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Résumé — Optimisation par maximisation de la probabilité d’atteindre les cibles pour des résultats

non évalués — La méthode présentée dans cet article rentre dans le cadre de l’optimisation

probabiliste classique. La nouveauté consiste à construire un processus Gaussien pour chaque

résultat souhaité (i.e. associé à chaque cible spécifiée) et de les utiliser ensuite pour estimer les

densités de probabilité des résultats non évalués. Ces densités sont alors prises en compte dans

le calcul de la densité a posteriori des paramètres à optimiser. Cette approche est adaptée

lorsque chaque évaluation de la fonction est coûteuse en temps de calcul. Une description

détaillée de cette méthode d’optimisation est proposée ainsi que son utilisation sur plusieurs

cas tests.

Abstract — An Optimization Strategy Based on the Maximization of Matching-Targets’ Probabil-

ity for Unevaluated Results— TheMaximization ofMatching-Targets’ Probability forUnevaluated

Results (MMTPUR), technique presented in this paper, is based on the classical probabilistic opti-

mization framework. The numerical function values that have not been evaluated are considered as sto-

chastic functions. Thus, a Gaussian process uncertainty model is built for each required numerical

function result (i.e., associated with each specified target) and is used to estimate probability density

functions for unevaluated results. Parameter posterior distributions, used within the optimization pro-

cess, then take into account these probabilities. This approach is particularly adapted when, getting

one evaluation of the numerical function is very time consuming. In this paper, we provide a detailed

outline of this technique. Finally, several test cases are developed to stress its potential.
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INTRODUCTION

Optimization or inverse problems are usually associated

with the minimization of an Objective Function (OF).

This OF represents the mismatch between the targets

to reach and the corresponding numerical function val-

ues or simulation results. Moving to a probabilistic opti-

mization framework makes it possible to extend this OF

minimization process to the maximization of the

posterior distribution of the unknown parameters or

variables. This posterior distribution depends on prior

uncertainties on both parameters and targets (Tarantola,

2005). The bridge between this OF minimization prob-

lem and the associated classical probabilistic framework

relies on assumptions about tolerances relative to targets

and numerical function errors. The key points of the

methodology described in this paper consist:

– in approximating these tolerances by stochastic vari-

ables; and,

– in considering Gaussian processes (Sacks et al., 1989)

to model numerical function errors.

Based on the classical probabilistic optimization

framework, we developed a technique called Maximiza-

tion of Matching-Targets’ Probability for Unevaluated

Results (MMTPUR). Briefly, the numerical function

values that have not been evaluated are considered as

stochastic functions: a Gaussian process model is com-

puted for each simulation result associated with a target.

The posterior distribution of the unknown parameters is

then built, accounting for all of these Gaussian process

models. New points are iteratively added by maximizing

this distribution.

Gaussian process models are widely used either to

approximate responses of costly numerical models or

to perform optimization.

Jourdan (2000) and Marrel (2008) use Gaussian pro-

cesses to approximate key outputs of numerical models

from a fixed number of simulations. These approxima-

tions can also be used to perform uncertainty manage-

ment, for instance to propagate input uncertainty

towards output results and to perform sensitivity

analysis.

Adaptive design strategies have also been proposed

instead of fixed design to improve Gaussian process

approximations for given responses (Scheidt et al.,

2007; Busby, 2009). Thus, new simulation points are

iteratively added with various strategies, in domains

either where approximations are poor, where responses

are complex, or where information is required. The

overall objective is to get a good approximation of the

responses of interest over the entire uncertain domain.

One specific feature of the approach developed by

Scheidt et al. (2007) is to add pilot points, at each

iteration, in order to improve the Gaussian process

model. These pilot points are fictitious data used to

refine the final model.

As described in Schonlau (1997), Villemonteix et al.

(2009) and Vazquez and Bect (2010), Gaussian process

properties, with characterization of mean and covari-

ance, can also be used for local or global optimization.

In this case, the required OF is approximated by a

Gaussian process and an improvement function corre-

sponding to the potential reduction of the OF is defined.

The classical OF minimization is then turned into the

maximization of the improvement expectation, known

as the expected improvement or gain. Adding a global

optimization criterion to the expected improvement

method yields the generalized expected improvement

method. For a specific case the generalized expected

improvement method corresponds to maximize the

probability to be lower than the lowest available values

of the OF.

Busby and Feraille (2008) and Feraille and Marrel

(2012) employed Gaussian processes within a probabilis-

tic optimization framework to handle history-matching

problems in reservoir engineering. Within this context,

the OF quantifies the mismatch between target produc-

tion data and the corresponding numerical responses.

These authors proposed to approximate the OF by a

Gaussian process using an adaptive algorithm and

focused on areas where the OF was low (which is the

usual ultimate history-matching goal). This OF approx-

imation provided the posterior distribution of the

unknown parameters in a reasonable number of simula-

tions.

The main differences between the MMTPUR

technique and the methods previously introduced are

listed hereafter. First, we approximate using different

Gaussian process models several responses of interest

instead of a single one. Then, all the models are locally

improved from a sequence of adjustments within uncer-

tain domains where the simulation results are in agree-

ment with the targets. This is not performed over the

entire uncertain domain. Finally, the optimization strat-

egy entails the maximization of the posterior distribution

in accounting for several Gaussian process models (one

for each required numerical function result which is

associated with a given target) rather than a single

model.

In the following sections, we focus first on the classical

probabilistic optimization framework. We then go into

the details of the Gaussian process technique, which is

used to approximate the output results of a simulator

based upon response surface modeling. We show how

to take advantage of this add-on to the classical proba-

bilistic formulation of inverse problems: the Gaussian
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process technique is used to estimate the uncertainty in

numerical function values that have not been evaluated.

The last section presents the MMTPUR algorithm and

several application examples.

1 PROBABILISTIC INVERSE PROBLEM FRAMEWORK

Inverse problems can be solved using optimization tech-

niques. Briefly, an iterative process is implemented to

identify a set of parameters x providing a numerical

response y(x) as close as possible to target t. One or sev-

eral values of x as well as their corresponding simulation

results y(x) have to be determined. The probabilistic

framework described below was proposed to solve this

problem (Tarantola, 2005). It entails the following data,

requirements and assumptions:

– targets T = {Ti}, Ti being the i-th target, are associ-

ated with an uncertainty model characterized by prob-

ability density function pT (t), where t is a realization

of T. As an example, in reservoir engineering history-

matching process, the simulation model aims at simu-

lating the production profiles for a given reservoir

while the targets can be measured production profiles.

Uncertainty is linked to the accuracy in measure-

ments;

– the parameters of the simulation model, X, are associ-

ated with an a priori uncertainty model described by

probability density function pX (x), x being a realiza-

tion of X. Considering a Gaussian uncertainty model

described by mean parameter values lX and covari-

ance operator CX, the a priori probability density

function is expressed as:

pX xð Þ / exp � 1

2
x� lXð ÞtC�1

X x� lXð Þ
� �

¼ exp �OFprior xð Þ
� �

ð1Þ

– simulation results y(x) = {yi(x)} are considered as a

stochastic function, denoted Y(x) = {Yi(x)}. It is

associated with an uncertainty model described by

probability density function pY(x) (y), for which reali-

zation y depends on the x parameter values.

A probabilistic framework is used to define the a pos-

teriori uncertainty pX/Y (x/t) = p (X= x/Y= t) on theX

parameters that give simulation results, respecting spec-

ified targets. Using Bayes’ rule this conditional density

function is rewritten as:

pX=Y x=tð Þ / pY=X t=xð ÞpX xð Þ ð2Þ

pX (x) is the a priori probability density function (defined

above) and pY/X (t/x) = p (Y= t/X=x), the conditional

probability density function of obtaining simulation

results y respecting target values t given parameter

values x. pY/X (t/x) is also known as the likelihood func-

tion lkh(x). It can be derived from the independent

probability density functions of T and Y(x) defined

above:

lkh xð Þ ¼ pY=X t=xð Þ ¼
Z

C

pT t0ð Þ � pY xð Þ t
0ð Þdt0 ð3Þ

The C integration domain is related to the targets’

space, namely: [�1; +1]i.

One often considers that the y value depends deter-

ministically on the x value. Therefore, pY(x) (y) is a Dirac

probability density function d({y(x)}), and the likelihood

function becomes:

lkh xð Þ ¼ pY=X t=xð Þ ¼ pT y xð Þð Þ ð4Þ

Besides, assuming a Gaussian uncertainty model for T,

characterized by the mean target values, lT , and a

covariance operator, CT, the likelihood function is

expressed as:

lkh xð Þ / exp � 1

2
y xð Þ � lTð ÞtC�1

T y xð Þ � lTð Þ
� �

¼ exp �OF lkh xð Þð Þ
ð5Þ

Finally, we obtain the following relationship for the pos-

terior probability density function:

pX=Y x=tð Þ / lkh xð Þ � pX xð Þ
/ exp �OF lkh xð Þ � OFprior xð Þ

� �

¼ exp �OF xð Þð Þ
ð6Þ

This framework is used to determine x values (or real-

izations of X) that maximize the a posteriori probability

of X. It consists in finding x values that maximize

pX=Y x=tð Þ or that minimize Objective Function OF(x).

The minimization of the Objective Function can be

performed referring to many techniques, said to be glo-

bal or local depending on whether they converge to glo-

bal or local minima. For instance, the following types of

methods can be highlighted:

– the local gradient-based methods (Tarantola, 2005),

which include quasi-Newton and Gauss-Newton fam-

ilies;

– the global evolutionary and genetic methods (Hansen,

2006);

– the global response surface-based methods (Schonlau,

1997; Villemonteix et al., 2009; Vazquez and Bect,

2010).

In the remainder of this paper, we propose to use the

known simulation results to approximate pY(x) (y) from

M. Feraille / An Optimization Strategy Based on the Maximization of Matching-Targets’
Probability for Unevaluated Results

547



several Gaussian processes, instead of considering a Di-

rac probability density function. Before proceeding, the

key points of the Gaussian process technique are

recapped in the following section. We then show how

this technique can be used to estimate probability density

function pY(x) (y) for unevaluated results of the numeri-

cal model. Finally, we discuss what this approach implies

for the posterior distribution of X.

2 RESPONSE APPROXIMATION USING GAUSSIAN
PROCESS

Kriging was introduced in Geostatistics (Matheron,

1963). It is nowadays widely used as an approximation

to model output functions {y(x)} (i.e., the responses

provided by numerical simulators) with respect to input

{x = (x1, ..., xd)}. This kriging approximation is a

Gaussian Process (GP) characterized by a mean and a

covariance structure. It can be shown that the GP or kri-

ging mean is the best linear unbiased estimator.

In other words, we have a set of values for input

parameters x = (x1, ..., xd), d being the number of

parameters, and we derive the y(x) values from the sim-

ulator. Then, we consider y(x) as a realization of the fol-

lowing random function Y(x) (Sacks et al., 1989) which

is a GP:

Y xð Þ ¼ h xð Þ � Z xð Þ � U xð Þ ð7Þ
where:

– h(x) is the mean of the response. Its shape is a priori

known: h xð Þ ¼
P

k

j¼0

bjhjðxÞ. Note that h(x) can be seen

as the trend of the response. hj(x) are elementary func-

tions or terms associated with the shape of h and b are

coefficients. Quite often, hj are the terms associated

with a polynomial of order 2 including all or part of

the following terms: constant, linear terms (xi), first

order interaction terms (xixj), quadratic terms (xi).

Employing to more complex hj functions can also be

envisaged;

– Z(x) corresponds to the stochastic part of model Y. It

is characterized by a zero mean and covariance

E Z x1ð Þ � Z x2ð Þ½ � ¼

r2 exp �
X

d

i¼1

x1i � x2ij j
ki

� �pi
 !

¼ r2 � R x1; x2ð Þ

where d is the dimension of x (number of parameters)

and {r, (pi)i = 1, ..., d, (ki)i = 1, ..., d} are the covariance

parameters. Assuming that Z is stationary (meaning

that covariance does not depend on x values) makes

it possible to perform the computations described

hereafter;

– U(x) is an independent noise that can be added to the

random part of model Y. It is known as the nugget

effect in geostatistics. Its usefulness appears when

dealing with none-deterministic simulator y. Effec-

tively, it allows for introducing a discontinuity at the

origin into the covariance of model Y(x). U(x) is a

Gaussian random variable with zero mean and covari-

ance and variance equal to e2 ¼ r2 � s ; s � 0. Coeffi-

cient s represents the contribution of the nugget

effect. When U(x) is used, the covariance of the

stochastic part of model Y becomes:

E Z x1ð Þ � Z x2ð Þ½ � ¼ r2 R x1; x2ð Þ þ s � d x1 � x2ð Þ½ �

with d the Dirac’s delta function.

Note that in what follows we will not consider nugget

effect.

For a given sample of realizations, denoted

SA = (Y(xi) = yi)i = 1, ..., n with n the number of points,

it can be shown that the conditional mean and variance

of Gaussian process Y(x) given SA are:

E Y xð Þ=SA½ � ¼ ht xð Þbþ rt xð ÞR�1 y� Hbð Þ ð8Þ

var Y xð Þ=SA½ �

¼ r2 1� rt xð Þ; ht xð Þ½ � �
R H

H t 0

� 	�1
r xð Þ
h xð Þ

� 	

" #

ð9Þ

with

y ¼ y1; � � � ; ynð Þt 2 Rn

h xð Þ ¼ h1; � � � ; hk xð Þð Þt 2 Rk

H ¼ h xið Þt
� �

1�i�n
2 Rn�k

R ¼ R xi; xj
� �� �

1�i;j�n
2 Rn�n

r xð Þ ¼ R x; x1ð Þ; � � � ;R x; xnð Þð Þt 2 Rn

The interested reader can refer to Sacks et al. (1989)

for more details. Covariance parameters

{r, (pi)i =1, ..., d, (ki)i = 1, ..., d} are called hyper-param-

eters. In geostatistics, parameters (ki)i = 1, ..., d are also

known as correlation lengths.

Functions hj are selected on the basis of a priori

knowledge. If such information is not available, then a

constant value is taken. Coefficients b as well as hyper-

parameters k = (ki)i = 1, ..., d, p = (pi)i = 1, ..., d and r

are estimated by maximizing the logarithm of the follow-

ing likelihood function:

lðb;r; k; pÞ ¼ � 1

2

�

n ln 2pð Þ þ n lnr2 þ ln det Rð Þ½ �

þ 1

r2
ðy� HbÞtR�1ðy� HbÞ

	

ð10Þ

548 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 3



Thus, estimate of:

– b is b̂ ¼ ðH tR�1HÞ�1
H tR�1y;

– r is r̂2 ¼ 1
n
ðy� H b̂ÞtR�1ðy� H b̂Þ;

– (ki)i = 1, ..., d and (pi)i = 1, ..., d are obtained from a

numerical optimization of lðr̂; b̂; k; pÞ.
Instead of using only this optimal value of the hyper-

parameters, it is possible to consider their posterior prob-

ability density functions that account for the previously

defined likelihood lðr̂; b̂; k; pÞ (Kennedy and O’Hagan,

2001). In such a case, the main drawback is the compu-

tational cost. For this reason, we preferred to disregard

the Bayesian kriging technique.

An example of a GP Y(x) is displayed in Figure 1 for a

one dimensional case with no nugget effect. The circles

are elements of the SA realization sample. A Gaussian

density function / is defined for each x with mean

E Y xð Þ=SA½ � and standard deviation var Y xð Þ=SA½ �ð Þ1=2. A
continuous line shows the mean of Y(x) whereas dotted

lines provide the 99% confidence interval (mean±3std).

The unknown realizations of Y(x) should fall in this con-

fidence interval associated with a probability of 99%.

We observe that the realizations of the SA sample are

accurately reproduced by Y(x). Effectively, for these

points, xi 2 SA: E Y xið Þ=SA½ � ¼ yi and due to the absence

of nugget effect var Y xið Þ=SA½ � ¼ 0. Thus, the probability

density function obtained for these points is a Dirac:

d y xið Þf gð Þ.

3 GAUSSIAN PROCESS USED WITHIN PROBABILISTIC
INVERSE PROBLEM FRAMEWORK

As stated above within the “Probabilistic inverse

problem framework” section, simulation results

y(x) = {yi(x)} are considered as a stochastic function,

denoted Y(x) = {Yi(x)}. In what follows, we consider

that each Yi is a GP with no nugget effect. Thus when,

the simulation is not run for x. Results yi(x) are

unknown and Yi GP yields an estimation of the proba-

bility density function of pY i xð Þ y
ið Þ, as:

pY i xð Þ yi
� �

¼ / mean ¼ E Y i xð Þ

 �

; std ¼ var Y i xð Þ

 �� �1=2

� 

¼ / lY i xð Þ;rY i xð Þð Þ

where u is a Gaussian probability distribution function.

The likelihood probability density function for y(x)

results, assuming targets and simulation results to be

independent, can be written as:

pY=X t=xð Þ ¼
Z

C

pT t0ð Þ � pY xð Þ t
0ð Þdt0

¼
Y

i

Z þ1

�1
pT i t0ð Þ � / lY i t0ð Þ;rY i t0ð Þð Þdt0

� 	 ð11Þ

Similarly, it is shown that the posterior distribution of

X is:

pX=Y x=tð Þ
ð12Þ

/
Y

i

Z þ1

�1
pT i t0ð Þ � / lY i t0ð Þ;rY i t0ð Þð Þdt0

� 	

 !

�pX xð Þ

Let us focus on the particular cases listed below.

– each Ti respects the Gaussian law

pT i ¼ / mean ¼ð lT i ; std ¼ rT iÞ. In such conditions,

Rþ1
�1 pT i t0ð Þ � pY i xð Þ t

0ð Þdt0

¼ 1
ffiffiffiffi

2p
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rTi
2þrYi xð Þ2

p � exp � 1
2

lTi�lYi xð Þ½ �2
rTi

2þrY i xð Þ2

� �

:

This actually corresponds to the convolution at zero

of the two Gaussian probabilities, pT i and pY i xð Þ;
– each Ti respects the Uniform law defined between

[aT i ; bT i ].

Then,
Rþ1
�1 pT i t0ð Þ � pY i xð Þ t

0ð Þdt0 ¼
R bTi
aTi

pY i xð Þ t0ð Þ
bTi�aTi

dt0

¼ UYi xð Þ bTið Þ�UYi xð Þ aTið Þ
bTi�aTi

where UY i xð Þ is the cumulative density function of the

Gaussian law pY i xð Þ.
It is worthwhile mentioning that the independence

assumption between {Yi(x)} leads to simplified computa-

tions and good results as shown in the examples below.

However, this assumption can be removed provided we

compute the GP of Yi accounting for the covariance of

E[Y(x)/SA]+ 3(var[Y(x)/SA])
1/2

E[Y(x)/SA]− 3(var[Y(x)/SA])
1/2Points of the SA

functions for ≠ x
Gaussian densityφ

1
5

1
0

-1
0

-1.0 -0.5 0.0 0.5 1.0

5
0

-5

Valuesx

Y
( 
  )x

Figure 1

Example of a GP Y(x).
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several dependent {Yi(x)}. This can be done using cokri-

ging (Cressie, 1993) technique.

4 MAXIMIZATION OF MATCHING-TARGETS'
PROBABILITY FOR UNEVALUATED RESULTS (MMTPUR)
TECHNIQUE

The main feature of the MMTPUR technique consists in

approximating the simulator or numerical function for

unknown results associated with targets T with GP.

These GP are used to compute the posterior distribution

ofX. Then, this posterior distribution is maximized, lead-

ing to updated x values. The successive steps of the

MMTPUR technique are recapped in Figure 2 and

explained hereafter:

4.1 Step 1 and 2: Initial Design

We first build the initial set of (xj)j = 1, ..., n values with

(yij)j = 1, ..., n, i = 1, ..., p. n stands for the number of points,

p for the number of targets and m is the current iteration

index. yij is associated with the j-th simulation result

related to the i-th target Ti. Even if it is theoretically pos-

sible to consider a single point within the initial sample,

space-filling techniques like Latin hypercube sampling

(McKay et al., 1979; Fang et al., 2006) are preferred to

obtain the n point set. The objective is to end up with ini-

tial samples investigating the entire domain associated

with the possible variations in parameters (x).

4.2 Step 3: Build GP Yim for Each Target i Using SAm

At this point, the GPs Yi
m = Yi/SAm are built using the

current sample SAm (see Eq. 8, 9).

4.3 Step 4: Add k New Points (x*j)j = 1, ..., k to Maximize
the Posterior Distribution of X

As shown in Equation (12), the posterior distribution of

X is:

pX=Y x=tð Þ
ð13Þ

/
Y

i

Z þ1

�1
pT i t0ð Þ � / lY i t0ð Þ;rY i t0ð Þð Þdt0

� 	

 !

� pX xð Þ

where: / lY i ;rY ið Þ is the Gaussian probability density

function of the current Yi
m GP (Fig. 1) with mean and

standard deviation obtained from Equations (8, 9); and

pT i is the probability density function for target Ti, tar-

gets being assumed to be independent.

To select the k new points (x*i)i = 1, ..., k to be added to

the current SAm sample, we apply the following iterative

strategy:

1. select the first new point x*1 as the one that maximizes

pX=Y x=tð Þ. Several optimization techniques can be

selected to solve this maximization problem, such as

genetic algorithms, gradient-based optimizations,

etc., or a combination of these techniques;

2. add fictitiously x*1 to sample SAm and associate the

mean value derived from Yi
m: E Y i

m x�1ð Þ½ � to the

fictitious yi value for any i;

3. go back to step 1 and repeat until k new points are

selected.

Selecting the number k of new points is a very practi-

cal issue and depends on simulation capabilities, such as

computing power (cluster, network) or the number of

available simulator licenses. For example, if 10 simula-

tion jobs can be simultaneously run, k can be set to 10.

However, if the simulation jobs can be launched only

sequentially, k will be set to 1.

4.4 Step 5: Build Sample SAm+1

The k new (x*j)j = 1, ..., k points are simulated to obtain

(y*ij)j = 1, ..., k, i = 1, ..., p. Then, the sample is updated:

SAmþ1 ¼ SAm [ x�j ; y
�0
j ; � � � ; y�ij ; � � � ; y

�p
j

� 

j¼1;���; k

4.5 Step 6 and 7: Convergence

Several convergence strategies can be envisaged based

upon either:

– a maximum number of simulations affordable, or

– a threshold value for the maximum of the posterior

distribution of X. For instance, if this maximum is

lower than the threshold, the optimization is stopped.

1- Initial set of x points: (xj)j=1...n

2- Build the initial sample SA
o
 by simulating for each

(xj)j=1...n
 the (y

i 
j)j=1...n, i=1...p

:

SAm 
=(xj,y

0 
j,...,y

i 
j,...

yp
j
)

j=1...n 
with m=0

3- Build GP Y
i 
m 

for each i=1...p using SA
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Figure 2

Successive steps of the MMTPUR technique.
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It means that the expected probability to match the

targets is very low when adding this point.

When one of these criteria is reached, the optimization

process is stopped. Otherwise, index m is incremented

and we go back to step 3.

5 APPLYING MMTPUR TO AN ANALYTICAL FUNCTION
WITH ONE TARGET

The results, derived from the MMTPUR technique for a

one-dimensional case, x2R, and one target, are shown in

Figure 3. In this example, the simulator output y0(x) is a

known analytical function. Associated target T0 follows

the probability density function pT0 t0ð Þ.
More precisely, we consider that:

– y0 is the following analytical function:

y0 xð Þ ¼ 5 xþ 1ð Þ þ 2 sin 15 xþ 1ð Þð Þ

– pT0 t0ð Þ is a uniform law between 0 and 1;

– there is no prior probability density function for x.

MMTPUR technique is used to determine x values that

give y0(x) belonging to interval [0, 1].

As explained above, an initial sample (steps 1 and 2),

SA0, is needed. It corresponds to the 10-circled points in

Figure 3. These points being known, we move to the fol-

lowing steps:

– a GP Y0 is built to approximate y0 (step 3);

– Y0 is then used to find a new x value in order to get

new y0(x) in agreement with target T0 and associated

pT0 t0ð Þ (step 4);

– the SA sample is updated (step 5) and the above steps

are repeated.

The results obtained for iterations 5, 10, 15 and 20

(resp., 15, 20, 25 and 30 points) are displayed in Figure 3.

Crosses indicate the added points. The evolution of the

Y0 GP is also shown: its mean is represented by a black

Iteration 5 Iteration 10

Iteration 15
Iteration 20

1
5

1
0

5
5

-5
-5

0
0

1
5

1
0

-1.0 -0.5 0.0 0.00.5 0.51.0 1.0-1.0 -0.5

Valuesx Valuesx

Features for this one dimensional example

1 point is added at each iteration.  The plots

display iterations 5,10, 15 and 20

The circled points are the 10 initial ones.

The cross points are the additional points.

-

-

-

PT
0 (  0) is defined by a uniform

law between 0 and 1.

t

The black curve is the mean of 

Y 0

Y 0

The dotted lines are the mean of       + 3* Standard Deviation

The blue line on the final plot is the y0 (x) analytical function 

-

-

-
−

Figure 3

MMTPUR results for a one-dimensional case with one target.
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line and its mean plus or minus 3 9 the standard devia-

tion, by dotted lines.

The new x points (crosses) lead to y0(x) values that

mainly fall within the [0, 1] interval (Fig. 3). It means

that the y0(x) values respect the T0 distribution, as

required. In addition, Y0 turns out to be accurate in

areas where tolerance can be respected, thus approxi-

mating very well the analytical function y0 at these

locations.

6 APPLYING MMTPUR TO A FLUID-FLOW MODEL

In this core flood example, we apply the MMTPUR

technique to a fluid-flow model depending on 4 parame-

ters. The selected targets are synthetic cumulative oil and

gas production profiles. To check the soundness of the

MMTPUR technique, we compared the simulation

results corresponding to a parameters’ posterior sam-

pling of 1 000 points with the specified targets and

related tolerances.

6.1 Test Case Description

The core flood numerical model was built with the com-

mercialized software PumaFlowTM. This one-dimen-

sional model encompasses 62 cells. The rock sample

was initially saturated with oil and irreducible water

and a “pseudo-well” named PRODB was located at

the outlet boundary to produce oil and gas. Porosity

(Fig. 4) was measured in the laboratory: it ranges

between 	24% to 	32%. Permeability and capillary

pressure were then derived from porosity based upon

analytical models. We simulated three successive periods

with different pressure drops between the outlets

(Fig. 5).

The synthetic measurements displayed in Figure 5

were simulated for a randomly-drawn forward porosity

model. They consist of the cumulative oil and gas pro-

ductions at the outlet.

6.2 Parameters and Targets Definition

The synthetic measurements described above are now

considered as reference data. At this point, we assume

that the 4 parameters listed below are unknown:

– the 2 Corey exponents associated with the gas-oil rel-

ative permeability curves: “gas Corey exp.” and “oil

Corey exp.”;

PRODB well

gas & oil production

constant pressure 

~24% ~32%

gas injection

3 pressure periods

0 10 20 30 40 50 60

Figure 4

Description of the numerical fluid-flow model. The color represents the porosity property.
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Synthetic cumulative oil (symbol “o”) and gas (symbol “*”)

production data.
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– a global permeability multiplier: “K mult.” and

– a global gas capillary pressure multiplier: “gas CP

mult.”.

The minimum, maximum and reference values for

each of these parameters are reported in Table 1. The ref-

erence synthetic production data were generated using

the reference values given in the table.

We selected 3 targets among the available synthetic

data:

– the two cumulative oil and gas productions corre-

sponding to the last time and

– the cumulative oil production at 10 hours (36 000 sec-

onds).

The MMTPUR technique calls for the definition of

tolerances for each selected targets. They were described

by uniform probability laws over fixed ranges with

±2% variations (Fig. 6, 7). For simplicity, we disre-

garded prior probability pX xð Þ.

6.3 MMTPUR Results

The initial design encompasses 5 simulations randomly

selected on the basis of Latin hypercube sampling. The

MMTPUR procedure was launched and stopped after

the sequential addition of 6 other simulations.

Figure 6 and Figure 7 show that none of the initial

simulations (black curves) provide responses respecting

all targets. This is especially true for gas production,

which is associated with a target much larger than the

initial simulation results. The MMTPUR technique

makes it possible to identify simulations (green curves)

that approximately respect the required targets.

As described previously for the 4th step of the

MMTPUR technique, the posterior parameters’ distri-

bution is built at each iteration (Eq. 13). In what follows

the distribution obtained at the last iteration, are jointly

used with a Markov-Chain Monte-Carlo algorithm

(Geyer, 1992) to build a 1 000 points parameters’ poster-

ior sampling. The marginal histograms are displayed in

Figure 8. These histograms are all in agreement with

the reference values. Moreover, the wide spread of the

gas capillary pressure multiplier indicates that the influ-

ence of this parameter for matching the identified targets

is minor compared to the others.

TABLE 1

Parameters’ definition

Name Minimum Maximum Reference value

Gas Corey

exp.

1.5 3.0 2.20

Oil Corey

exp.

1.5 4.5 2.13

K mult. 0.1 2.0 1.96

Gas CP mult. 0.5 2.0 1.28

Tolerance intervals

defined by ± 2% relative

to each reference value
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Figure 6

MMTPUR simulation results displayed with synthetic

cumulative oil production data (symbol “o”). Black curves

are associated with the 5 initial simulation results. Green

curves correspond to the 6 simulation results iteratively

added during MMTPUR procedure.
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MMTPUR simulation results displayed with synthetic

cumulative gas production data (symbol “*”). Black curves

are associated with the 5 initial simulation results. Green

curves correspond to the 6 simulation results iteratively

added during MMTPUR procedure.
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For validation purposes, we ran the simulations for

the 1 000 points of the parameters posterior sampling.

The results are displayed in Figure 9 for oil production

and in Figure 10 for gas production. We also plotted

the histograms of the 1 000 simulation results for each

target. The black lines indicate the chosen tolerance

intervals.

The tolerance intervals for the 3 targets are almost

fully respected by the 1 000 simulations. We observe that

the range of the histogram obtained for the last time of

oil production is narrow compared to the associated

tolerance interval (Fig. 9). This can be explained by

correlations between simulation results.

This 4-dimensional example highlights that the

MMTPUR technique is able to define all possible

simulations consistent with the tolerance intervals cho-

sen for the 3 targets from only 11 simulations. This

means that the posterior distributions built for parame-

ters are good and lead to satisfactory results.

7 MAXIMIZATION OF MATCHING-TARGETS'
PROBABILITY FOR UNEVALUATED RESULTS
TECHNIQUE IN AN UNCERTAIN CONTEXT

The MMTPUR technique can be extended to optimiza-

tion in an uncertain context. In this case, the uncertain

domain is determined by two different types of parame-

ters, controllable and uncontrollable, grouped in

x = (xc, xu). The controllable parameters, xc, can be

adjusted to determine optimal values. On the contrary,

the uncontrollable parameters, xu, are intrinsically

uncertain. Thus, the goal is to find the optimal values

of xc which make it possible to fit specific targets while

accounting for the uncertainty related to xu.

As an example, a practical problem in reservoir engi-

neering consists in identifying the location of a well with
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Cumulative oil production simulation results (light blue

curves) associated with the posterior parameters sampling.

Synthetic cumulative oil production data and tolerance

intervals are also displayed.
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known liquid and/or gas rates while satisfying particular

targets on oil and water productions, given uncertainties

about uncontrollable parameters, such as correlation

lengths or the average porosity of a facies.

We associate:

– a priori uncertainty on the controllable parameters,

through: pX c
xcð Þ;

– uncertainty on the uncontrollable parameters,

through: pX u
xuð Þ.

The uncertainty associated with the uncontrollable

parameters can be accounted for while calculating likeli-

hood pY=X c
t=xcð Þ instead of pY=X t=xð Þ. Thus:

pY=X t=xð Þ ¼
Z

C

pT t0ð Þ � pY xð Þ t
0ð Þdt0 ð14Þ

has to be substituted by:

pY=X c
t=xcð Þ

ð15Þ

¼
Z

Xu

Z

C

pT t0ð Þ � pY xc;xuð Þ t
0ð Þdt0

� 	

� pX u
xuð Þdxu

� �

where the integration domain Xu is related to the xu
space.

As a result, the posterior uncertainty on Xc is derived

from the following equation:

pX c=Y xc=tð Þ
ð16Þ

¼
Z

Xu

Z

C

pT t0ð Þ � pY xc;xuð Þ t
0ð Þdt0

� 	

�pX u
xuð Þdxu

�

�pX c
xcð Þ

�

It is then possible to add new points xc while maximiz-

ing the posterior uncertainty relative to the controllable

parameters Xc to get simulation results in agreement

with target definition, which accounts for the uncertainty

associated with Xu.

CONCLUSION

In this paper we introduce, a new optimization tech-

nique, theMaximization of Matching-Targets’ Probabil-

ity for Unevaluated Results, particularly adapted when

getting one evaluation of the numerical function is very

time consuming. MMTPUR is based upon an add-on

to the classical probabilistic optimization framework

considering the numerical function values that have

not been evaluated as stochastic functions. The associ-

ated uncertainty model is a Gaussian process for each

required numerical function result (i.e., associated with

each target). It makes it possible to estimate probability

density functions for each required unevaluated results.

Therefore, the posterior distribution of the parameters

as given by the MMTPUR approach, allows us

to account for the error estimations related to the

unevaluated function values or simulation results. As

described, it is then further used to iteratively find and

simulate new points that maximize this posterior distri-

bution.

MMTPUR technique was also applied and presented

on different simple cases with one or several targets pro-

ducing good results. Moreover, an extension of the

MMTPUR technique was described for a specific uncer-

tain context. We believe that this technique could be

extended to solving other problems, such as history-

matching in reservoir engineering, or optimization with

targets to reach.
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