
integrate (allFaces (Th) ,jump(u)*dot (N(Th) ,avg(grad(v))) —

dot (N(Th) ,avg (K+grad (u))) *jump(v) -

lambdaxjump (u)*jump (v);
LinearForm b =
integrate(allCells (Th), fxv);

Listing 16: SUSHI method implementation

MeshType Th;

Real K;
auto Vh = newSUSHISpace(Th);
auto u = Vh—>trial ("U”");

auto v = Vh—>test ("V");
BilinearForm a =

integrate(allCells (Th),dot (Kxgrad(u),grad(v))) ;
LinearForm b =

integrate(allCells (Th), fxv);

Listing 17: G method implementation

MeshType Th;

Real K;
auto Uh = newGSpace(Th);
auto Vh = newPOSpace (Th);

auto u = Vh—>trial ("U");
auto v = Vh—>test ("V");
BilinearForm a =
integrate(allFaces (Th) ,dot (N(Th) ,avg(Kxgrad(u)))*jump(v)) ;
LinearForm b =
integrate (allCells (Th), fxv);

The codes is compiled with the gcc 4.5 compiler with the
following compile options:

-03 -fno-builtin

-mfpmath=sse -msse -msse2 -msse3
-mssse3 -msse4.1 -mssed.2
-fno-check-new -g -Wall -std=c++0x
--param -max-inline-recursive-depth=32
--param max-inline-insns-single=2000

The benchmark test cases are run on a work station with a
quad-core Intel Xeon processor Genuinelntel W3530, 2.80GHz,
8MB for cach size.

In our numerical tests we consider a families of h-refined
meshes with h decreasing from 0.1 to 0.0125.

The linear systems are solved using the PETSc library|[6]
with the BICGStab solver preconditioned by the euclid ILU(0)
preconditioner, with relative tolerance set to 107¢.

The benchmarks monitor various metrics:

(i) Accuracy. The accuracy of the methods is evaluated
in terms of the L? norm of the error. For the methods
of §2, the L?-norm of the error is evaluated using the
cell center as a quarature node, i.e.,

> I Tl(u(xr) = ur)?

TeT,

[lu — “hHL2(Q) ~

The convergence order of a method is classically ex-
pressed relating the error to the mesh size h.

(ii) Memory consumption. When comparing methods fea-
turing different number of unknowns and stencils, a
more fair comparison in terms of system size and mem-
ory consumption is obtained relating the error to the
number of DOFs (Npor) and to the number of nonzero
entries of the corresponding linear system (Nn,).

(iii) Performance. The last set of parameters is meant to
evaluate the CPU cost for each method and imple-
mentation. To provide a detailed picture of the dif-
ferent stages and estimate the overhead associated to
the DSEL, we separately evaluate

® tinit, the time to build the discrete space;

® t.ss, the time to fill the linear systems (local/-
global assembly). When DSEL-based implemen-
tations are considered, this stage carries the ad-
ditional cost of evaluating the expression tree for
bilinear and linear forms;

® tsolve, the time to solve the linear system.

The accuracy and memory consumption analysis is pro-
vided in Figure 2. We can check the expected linear conver-
gence behaviour of the methods. A super linear convergence
effect for the G method can be observed due to the regularity
of our meshes.

The CPU cost analysis is provided in Figure 4. The cost
of each stage of the computation is related to the number of
DOFs in Figure 3 to check that the expected complexity is
achieved. This is the case for all the methods considered.

A comparison in terms of absolute computation time is
provided in Figure 4 on the 2D version of the test case with
h = 0.006125. The overhead of the DSEL is estimated by

comparing the times results of the ccg methods of the DSEL
version the the fvC++ implementation, a hand written stl-
based implementation of the back-end discussed in §3.1. The
difference in t.ss is due to the fact that in the hand written
implementation computation stages used several times in the
assembly phase are naturally pre-computed and stored while
in our primary DSEL implemntation, cach mechanisms for
such computations are not already available.

5. CONCLUSION AND PERSPECTIVES

Our DSEL for lowest-order methods enables to describe
and solve various non trivial academic problems. Different
numerical methods were implemented with a high level lan-
guage close to one used in the unified mathematical frame-
work. The analysis of the performance results of our study
cases shows that the overhead of the language is not impor-
tant regarding standard hand written codes.

In some future work, we plan to extend our DSEL to
take into account: (i) various types of boundary conditions,
(ii) the non linear formulation hiding the complexities of
derivaties computation.

Within the HAMM]2] project (Hybrid architecture and
multi-level model), we plan to handle multi-level methods
and illustrate the interest of our approach to take advan-
tage seamless of the performance of new hybrid hardware
architecture with GP-GPU.

6. REFERENCES

[1] ISO/IEC 14977, 1996(E).

[2] HAMM Web page, 2010.
http://www.agence-nationale-recherche.fr/en/anr-
funded-project /?tx_lwmsuivibilan_pi2[CODE]=ANR-
10-COSINUS-009.

[3] D. Abrahams and L. Gurtovoy. C++ template
metaprogramming : Concepts, tools, and thechniques
from boost and beyond. C++ in Depth Series.
Addison-Wesley Professional, 2004.

[4] L. Agélas, D. A. Di Pietro, and J. Droniou. The G
method for heterogeneous anisotropic diffusion on
general meshes. M2AN Math. Model. Numer. Anal.,
44:597-625, 2010.

[5] P. Aubert and N. Di Césaré. Expression templates and
forward mode automatic differentiation. Computer
and information Science, chapter 37, pages 311-315.
Springer, New York, NY, 2001.

[6] S. Balay, J. Brown, K. Buschelman, W. D. Gropp,

D. Kaushik, M. G. Knepley, L. Curfman Mclnnes,
B. F. Smith, and H. Zhang. PETSc Web page, 2011.
http://www.mcs.anl.gov/petsc.

[7] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence
of mimetic finite difference methods for diffusion
problems on polyhedral meshes. STAM J. Numer.
Anal., 45:1872-1896, 2005.

[8] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of
mimetic finite difference methods on polygonal and
polyhedral meshes. M3AS, 15:1533—-1553, 2005.

[9] D. A. Di Pietro. Cell-centered Galerkin methods. C.
R. Math. Acad. Sci. Paris, 348:31-34, 2010.

Table 1: DSEL keywords

keyword meaning
integrate(.,.) [(.) integration of expression ;
dot(.,.) (.- .) vector inner product 0 E
jump(.) [.] jump accross a face ;
avg(.) {.} average accross a face e]
107! , E
Table 2: Proto standard tags and meta-functions mf?i]
operator narity tag meta-function
+ 2 proto::tag::plus proto::plus<.,.> I T T
- 2 proto::tag::minus proto::minus<.,.> (a) G : CPU cost vs. h
* 2 proto::tag::mult proto::mult<.,.> ——
/ 2 proto::tag::div proto::div<.,.>
10" F E
Table 3: DSEL keywords 100% E
operator narity tag meta-function
integrate(.,.) 2 fvdsel::tag::integrate integrateop<.,.> 07 E
grad(.) 1 fvdsel: :tag::grad gradop<.> i
jump(.) 1 fvdsel::tag::jump jumpop<.> 1072 ‘ ‘ ‘ E
avg(.) 1 fvdsel: :tag::avg avgop<.> 10* 10° 10°
dot(.,.) 2 fvdsel::tag::dot dotop<., .> (b) SUSHI : CPU cost vs. h
1072 E f
10" E
107% E
109 E
1074 E
b o G 107 E
—m— SUSHI £
s —— ccG
1077k ‘ ‘ ‘ ‘ ‘ T
1018 10-16 10-1¢ 10-12 10-! 10° 10* 10°
(a) L?-error vs. h (c) ccG : CPU cost vs. h
10-2F 9 Figure 3: Performance analysis for the example of
Sect. 4
1073 E E
10*4; E
[|—#— ReTu!
| | —m—SUSHI
| |—e— ccG
1077 E I I L
10° 10* 10° 10°
(b) L*-error vs. Npor ECH SN S S —]
1072 : E
L ccG-DSEL -
0} i
L 3 tinit
al i =
10 SUSHI I | = toone ||
[|l—e— G I I I L I
F| = susHI 0.5 1 15 2 2.5
~ [|—o— ccG
0P i 3
10* 10° 10° 0 Figure 4: Comparison of different methods and im-
(¢) L*-error vs. Ny, plementation for the 2D test case of §4 (h = 0.00625)

Figure 2: Accuracy and memory consumption anal-
ysis for the example of Sect. 4

[10]

[11]

[12]

[15]

[16]

[17]

D. A. Di Pietro. A compact cell-centered Galerkin
method with subgrid stabilization. C. R. Acad. Sci.
Paris, Ser. I, 348(1-2):93-98, 2011.

D. A. Di Pietro. Cell centered Galerkin methods for
diffusive problems. M2AN Math. Model. Numer.
Anal., 46(1):111-144, 2012.

D. A. Di Pietro and J.-M. Gratien. Lowest order
methods for diffusive problems on general meshes: A
unified approach to definition and implementation. In
J. Fovrt, J. Furst, J. Halama, R. Herbin, and

F. Hubert, editors, Finite Volumes for Complex
Applications VI, pages 3—19. Springer—Verlag, 2011.

J. Droniou, R. Eymard, T. Gallouét, and R. Herbin. A
unified approach to mimetic finite difference, hybrid
finite volume and mixed finite volume methods.
MB3AS, 20(2):265-295, 2010.

R. Eymard, T. Gallouét, and R. Herbin. Discretization
of heterogeneous and anisotropic diffusion problems on
general nonconforming meshes SUSHI: a scheme using
stabilization and hybrid interfaces. IMA J. Numer.
Anal., 30:1009-1043, 2010.

G. Grospellier and B. Lelandais. The Arcane
development framework. In Proceedings of the 8th
workshop on Parallel/High-Performance
Object-Oriented Scientific Computing, POOSC 09,
pages 4:1-4:11, New York, NY, USA, 2009. ACM.

E. Niebler. boost: :proto documentation, 2011.
http://www.boost.org/doc/libs/1-47_0/doc/html/proto.html.
T. Veldhuizen. Using C++ template metaprograms.
C++ report, 7(4):36-43, May 1995. reprinted in C++
Gems, ed. Stanley Lippman, 1995.

