Towards model-based control of a steam Rankine process for engine waste heat recovery

<u>Johan Peralez</u> Paolino Tona Antonio Sciarretta Pascal Dufour Madiha Nadri

> Energies nouvelles

Context

- 30% of the energy produced by internal combustion engine (ICE) is released as heat through exhaust gases
 - > partial recovery is possible via systems implementing the thermodynamic Rankine cycle

Intensive research dedicated to design issues

- comparatively little research on control issues
- Control of "mobile" Rankine systems is difficult, due to
 - multivariable and coupled nature of the process
 - fast transients
 - safe operating range of components

IFP Energies nouvelle

2012-

Objective and workplan

Developing a control system to be implemented on a test bench hosting a pilot Rankine system

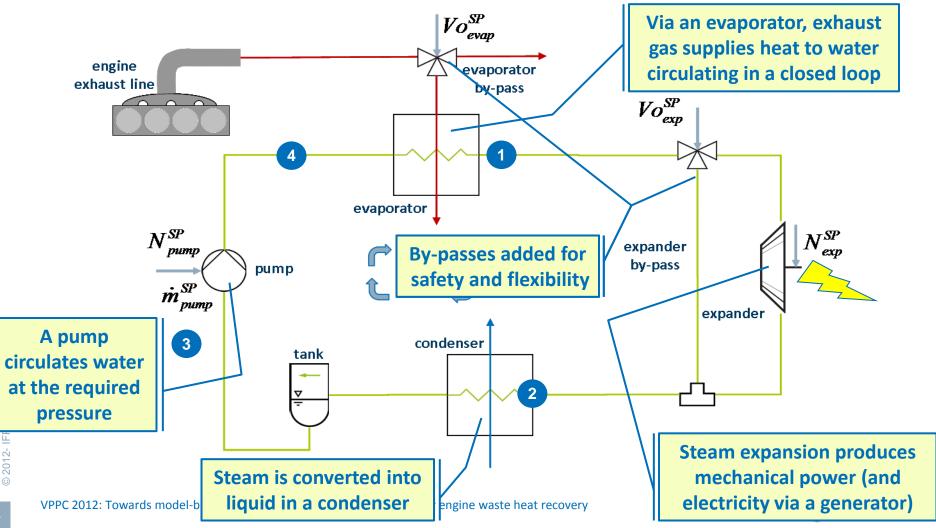
Steps

- Developing a simulator for control prototyping
- Control design
 - Supervisory layer to manage start-up and shut-down modes
 - Preliminary control strategy for power-production mode
- Control validation on data coming from a motorway driving cycle

2012- IFP Energies nouvelles

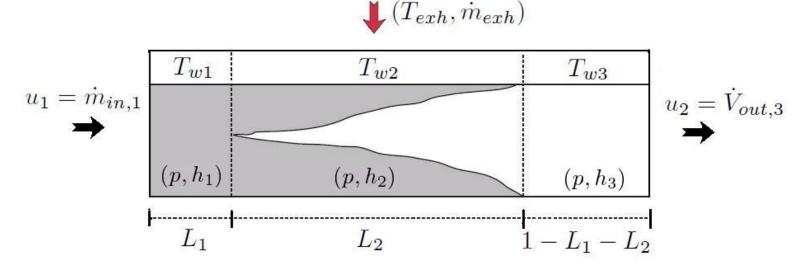
System layout

Pilot Rankine steam process for recovering waste heat from the exhaust gas of a spark-ignition (SI) engine



Modeling of heat-exchangers: moving-boundary principle

3 volumes: liquid – two-phase – vapor



Assumptions:

- uniform pressure
- negligible thermal conduction along the wall
- Equations derived from mass and energy balances

VPPC 2012: Towards model-based control of a steam Rankine process for engine waste heat recovery

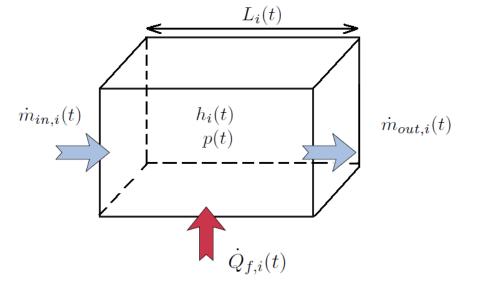
Modeling : evaporator (1)

Working fluid mass balance:

$$\frac{dm_i(t)}{dt} = \dot{m}_{in,i}(t) - \dot{m}_{out,i}(t)$$

Mass expression:

$$m_i(t) = \rho_i(p(t), h_i(t)) V_f L_i(t)$$



yields to:

$$\left(\frac{\partial\rho}{\partial p}\Big|_{h_i}\frac{dp}{dt} + \frac{\partial\rho}{\partial h_i}\Big|_p\frac{dh_i}{dt}\right)V_f L_i(t) + \rho_i(p(t), h_i(t)) V_f \frac{dL_i}{dt} = \dot{m}_{in,i}(t) - \dot{m}_{out,i}(t)$$

Modeling : evaporator (2)

Working fluid energy balance:

$$\begin{split} \rho_i(p(t), h_i(t)) \ V_f \ L_i(t) \frac{dh_i}{dt} = \\ \dot{m}_{in,i}(t) \left(h_{in,i}(t) - h_i(t) \right) - \dot{m}_{out,i}(t) \left(h_{out,i}(t) - h_i(t) \right) + \dot{Q}_{f,i}(t) + \frac{dp}{dt} \ V_f \ L_i(t) \end{split}$$
where

$$\dot{Q}_{f,i}(t) = V_f \alpha_f \left(T_{w,i}(t) - T_{f,i}(p(t), h_i(t)) \right) L_i(t)$$

Wall energy balance:

$$m_w cp_w L_i(t) \frac{dT_{w,i}}{dt} = \dot{Q}_{exh,i}(t) - \dot{Q}_{f,i}(t)$$
$$\dot{Q}_{exh,i}(t) = \dot{m}_{exh}(t) cp_{exh} \left(1 - \exp(-\frac{\alpha_{exh} S_{exh}}{\dot{m}_{exh}(t) cp_{exh}})\right) \left(T_{exh}(t) - T_w(t)\right) L_i(t)$$

Modeling: evaporator – expander DAE

- Differential algebraic equations (DAE) system:
 - evaporator balances with interface equations
 - expander static model

 $\dot{m}_{exp} = N_{exp} \ \rho \ \eta_{exp}$

- result in a DAE with 7 dynamic states
- Fast / slow modes analysis:
 - **slow (wall inertia)** T_{w1}, T_{w2}, T_{w3}
 - middle (liquid inertia) L_1
 - **fast (pressure, vapor and two-phase)** p, L_2, h_{out}

Model reduction

Fast / slow modes separation:

- fast dynamic states approximated by static variables
- result in 3rd or 4th order model

3rd order model equations:

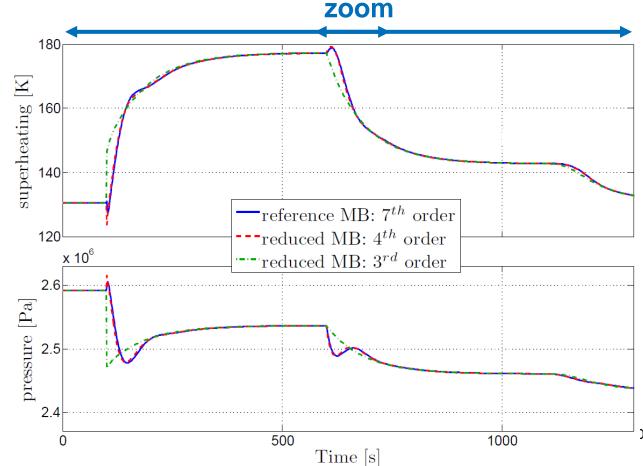
$$m_w c_w \frac{dT_{w,i}}{dt} = \dot{Q}_{exh,i} - \dot{Q}_{f,i} , \ i = 1, 2, 3$$

$$0 = -0.5 V_f \rho_1 L_1 \dot{h}_{in} + \dot{m}_{in,1} (h_{in,1} - h_l) + \dot{Q}_{f,1} L_1$$

$$0 = \dot{m}_{in,1} (h_l - h_v) + \dot{Q}_{f,2} L_2$$

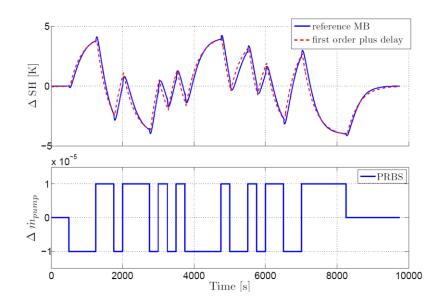
$$0 = \dot{m}_{in,1} (h_v - h_{out,3}) + \dot{Q}_{f,3} (1 - L_1 - L_2)$$

Model reduction: validation



Control: decentralized PI

Identification



Limits of decentralized PI control

"Hot" operating point			"Cold" operating point		
y^0	SH	200 K	y^0	SH	200 K
y-	p	2.5 MPa	y	p	2.5 MPa
u_2^0	\dot{m}_{pump}	0.005855 kg/s	u_1^0	\dot{m}_{pump}	0.0010156 kg/s
	N_{exp}	712.5 rpm		N_{exp}	134.3 rpm
	T_{exh}	600°C		T_{exh}	400°C
d_{2}^{0}	\dot{m}_{exh}	0.05 kg/s	d_1^0	\dot{m}_{exh}	0.02 kg/s
	T_{in}	70°C		T_{in}	30°C

	K_p	$ au_p$	T_p
"Hot" operating point	-1.36e ⁵ K/kg.s	60.1 s	8.4 s
"Cold" operating point	$-4.28e^{5}$ K/kg.s	345 s	30 s

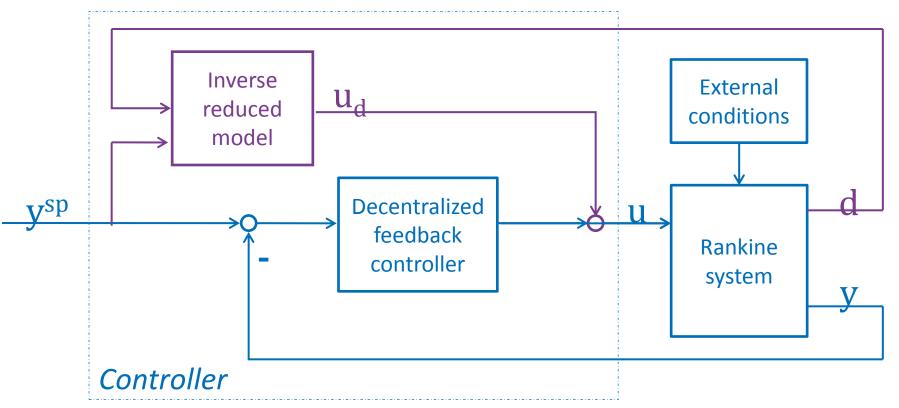
TABLE II Identified model parameters around the two operating points

TABLE I Definition of "hot" and "cold" operating points

Control: nonlinear inversion-based

Decentralized feedback controller

with inverse of reduced model in the feedforward path:



Energies

© 2012-

Control: nonlinear inversion equations

Dynamic (wall):

$$\frac{dT_{w,i}}{dt} = \frac{\dot{Q}_{exh,i} - \dot{Q}_{f,i}}{m_w \, c_w} \, , \, i = 1, 2, 3$$

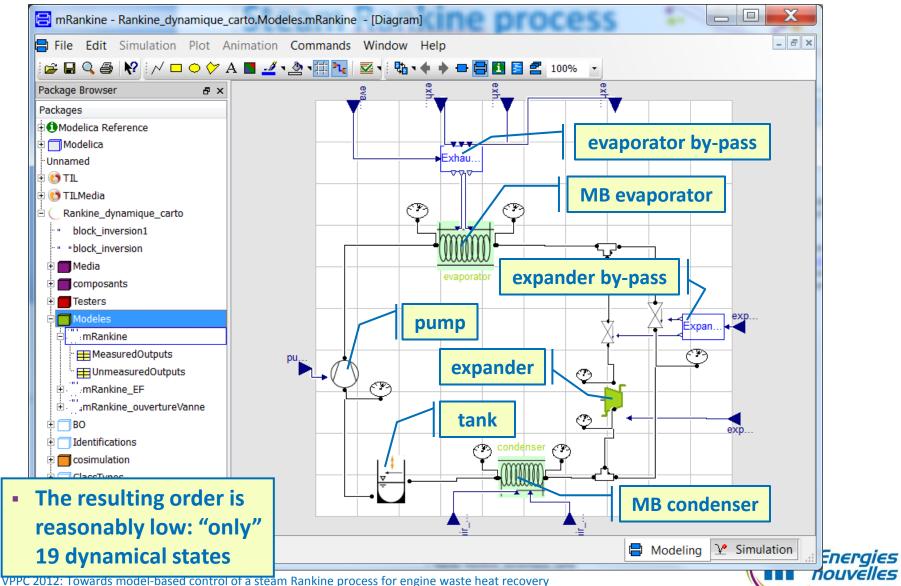
Pump mass flow:

$$u_{1,d} = \frac{(T_3 - T_{w3})S_R \alpha_3}{h_v - h_{out} + \frac{(T_3 - Tw_3)(h_l - h_{in})\alpha_3}{\alpha_1(Tw_1 - T_1)} + \frac{(T_3 - Tw_3)(h_v - h_l)\alpha_3}{\alpha_2(Tw_2 - T_2)}}$$

Expander speed:

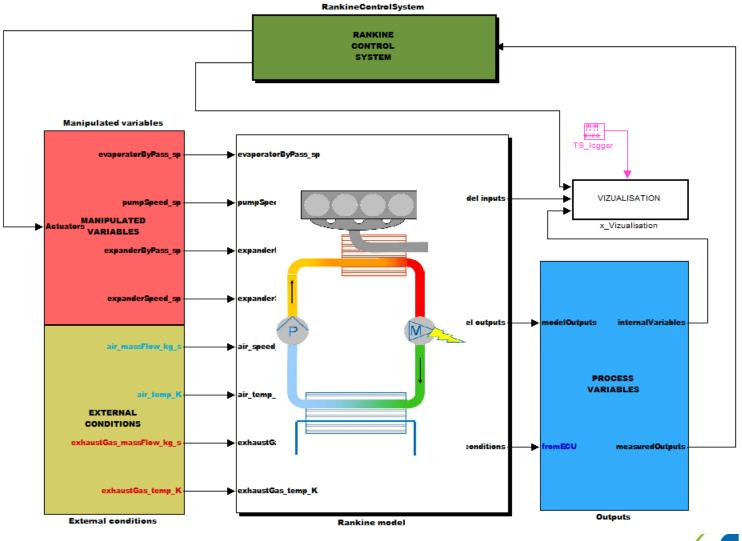
$$u_{2,d} = \frac{u_{1,d}}{\rho_{out,3} \eta_{exp} V_{exp}}$$

Control: co-simulation



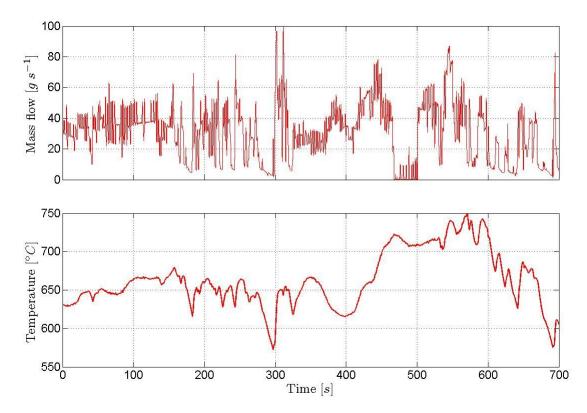
VPPC 2012. TOwards model-based control of a ste

Control: co-simulation



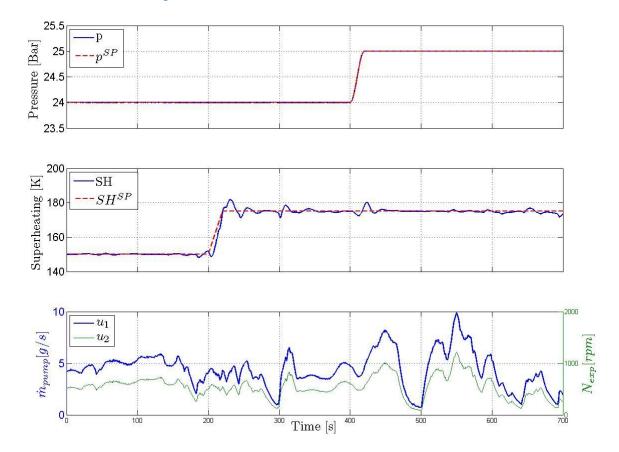
Simulation results with real data from a Renault Scenic with a 2L-F4RT engine

Exhaust gas conditions:



Simulation results with real data from a Renault Scenic with a 2L-F4RT engine

Pressure and temperature control:



Perspectives

Pursuing validation

- in simulation on broader range of driving profiles
- on the experimental test bench

Improving the control strategy

- expander speed saturations
- optimal set points

