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Implementing Lowest-Order Methods for
Diffusive Problems with a DSEL

J.-M. Gratien

Abstract Industrial simulation software have to manage: (i) the complexity of the
underlying physical models, (ii) the complexity of numerical methods used to solve
the PDE systems, and finally (iii) the complexity of the low level computer sci-
ence services required to have efficient software on modern hardware. Nowadays,
some frameworks offer a number of advanced tools to deal with the complexity re-
lated to parallelism in a transparent way. However, high level complexity related
to discretization methods and physical models lack of tools to help physicists to
develop complex applications. Generative programming and domain-specific lan-
guages (DSL) are key technologies allowing to write code with a high level expres-
sive language and take advantage of the efficiency of generated code for low level
services. Their application to Scientific Computing has been up to now limited to
Finite Element (FE) methods and Galerkin methods, for which a unified mathemat-
ical framework has been existing for a long time (see projects like Freefem++,
Getdp, Getfem++, Sundance, Feel++ [3], Fenics project). In reservoir and
basin modeling, lowest order methods are promising methods allowing to handle
general meshes. Extending Finite Volume (FV) methods, Aavatsmark, Barkve, Bøe
and Mannseth propose consistent schemes for non orthogonal meshes while stabil-
ity problems are solved with the Mimetic Finite Difference method (MFD) and the
Mixte/Hybrid Finite Volume methods (MHFV) [1]. However the lack of a unified
mathematical frame was a serious limit to the extension all of these methods to a
large variety of problems. In [2], the authors propose a unified way to express FV
multi-points scheme and DFM/VFMH methods. This mathematical frame allows
us to extend the DSL used for FE and Galerkin methods to lowest order methods.
We focus then on the capability of such language to allow the description and the
resolution of various and complex problems with different lowest-order methods.
We validate the design of the DSL that we have embedded in C++, on the imple-
mentation of several academic problems. We present some convergence results and
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e-mail: jean-marc.gratien@ifpen.fr

1



2 J.-M. Gratien

compare the performance of their implementation with the DSEL to their hand writ-
ten counterpart.

1 Introduction

Industrial simulation software have to manage: (i) the complexity of the underlying
physical models, usually expressed in terms of a PDE system completed with alge-
braic closure laws, (ii) the complexity of numerical methods used to solve the PDE
systems, and finally (iii) the complexity of the low level computer science services
required to have efficient software on modern hardware. Robust and effective fi-
nite volume (FV) methods as well as advanced programming techniques need to be
combined in order to fully benefit from massively parallel architectures (implemen-
tation of parallelism, memory handling). Moreover, the above methodologies and
technologies become more and more sophisticated and too complex to be handled
by physicists alone. Nowadays, this complexity management becomes a key issue
for the development of scientific software (figure 1).
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level language
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level language

Complexity of
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puting Software
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Algebraic
Methods

Computer
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Numerical
Methods

Fig. 1 Complexity management

Some frameworks already offer a number of advanced tools to deal with the com-
plexity related to parallelism in a transparent way. Hardware complexity is hidden
and low level algorithms which need to deal directly with hardware specificity, for
performance reasons, are provided. They often offer services to manage mesh data
services and linear algebra services which are key elements to have efficient par-
allel software. Among such kind of framework, the Arcane Platform is a parallel
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C++ framework, co-developped by CEA (Commissariat l’Energie Atomique) and
IFP Energies Nouvelles, designed to develop applications based on 1D, 2D, 3D un-
structured grids. It provides services to manage meshes, groups of mesh elements,
discrete variables representing discrete fields on mesh elements, parallelism, net-
work communication between processors and IO services. A linear algebra layer
developped above this plateform, provides also a unified way to handle standard
parallel linear solver packages such as Petsc, Hypre, MTL4, UBlas and IFPSolver
an in house linear solver package.

However, all these frameworks often provide only partial answers to the problem
as they only deal with hardware complexity and low level numerical complexity like
linear algebra. The complexity related to discretization methods and physical mod-
els lacks tools to help physicists to develop complex applications. New paradigms
for scientific software must be developed to help them to seamlessly handle the dif-
ferent levels of complexity so that they can focus on their specific domain. Gener-
ative programming, component engineering and domain-specific languages (either
DSL or DSEL) are key technologies to make the development of complex appli-
cations easier to physicists, hiding the complexity of numerical methods and low
level computer science services. These paradigms allow to write code with a high
level expressive language and take advantage of the efficiency of generated code
for low level services close to hardware specificities (figure 1). Their application
to Scientific Computing has been up to now limited to Finite Element (FE) meth-
ods, for which a unified mathematical framework has been existing for a long time.
Such kind of DSL have been developped for finite element or Galerkin methods
in projects like Freefem, Getdp, Getfem++, Sundance, Feel++, Fenics
project. They are used for various reasons, teaching purposes, designing complex
problems or rapid prototyping of new methods, schemes or algorithms, the main
goal being always to hide technical details behind software layers and providing
only the relevant components required by the user or programme [23, 24].

We try to extend this kind of approach to lowest order methods to solve the
PDE systems of geo modeling applications. These kind of methods seem to be very
promising for geoscience application as they allow to handle general meshes which
is an important issue for reservoir and basin modeling. The first extension of FV
methods is due to Aavatsmark, Barkve, Bøe and Mannseth [1, 2, 3, 4] and to Ed-
wards and Rogers [17, 18]) in reservoir simulation. The main idea is to transform
the classical two-points flux approximation into a multi-points flux approximation.
This idea solves the consistency problem for non orthogonal meshes but does not
guaranty the stability of the resulting method. This can be solved with Mimetic
Finite difference method (MFD) [9, 8] and Mixed/hybrid Finite Volume methods
(MHFV) [15, 19, 16]. These methods are elaborated, adding face unknowns and us-
ing a variational formulation approach instead of the classical conservative balance
approach on each cell. However the lack of a unified mathematical frame was a se-
rious limit to the extension all of these methods to a large variety of problems. A
partial answer was recently proposed by Di Pietro in [21, 14, 12], by introducing
a new class of methods inspired from non conforming finite element, see also Di
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Pietro and Gratien [22]. These formulations enable to express in a unified way VF
multi-points scheme and DFM/VFMH methods and allow to extend them to various
problems in fluid and solid mechanics. This consistent unified mathematical frame
allows a unified description of a large family of lowest-order methods. It is possible
then, as for FE methods, to design of a high level language inspired from the math-
ematical notation, that could help physicist to implement their application. We have
developped a language based on that frame, that we have embedded in the C++
language. This approach, used in projects like Feel++, Fenics or Sundance
has several advantages over generating a specific language. Embedded in the C++
language, (i) it avoids the compiler construction complexities, taking advantage of
the generative paradigm of the C++ language and allowing grammar checking at
compile time; (ii) it allows to use other libraries concurrently which is often not the
case for specific languages, our implementation heavily relies, in particular, on the
tools provided by the boost library; (iii) it exploits the optimization capabilities of
th C++ compiler, thereby allowing to tackle large study cases which is not possible
with interpreted language; (iv) it allows to mix the object oriented programming
and the functional programming paradigm. New concepts provided by the standard
C++0x (the keyword auto, lambda functions, . . . ), make C++ very competitive
as its syntax becomes comparable to that of interpreted languages like Python or
Ruby used in projects like FreeFem++ or Fenics, while performance issues re-
main preserved thanks to compiler optimisations.

The proposed DSEL has been developped on top of Arcane plateform [20]. It is
based on useful concepts inspired from the unified mathematical frame. We focus on
their capability to allow the description and the resolution of various and complex
problems with different lowest-order methods. We validate the design of the DSEL
on the implementation of different methods on two diffusion problems. We present
some convergence results and analyze some performance criteria.

2 Mathematical setting

Let Ω ⊂ Rd , d ≥ 2, and Th = {T} a given mesh partitioning Ω . Mesh faces with
a (d−1)-dimensional measure, defined by T1, T2 ∈Th such that F ⊂ ∂T1∩∂T2 (in-
terface) or T ∈Th such that F ⊂ ∂T ∩∂Ω (boundary), are respectively collected in
the set F i

h and F b
h . Let Fh

def
= F i

h∪F b
h .

For all k≥ 0, we define the broken polynomial spaces of total degree ≤ k on Sh,

Pk
d(Sh)

def
= {v ∈ L2(Ω) | ∀S ∈Sh, v|S ∈ Pk

d(S)},

with Pk
d(S) given by the restriction to S ∈Sh of the functions in Pk

d .
We introduce trace operators which are of common use in the context of noncon-

forming FE methods. Let v be a scalar-valued function defined on Ω smooth enough
to admit on all F ∈Fh a possibly two-valued trace. To any interface F ⊂ ∂T1∩∂T2
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we assign two non-negative real numbers ωT1,F and ωT2,F such that

ωT1,F +ωT2,F = 1,

and define the jump and weighted average of v at F for a.e. x ∈ F as

JvKF(x)
def
= v|T1 − v|T2 , {v}ω,F(x)

def
= ωT1,F v|T1(x)+ωT2,F v|T2(x). (1)

If F ∈F b
h with F = ∂T ∩∂Ω , we conventionally set {v}ω,F(x) = JvKF(x) = v|T (x).

The index ω is omitted from the average operator when ωT1,F = ωT2,F = 1
2 , and we

simply write {v}F(x). The dependence on both the point x and the face F is also
omitted from both the jump and average trace operators if no ambiguity arises.

The unified mathematical frame presented in [13, 22] allows a unified description
of a large family of lowest-order methods. The key idea is to reformulate the method
at hand as a (Petrov)-Galerkin scheme based on a possibly incomplete, broken affine
space. This is done by introducing a piecewise constant gradient reconstruction,
which is used to recover a piecewise affine function starting from cell (and possibly
face) centered unknowns.

For example, we consider the following heterogeneous diffusion model problem:

−∇·(κ∇u) = f in Ω ,

u = 0 on ∂Ω ,
(2)

with source term f ∈ L2(Ω). Here, κ denotes a uniformly elliptic tensor field piece-
wise constant on the mesh Th.

The continuous weak formulation reads: Find u ∈ [H1
0 (Ω)] such that

a(u,v) = b(v) ∀v ∈ [H1
0 (Ω)],

with
a(u,v) def

=
∫

Ω

κ∇u·∇v,

b(v) def
=
∫

Ω

f ∗ v

In this framework, a specific lowest-order is defined by (i) setting Uh(Th) and
Vh(Th) a trial and a test function space, (ii) defining for all (uh,vh) ∈Uh×Vh a bi-
linear form ah(uh,vh) and a linear form bh(vh), Solving the discrete problem consists
then in finding uh ∈Uh such that:

ah(uh,vh) = bh(vh) ∀vh ∈Vh,

The setting of a discrete function space Uh is based on three main ingredients:

• Th the mesh partitioning Ω , Sh a submesh of Th where ∀S∈Sh,∃TS ∈Th, S⊂
TS (we will considere two choices: the identity Sh = Th, and the pyramidal
Sh =Ph where cells S⊂ TS are built with the center of T and a face F ⊂ ∂TS);
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• Vh the space of vector of degree of freedoms where the components of the
vectors can be indexed by the mesh entities (cells, faces or nodes);

• Gh a linear gradient operator that defines for each vector v ∈Vh a constant gra-
dient on each element of Sh a submesh of Th.

The key idea to get a unifying perspective is to consider lowest-order methods as
nonconforming methods based on incomplete broken affine spaces that are defined
starting from the space of degrees of freedom (DOFs) Vh. More precisely, we let

Th
def
= RTh , Fh

def
= RFh ,

and consider the following choices:

Vh = Th or Vh = Th×Fh. (3)

The choice Vh = Th corresponds to cell centered finite volume (CCFV) and cell
centered Galerkin (ccG) methods, while the choice Vh = Th×Fh leads to mimetic
finite difference (MFD) and mixed/hybrid finite volume (MHFV) methods.

The key ingredient in the definition of a broken affine space is a piecewise con-
stant linear gradient reconstruction Gh : Vh → [P0

d(Sh)]
d with suitable properties.

We emphasize that the linearity of Gh is a fundamental assumption for the imple-
mentation discussed in section 3.

Using the above ingredients, we can define the linear operator Rh :Vh→P1
d(Sh)

such that, for all vh ∈ Vh,

∀S ∈Sh, S⊂ TS ∈Th, ∀x ∈ S, Rh(vh)|S = vTS +Gh(vh)|S·(x−xTS). (4)

The operator Rh maps every vector of DOFs vh ∈ Vh onto a piecewise affine func-
tion Gh(vh) belonging to P1

d(Sh). Hence, we can define a broken affine space as
follows:

Vh =Rh(Vh)⊂ P1
d(Sh). (5)

With this framework, the model problem (2) can be solved with various methods:

• The G-method, see [6] is based on a space V g
h defined setting Vh =Th, Sh =Ph

and giving an operator Gg
h based on a L-construction .

This method leads is to the following Petrov-Galerkin method:

Find uh ∈V g
h s.t. ag

h(uh,vh) =
∫

Ω

f vh for all vh ∈ P0
d(Th),

where ag
h(uh,vh)

def
= ∑F∈Fh

∫
F{κ∇huh}·nFJvhK with ∇h broken gradient on Ph.

• The cell centered Galerkin method, see [10, 11, 14] is based on a space V ccg
h

defined setting Vh = Th, Sh = Th and giving an operator Gccg
h obtained with

the green formula and a trace operator.
The method reads
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Find uh ∈V ccg
h s.t. accg

h (uh,vh) =
∫

Ω

f vh for all vh ∈V ccg
h . (6)

where,

accg
h (uh,vh)

def
=
∫

Ω

κ∇huh·∇hvh

− ∑
F∈Fh

∫
F
[{κ∇huh}ω ·nFJvhK+ JuhK{κ∇vh}ω ·nF ]

+ ∑
F∈Fh

η
γF

hF

∫
F
JuhKJvhK,

(7)

with:

– ∇h broken gradient on Th
– the weights in the average operator defined as follows: For all F ∈F i

h such
that F ⊂ ∂T1∩∂T2,

ωT1,F = λ2
λ1+λ2

, ωT2,F = λ1
λ1+λ2

,

where λi
def
= κ|TinF ·nF for i ∈ {1,2};

– γF = 2λ1λ2
λ1+λ2

on internal faces F ⊂ ∂T1∩∂T2,
– γF = κ|T nF ·nF on boundary faces F ⊂ ∂T ∩∂Ω

– and η is a (strictly positive) penalty parameter.

• The hybrid finite volume method, recovering the SUSHI scheme, see[19], [16]
and [9, 8], is based on the space V hyb

h defined setting Vh = Th×Fh, Sh pyra-
midal and giving the operator Ghyb

h obtained with the green formula.
This method reads:

Find uh ∈V hyb
h s.t. asushi

h (uh,vh) =
∫

Ω

f vh for all vh ∈V hyb
h ,

with asushi
h (uh,vh)

def
=
∫

Ω
κ∇huh·∇hvh and ∇h broken gradient on Ph.

As in all of these lowest order methods, gradient reconstructions are piecewise
constant, integrals appearing in the defined bilinear forms are evaluated exactly us-
ing the barycenter of the mesh item (cell or face) as a quadrature node. This remark
is an important point in the implementation details of forms in section 3.

3 Implementation

The framework described in section 2 allows a unified description for a large
family of lowest methods and as for FE/DG methods the design of a high level
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language inspired from the mathematical notation. Such language enables to ex-
press the variational discretisation formulation of PDE problem with various meth-
ods defining bilinear and linear forms. Algorithms are then generated to solve
the problems, evaluating the forms representing the discrete problem. The lan-
guage is based on concepts (mesh, function space, test trial functions, differen-
tial operators) close to their mathematical counterpart. They are the front end of
the language. Their implementations use algebraic objects (vectors, matrices, lin-
ear operators) which are the back end of the language. Linear and bilinear forms
are represented by expressions built with the terminals of the language linked
with unary, binary operators (+,-,*,/,dot(.,.)) and with free functions like
grad(.), div(.) integrate(.,.). The purpose of theses expressions is first to
express the variational discretization formulation of the problem but also to solve
and find its solution.

In the first part of this section, we present the different C++ concepts defining the
front end of our language, their mapping onto their mathematical counterpart and
their links with algebraic objects corresponding to the back end of the language. We
then introduce the DSEL that enables to manipulate these concepts to build complex
expressions close to the mathematical discretisation formulation of continuous PDE
problems. We finally explain how, evaluating these expressions, we can generate
source codes that solve discrete problems.

For our diffusion model problem ((2)), such DSEL will for instance achieve to
express the variational discretization formulation (6) with the programming coun-
terpart in listing 1.

Listing 1 Diffusion problem implementation

MeshType Th ;
Rea l K;
a u t o Vh = newCCGSpace ( Th ) ;
a u t o u = Vh−> t r i a l ( ”U” ) ;
a u t o v = Vh−> t e s t ( ”V” ) ;
a u t o lambda = e t a ∗ v a l ( gamma ) / v a l (H ( ) ) ;
B i l i n e a r F o r m a =

i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ) +
i n t e g r a t e ( a l l F a c e s ( Th ) , jump ( u )∗ dot (N( Th ) , avg ( grad ( v ) ) ) −

dot (N( Th ) , avg (K∗grad ( u ) ) ) ∗ jump ( v ) +
lambda∗jump ( u )∗ jump ( v ) ;

LinearForm b =
i n t e g r a t e ( a l l C e l l s ( Th ) , f ∗v ) ;
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3.1 Algebraic back-end

In this section we focus on the elementary ingredients used to build the terms ap-
pearing in the linear and bilinear forms of section 2, which constitute the back-end
of the DSEL presented in section 3.3.

3.1.1 Mesh

The mesh concept is an important ingredient of the mathematical frame. Mesh types
and data structures are a very standard issue and different kinds of implementa-
tion already exist in various framework. We developed above Arcane mesh data
structures a mesh concept defining (i) MeshType::dim the space dimension,
(ii) the subtypes Cell, Face and Node for mesh element of dimension respec-
tively MeshType::dim, MeshType::dim-1 and 0. Some free functions like
allCells(<mesh>), allFaces(<mesh>), boundaryCells(<mesh>),
boundaryFaces(<mesh>), internalCells(<mesh>) are provided to ma-
nipulate the mesh, to extract different parts of the mesh.

3.1.2 Vector spaces, degrees of freedom and discrete variables

The class Variable with template parameters ItemT and ValueT manages
vectors of values of type ValueT and provides data accessors to these values with
either mesh elements of type ItemT, integer ids or iterators identifying these ele-
ments. Instances of the class Variable are managed by VariableMng, a class
that associates each variable to its unique string key label corresponding to the vari-
able name.

3.1.3 Linear combination, linear and bilinear contribution

The point of view presented in section 2 naturally leads to a finite element-like as-
sembly of local contributions stemming from integrals over elements or faces. This
procedure leads to manipulate local vectors indexed by mesh entities represented by
the concept of linear combination
template<ValueT,ItemT> class LinearCombT. Associated to an effi-
cient linear algebra, this concept enables to create LinearContribution (local
vectors) and BilinearContribution (local matrices) used in the assembly
procedure of the global matrix and vector of the global linear system.
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3.2 Functional front-end

3.2.1 Function spaces

Incomplete broken polynomial spaces defined by (5) are mapped onto C++ types
according to the FunctionSpace concept. The key role of FunctionSpace is
to bridge the gap between the algebraic representation of DOFs and the functional
representation used in the methods of section 2. This is achieved by the functions
grad and eval, which are the C++ counterparts of the linear operators Gh and Rh
respectively; see section 2. More specifically,

(i) for all S ∈ Sh, grad(S) returns a vector-valued linear combination corre-
sponding to the (constant) restriction Gh|S;

(ii) for all S ∈Sh and all x ∈ S, eval(S, x) returns a scalar-valued linear com-
bination corresponding to Rh|S(x) defined according to (4).

The linear combinations returned by grad and eval can be used to build
LinearContributions and BilinearContributions as described in the
previous sections.

A function space types also defines the subtypes TestFunctionType,
FunctionType, TrialFunctionType corresponding to the mathematical no-
tions of discrete functions, test and trial functions in variational formulations.
Instances of TrialFunctionType and FunctionType are associated to a
Variable object containing a vector of DOFs associated to a string key corre-
sponding to the variable name. For functions, the vector of DOFs is used in the
evaluation on a point x ∈ Ω while for trial functions, this vector is used to re-
ceive the solution of the discrete problem. Test functions implicitely representing
the space basis are not associated to any Variable objects, neither vector of
DOFs. Unlike FunctionType, the evaluation of TrialFunctionType and
TestFunctionType is lazy in the sense that it returns a linear combination. This
linear combination can be used to build local linear or bilinear contributions to the
global system, or enables to postpone the evaluation with the variable data.

3.2.2 Bilinear and linear forms

Bilinear and linear forms described in 2 result from the integration of respectively
bilinear and linear terms on groups of mesh items. A BilinearForm and a Linear-
Form concept have been developped to represent these forms . They enable to store
mesh item groups, expressions built with test, trial functions, unary and binary op-
erators. They are the link between the numerical representation of the problem with
forms and its algebraic representation with a matrix and a vector.
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3.3 DSEL implementation

The Key ingredients to design a DSEL are:

1. Meta-programming techniques that consist in writing programs that transform
types at compile time

2. Generic programming techniques that consist in designing generic components
composed of abstract programs with generic types

3. Generative programming techniques that consist in generating concrete pro-
grams, transforming types with meta-programs to create concrete types to use
with abstract programs of generic components

4. Expression template techniques [5, 7, 25] that consist in representing problems
with expression tree and using tools to describe, parse and evaluate these trees.

Fig. 2 Generative programming

Applying all these techniques, it is possible to represent a problem with an ex-
pression tree. Parsing this tree at compile time, using meta programming tools to
introspect the expression, it is possible to select generic components, to link them
together to assemble and generate a concrete program 2. The execution of this pro-
gram consists in evaluating the tree at the run time, executing the concrete instance
of the selected components to build a linear system, solve it to find the solution of
the problem.

Using these principles, we have designed a DSEL that enables to express and
define linear and bilinear forms. The terminals of our language are composed of
symbols representing C++ objects with base types (Real or Integer) and with types
representing discrete variables, functions, test and trial functions. Our language uses
the standard C++ binary operators (+,-,*,/), the binary operator dot(.,.) repre-
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senting the scalar product of vector expressions, unary operators representing stan-
dard differential operators like grad(.) and div(.). The language is completed
by a number a specific keywords integrate(.,.), N() and H().

The integrate(.,.) keyword associates a collection of mesh entities to linear
and bilinear expression.

N() and H() are free functions returning discrete variable containing respec-
tively the pre-computed values of nF and hF of the mesh faces of Th.

Our DSEL has been implemented with tools and concepts provided by the
Boost::Proto template library, a powerful framework to build DSEL in C++ based
on Expression templates techniques. This library provides a collection of generic
concepts and meta functions that help to design a DSEL, its grammar and tools to
parse and evaluate expressions with a tree representation. We used these tools to
design the DSEL front end that enables to create expressions with terminals, unary
and binary operators, and predefined free functions used as specific keywords. The
grammar of the DSEL is based on tag structures and on meta functions allowing the
introspection of the nodes of the expression tree. The DSEL back ends are composed
of algebraic structures (matrices, vectors, linear combinations) used in algorithms.
We use Evaluation Context object, kind of function objects that are passed
along expression trees. They associate behaviors to node types, in other words they
enable to call specific piece of algorithm regarding the type of the node expression.
When an expression is evaluated, the context is invoked at each node of the tree. Al-
gorithms are then implemented as specific expression tree evaluation, as a sequence
of piece of algorithms associated to the behavior of the Evaluation Context
on each node.

Algorithms associated to linear variational formulation were implemented with
LinearContext and BilinearContext objects. These objects, with a refer-
ence to a linear system back end object, allow to build a global linear system with
different linear algebra packages.

Let us consider for instance the bilinear form defined in listing 2:

Listing 2 Expression defining a bilinear form

B i l i n e a r F o r m ah = i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ;

allCells(Th), K, u, v are terminals of the language. integrate , dot and grad
are specific keywords of the language. The expression defined in listing 2 has a tree
structure which has the following representation.

When the expression is evaluated, the behavior associated to these context objects
can be described as follows:

1. The root node of the expression tree is associated to the tag tag::integrate
composed of an expression (allCells(Th)) and the expression
(dot(K*grad(u),grad(v)));
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expr<tag_integrate>

allCells(Th) expr<tag_dot>

expr<tag_mult>

K expr<tag_grad>

uh

expr<tag_grad>

vh

Fig. 3 Expression tree for the bilinear form 2. Expressions are in light gray, language terminals in
dark gray

2. The integration algorithm consists in iterating on the cell elements of the
allCells(Th) and evaluating the bilinear expression on each cell. This bi-
linear expression is composed of:

• a trial function expression: K*grad(u);
• a test function expression: grad(v)
• a binary operator associated to the tag: tag::dot

With a linear context object, the evaluation of the trial function and of the test
function on a cell return two linear combination objects which, associated to
the binary operator tag lead to a bilinear contribution which is a local matrix
contributing to the global linear system of the linear context with a factor equal
to the measure of the cell.

This algorithm is generated with the simple following template function

t e m p l a t e<typename ItemT ,
typename B i l i n e a r E x p r T ,
typename L i n e a r C o n t e x tT>

vo id i n t e g r a t e ( Mesh c o n s t& mesh ,
GroupT<ItemT> c o n s t& group ,
B i l i n e a r E x p r T c o n s t& expr ,
L i n e a r C o n t e x t T& c t x )

{
s t a t i c c o n s t C o n t e x t : : ePhaseType

phase = L i n e a r C o n t e x t T : : p h a s e t y p e ;
t y p e d e f t a g o f<B i l i n e a r E x p r T > : : t y p e t a g o p ;
a u t o t e s t = T e s t F u n c t i o n ( exp r ) ;
a u t o t r i a l = T r i a l F u n c t i o n ( exp r ) ;
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a u t o sys tem = c t x . ge tSys t em ( ) ;
s t d : : f o r e a c h ( group . b e g i n ( ) ,

g roup . end ( ) ,
[& system ,&mesh ] ( ItemT& c e l l )

{
assemble<t a g o p , phase >( system , / / ! linear system

measure ( mesh , c e l l ) , / / ! cell measure
p r o t o : : e v a l ( t r i a l , c e l l ) , / / ! trial linear com-

bination
p r o t o : : e v a l ( t e s t , c e l l ) ) ; / / ! test linear com-

bination
}

}

In the same way the evaluation of a linear form expression with a linear context
leads to the construction of the right hand side of a global linear system.

Once built, the global linear system can be solved with a linear system solver
provided by the linear algebra layer.

3.3.1 Boundary condition management

In section 2 we have presented only homegeneous boundary conditions. In fact
most of these methods are easily extended to more general boundary conditions.
Let ∂Ωd ⊂ ∂Ω and ∂Ωn ⊂ ∂Ω , let consider the following conditions:

u = g on ∂Ωd , g ∈ L2(∂Ωd) (8)

∂u
∂n

= h on ∂Ωn, h ∈ L2(∂Ωn) (9)

To manage such conditions, we introduce: (i) extra degree of freedoms on bound-
ary faces, (ii) constraints on the bilinear form or (iii) extra terms in the linear form.
These constraints and terms lead to add or remove some equations in the matrix and
to add extra terms in the right hand side of the linear system.

In our DSEL, the key words trace(u) enable to recover degree of freedoms
on mesh elements, and on(.,.) enable to had constraints on group of on mesh
elements. For example, with the hybrid method the boundary conditions 8 and 9 are
expressed with the expressions of listing 3

Listing 3 boundary conditions management

B i l i n e a r F o r m ah = i n t e g r a t e ( a l l C e l l s ( Th ) , dot (K∗grad ( u ) , grad ( v ) ) ;
LinearForm bh = i n t e g r a t e ( a l l C e l l s ( Th ) , f ∗v ) ;

/ / Dirichlet condition on ∂Ωd
ah += on ( bounda ryFaces ( Th , ” d i r i c h l e t ” ) , t r a c e ( u )= g ) ;

/ / Neumann condition on ∂Ωn
bh += i n t e g r a t e ( bounda ryFaces ( Th , ” neumann ” ) , h∗ t r a c e ( v ) ) ;
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4 Applications

In this section we validate the design of our DSEL. We implement and compare
different lowest order methods on a pure diffusion problem then present the results
of a diffusion problem with a heterogenous permeability field coming from a more
realistic reservoir model.

The prototypes implemented are compiled with the gcc 4.5 compiler with the
following compile options:

-03 -fno-builtin
-mfpmath=sse -msse -msse2 -msse3 -mssse3 -msse4.1
-msse4.2 -fno-check-new -g -Wall -std=c++0x
--param -max-inline-recursive-depth=32
--param max-inline-insns-single=2000

The benchmark test cases are run on a work station with a quad-core Intel Xeon
processor Genuine Intel W3530, 2.80GHz, 8MB for cache size.

4.1 Pure diffusion

We present for the diffusion problem different variational discrete formulations that
we compare to their programming counterpart.

We present some numerical results, run on a family of meshes of increasing
sizes h ∈H . We list in tables the value of different error norms regarding an an-
alytical solution. For each kind of error, we estimate the order of convergence as
order = d ln(e1/e2)/ ln

(
card(Th2 )/card(Th1 )

)
, where e1 and e2 denote, respectively, the

errors committed on Th1 and Th2 , h1, h2 ∈H . We check the theoretical conver-
gence results detailled in [13].

To evaluate errors, we consider the norms

‖u‖2
L2 =

∫
Ω

u2 and ‖u‖2
L = ∑

T∈Th

∑
F∈FT

∫
F

1
d2

F,T
T(u)2

where T(u) is a trace operator on mesh faces, and dF,T is the distance of the center
of a cell T to a face F ⊂ ∂T .

To analyze the performance of the framework, we evaluate the overhead of the
language, the relative part of algebraic computations (defining, building and solv-
ing linear systems) and linear combination computations, studying the following
criteria:
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• tstart the time to precompute trace and gradient operators, to build the expression
tree describing linear and bilinear forms;

• tde f the time to compute the linear system profile;
• tbuild the time to fill the linear system evaluating the expression tree;
• tsolve the time to solve le linear system with linear algebra layer;
• Nit the number of iterations of the linear solver, the ILU0 preconditioned

BiCGStab algorithm with 10−6 tolerance;
• Nnz the number on non zero entries of the linear system of the test case.

We compare all these times in seconds to tre f =
tsolver

Nit
the average time of one

solver iteration approximatively equal to a fixed number of matrix vector multipli-
cation operations.

In iterative methods (time integration, non linear solver), tstart and tde f corre-
spond to computation phases only done once before the first iterative step, while the
tbuild corresponds to a computation phase done at each step. A careful attention is
paid to the tbuild results specially for such algorithms.

Nnz is an important criterion to evaluate the amount of memory used by the
method.

We consider the problem:{
−4u = 0 in Ω ⊂ R3,

u = g on ∂Ω .

4.1
The continuous weak formulation reads: Find u ∈ [H1

0 (Ω)] such that

a(u,v) = 0 ∀v ∈ [H1
0 (Ω)],

with
a(u,v) def

=
∫

Ω

∇u·∇v.

The discrete formulations of the problem with the G-method, the ccG-method
and the Hybrid-method defined in section 2 are represented by the definition of the
bilinear forms ag

h, accg
h , ahyb

h . We can compare them to their programming counter-
part in listings 4,5 and 6

Listing 4 C++ implementation of ag
h and bh

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Vh = newP0Space ( Th ) ;
a u t o Uh = newGSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ”U” ) ;
a u t o v = Vh−> t e s t ( ”V” ) ;
B i l i n e a r F o r m ah g =

i n t e g r a t e ( a l l F a c e s ( Th ) , dot (N ( ) , avg ( grad ( u ) ) ) ∗ jump ( v ) ) ;
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ah g += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;

Listing 5 C++ implementation of accg
h

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Uh = newCCGSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ”U” ) ;
a u t o v = Uh−> t e s t ( ”V” ) ;
a u t o lambda = e t a ∗gamma /H ( ) ;
B i l i n e a r F o r m a h c c g =

i n t e g r a t e ( a l l C e l l s ( Th ) , dot ( grad ( u ) , grad ( v ) ) ) +
i n t e g r a t e ( a l l F a c e s ( Th) ,−jump ( u )∗ dot (N ( ) , avg ( grad ( v ) ) )

−dot (N ( ) , avg ( grad ( u ) ) ) ∗ jump ( v )
+lambda∗jump ( u )∗ jump ( v ) ;

a h c c g += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;

Listing 6 C++ implementation of ahyb
h

MeshType Th ; / / declare Th
BoundaryFaceVarType g ; / / declare boundary values
a u t o Uh = newHybridSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ”U” ) ;
a u t o v = Uh−> t e s t ( ”V” ) ;
B i l i n e a r F o r m ah hyb =

i n t e g r a t e ( a l l F a c e s ( Th ) , dot ( grad ( u ) , grad ( v ) ) ;
ah hyb += on ( b o u n d a r y f a c e s ( Th ) , t r a c e ( u )= g ) ;

We consider the analytical solution u(x,y,z) = sin(πx)sin(πy)sin(πz) of the dif-
fusion problem (4.1) on the square domain Ω = [0,1]3 with f (x,y,z) = 3πu(x,y,z).

Table 1, 2 and 3 list the errors in the L2 and L norm of respectively the G method,
the ccG method and the hybrid method.

Table 1 Diffusion test case: G method

card(Th) h ‖u−uh‖L order ‖u−uh‖L2(Ω) order

1000 1.00e-01 1.58e-02 2.92e-03
8000 5.00e-02 3.96e-03 2. 7.28e-04 2.

64000 2.50e-02 9.89e-04 2. 1.82e-04 2.
125000 1.25e-02 6.32e-04 2. 1.16e-04 2.

In Figure 4, we compare convergence error of the G-method, the ccG method,
the Hybrid-method and a standard hand written L-Scheme FV method.

In the tables 4, 5, 6 and 7, we compare the performance of each methods.

The analysis of these results shows that the G-method is comparable to the hand
written FV method and the language implementation does not contribute to extra



18 J.-M. Gratien

Table 2 Diffusion test case: ccG method

card(Th) h ‖u−uh‖L order ‖u−uh‖L2(Ω) order

1000 1.00e-01 3.1474e-02 5.3866e-03
8000 5.00e-02 7.8977e-03 1.99 1.4257e-03 1.92

64000 2.50e-02 1.9763e-03 2. 3.6157e-04 1.95
512000 1.25e-02 1.2649e-03 2. 2.3180e-04 1.95

Table 3 Diffusion test case: Hybrid method

card(Th) h ‖u−uh‖L order ‖u−uh‖L2(Ω) order

1000 1.00e-01 1.58e-02 2.92e-03
8000 5.00e-02 3.95e-03 2. 7.28e-04 2.01

64000 2.50e-02 9.87e-04 2. 1.82e-04 2.
512000 1.25e-02 6.32e-04 2. 1.16e-04 2.

Table 4 Diffusion test case: G-method performance results

card(Th) Nit Nnz tstart tde f tbuild tsolve tre f tstart/tre f tde f /tre f tbuild/tre f

1000 4 16120 8.8987e-02 1.1998e-02 7.9980e-03 3.0000e-03 7.50e-04 118.65 16.00 10.66
8000 8 140240 6.0191e-01 1.0398e-01 6.4990e-02 1.6997e-02 2.12e-03 283.30 48.94 30.59

64000 14 1168480 4.8033e+00 8.4787e-01 6.2190e-01 2.0097e-01 1.44e-02 334.61 59.06 43.32
125000 25 2300600 7.0929e+00 1.7137e+00 1.1738e+00 5.9191e-01 2.37e-02 299.58 72.38 49.58

Table 5 Diffusion test case: ccG-method performance results

card(Th) Nit Nnz tstart tde f tbuild tsolve tre f tstart/tre f tde f /tre f tbuild/tre f

1000 3 117642 6.5990e-02 3.5495e-01 9.2986e-02 3.0995e-02 1.03e-02 6.39 34.36 9
8000 5 1145300 5.2292e-01 3.4685e+00 8.0088e-01 2.9596e-01 5.92e-02 8.83 58.6 13.53

64000 8 10114802 4.1344e+00 2.9890e+01 6.9929e+00 3.0625e+00 3.83e-01 10.8 78.08 18.27
125000 10 20017250 8.1658e+00 6.0900e+01 1.3516e+01 6.3850e+00 6.39e-01 12.79 95.38 21.17

Table 6 Diffusion test case: Hybrid method performance results

card(Th) Nit Nnz tstart tde f tbuild tsolve tre f tstart/tre f tde f /tre f tbuild/tre f

1000 7 16120 4.6993e-02 1.0999e-02 4.0000e-03 2.1997e-02 3.14e-03 14.95 3.5 1.27
8000 17 140240 3.4095e-01 1.1898e-01 2.5996e-02 1.6098e-01 9.47e-03 36.01 12.56 2.75

64000 33 1168480 2.8686e+00 1.1128e+00 2.1197e-01 2.4106e+00 7.30e-02 39.27 15.23 2.9
125000 50 5563700 5.2122e+00 2.0507e+00 3.8094e-01 4.5323e+00 9.06e-02 57.5 22.62 4.2

cost. The G-method and the Hybrid-method have equivalent convergence order.
A closer look to the Nnz column shows that the ccG method requires much more
nonzero entries for the linear system than the G-method and the hybrid-method, and
we can see the effect on the cost of the linear system building phase which is more
important for the ccG method than for the G-method.

The inspection of the columns tstart/tre f and tbuild/tre f shows that the implemen-
tation remains scalable regarding the size of the problem.
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Fig. 4 Diffusion problem

Table 7 Diffusion test case: standard hand written performance results

card(Th) Nit Nnz tstart tde f+build tsolve tre f tstart/tre f tbuild/tre f

1000 4 16120 4.899e-02 3.399e-02 3.998e-03 1.00e-03 49.01 34.01
8000 7 140240 3.519e-01 2.149e-01 3.399e-02 4.86e-03 72.47 44.26
64000 13 1168480 2.786e+00 1.861e+00 3.489e-01 2.68e-02 103.8 69.34
125000 16 9536960 5.338e+00 3.893e+00 7.688e-01 4.81e-02 111.09 81.02

4.2 SPE10 test case

The test case is based on data taken from the second model of the 10th SPE test case
[?]. The geological model is a 1200×2200×170 f t block discretized with a regular
Cartesian grid with 60× 220× 85 cells. This model is a part of a Brent sequence.
The maps of porosity, horizontal and vertical permeability can be downloaded from
the web site of the project [?].
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Let Ω be the domain define by the layer 85 of the grid, ∂Ωxmin and ∂Ωxmax,
the left and right boundary of the layer. We consider the following heterogeneous
diffusion model problem :

−∇·(κ∇u) = 0 in Ω ,

u = Pmin =−10 on ∂Ωxmin,

u = Pmax = 10 on ∂Ωxmax,

∂u
∂n

= 0 on ∂Ω ∂Ωxmin∪∂Ωxmax

(10)

where κ is associated to the map of the horizontal permeability field of the layer 85.
The discrete formulations of this problem (10) have been implemented with the

Hybrid-method defined in section 2 as in listing 7

Listing 7 C++ implementation of ahyb
h

MeshType Th ; / / declare Th
Real Pmin = −10, Pmax=10 ;
a u t o Uh = newHybridSpace ( Th ) ;
a u t o u = Uh−> t r i a l ( ”U” ) ;
a u t o v = Uh−> t e s t ( ”V” ) ;
B i l i n e a r F o r m ah hyb =

i n t e g r a t e ( a l l F a c e s ( Th ) , k∗dot ( grad ( u ) , grad ( v ) ) ;
ah hyb += on ( bounda ryFaces ( Th , ” xmin ” ) , t r a c e ( u )= Pmin ) ;
ah hyb += on ( bounda ryFaces ( Th , ”xmax” ) , t r a c e ( u )=Pmax ) ;

In figure 5, we have a 2D view of the permeability field and of the solution of the
problem.

(a) 3D view (b) 3D view

Fig. 5 SPE10 permeability field and pressure solution
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5 Conclusion and perspectives

Our DSEL for lowest-order methods allows to describe and solve various diffusion
problems. Different numerical methods recovering standard methods (L-scheme,
ccG, Sushi method) have been implemented with a high level language close to the
one used in the unified mathematical framework. The analysis of the performance
results of our study cases shows that the overhead of the language is not important
regarding standard hand written codes.

In future works, we plan to extend our DSEL to take into account non linear for-
mulations hiding the complexities of derivatives computation with Frechet’s deriva-
tives and to address new business applications with linear elasticity, poro-mechanic
or dual medium model.

Within the HAMM project (Hybrid architecture and multi-level model), we han-
dle multi-level methods and illustrate the interest of our approach to take advantage
of the performance of new hybrid hardware architecture with GP-GPU.
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