
Heterogeneous Model Integration and

Virtual Experimentation using xMOD:

Application to Hybrid Powertrain Design

and Validation

Mongi Ben Gaid ∗ Gilles Corde ∗ Alexandre Chasse ∗

Bruno Léty ∗ Rodolphe De La Rubia ∗

Mohamed Ould Abdellahi ∗

∗ Technology, Computer Science and Applied Mathematics Division,
IFP, FRANCE (Emails: mongi.ben-gaid, gilles.corde, alexandre.chasse,

bruno.lety, rodolphe.de-la-rubia, mohamed.ould-abdellahi@ifp.fr)

Abstract: The design, development and validation of vehicle powertrains is performed in
concurrent cycles, involving various teams, working on a wide range of fields, and relying on
modeling and simulation. However, there are still limitations that reduce models exchange and
exploitation. After reviewing the main limitations of current simulation tools and methodologies,
this paper introduces a new software platform, code named xMOD, and ambitioning to improve
models exchange and exploitation. The main idea of xMOD is to combine in the same platform,
a heterogeneous model integration environment, as well as a virtual instrumentation and
experimentation laboratory. xMOD allows model developers, on one hand, to make their models
easily understandable and exploitable, thanks to its virtual instrumentation functionalities, and
to protect any confidential know-how. On the other hand, xMOD makes it possible for engineers
and scientists, regardless of their experience and proficiency in a given modeling language or
environment, to rapidly and easily integrate and exploit heterogeneous models. xMOD enables
an increase of simulation speed due to its ability to exploit multi-core processors. Finally, the
application of xMOD to the design and validation of a hybrid vehicle is presented, in order to
illustrate its functionalities and to demonstrate its effectiveness.

Keywords: Model integration, virtual prototyping, virtual experimentation, co-simulation

1. INTRODUCTION

Modeling and simulation technology is widely used within
the automotive industry, where it has proven, in many
projects, that it allows reducing the time-to-market. The
support of simulation in the automotive design process
is essential to fulfill costumers’ needs or to comply with
the new regulations. It provides the ability to predict the
behavior and consequences of design choices, to access non
measurable quantities or to perform test procedures which
could be expensive or hazardous in real experimentations.

Modeling and simulation is a very wide area, which is
used by different engineering fields at different stages of
the product life-cycle. It encompasses various modeling
formalisms (Mosterman and Vangheluwe (2004)) (ordi-
nary differential equations (ODE), differential algebraic
equations (DAE), partial differential equations (PDE),
state charts, Petri nets...), abstraction levels (component
level, system level...) or physics fields (hydraulics, thermo-
dynamics, mechanics, electronics, control, computer sci-
ence...). This diversity naturally leads to the emergence of
various modeling languages and tools.

The most precise models of the involved physical phenom-
ena are generally given by 3D partial differential equations
(Navier-Stokes, Maxwell, heat and wave equations for ex-

ample). This precise modeling might be needed at specific
design stages of some vehicle components. For example, de-
signing new engines implementing innovative combustion
concepts requires the study of the turbulent combustion
and the chemical kinetics within the combustion chamber,
with timescales in the order of the turbulent timescale
(Albrecht et al. (2007); Colin et al. (2005)). With this
fine modeling, simulating one second might require several
minutes or even hours on high performance computers.

In opposition to this fine granularity simulation, system
simulation focuses on a higher-level view of the vehicle.
It allows the study of a global performance, such as fuel
consumption or road handling. It is also needed in the
design, development and validation of control strategies
(Albrecht et al. (2007)). The system simulation of a vehicle
may be mainly characterized by the abstraction level
(system level), the modeling formalisms (ODE, DAE, state
charts...). However, it requires a multi physics approach, at
different timescales. Simulation times on standard desktop
computers may range from the real-time to some tens
times the real-time.

The design, validation and performance assessment of new
vehicle concepts, such as hybrid vehicles, are increasingly
relying on system simulation. New simulation models
(batteries, electric motors...) have to be included in order



to allow the hybrid powertrain simulation. However, the
exchange, reuse and exploitation of models are still limited.
Boosting model exchange requires fulfilling expressed and
non expressed needs of both model suppliers and model
users. For model suppliers, the main needs are, on one
hand, the ability to easily protect the confidential know-
how contained in the model, and on the other hand, the
ability to expose the model at the right abstraction level.
But model users need the ability to quickly use the received
models with a reasonable cost and effort. This requires
the ability to understand the models without having
to explore all their programming details and without
having to be proficient in their modeling languages or
development environments. In both situations, simulation
speed performance is the key for testing more concepts
in less time. The exploitation of multi-core processors for
system simulation, which is currently lacking in major
system simulation environments, is the major potential for
such performance speedup.

This paper focuses on these new requirements. It intro-
duces the xMOD platform, which have been developed at
IFP. It illustrates the way xMOD addresses these require-
ments, its contributions to current design process, its sim-
ulation speed performance and presents its application to
a typical use case characterizing the increase of complexity
and the multi-domain interaction: the hybrid vehicle.

This paper is organized as follows. First, an overview of
current modeling and simulation tools and methodologies
limitations, within the automotive industry, is presented.
Then, the xMOD platform concepts and contributions are
presented. Finally, the application of xMOD to a hybrid
powertrain design and validation is described.

2. MODEL EXCHANGE AND EXPLOITATION
BARRIERS

Building a system model is usually performed through
the assembly of its components’ models. A hybrid vehicle
is a typical example of a complex system. Its design,
development and validation is performed in concurrent
cycles, involving various teams, working on a wide range
of fields including mechanics, thermodynamics, hydraulics,
power electronics, heat transfer, vibrations, control... Dur-
ing these cycles, specific modeling and simulation tools
might be preferred by these different teams, for exam-
ple, AMESim or GT-POWER for engine modeling, Mat-
lab/Simulink for control design, ASCET for control imple-
mentation, Dymola for vehicle dynamics, Comsol for Bat-
teries modeling... Model development is an iterative pro-
cess. Starting from a first version, models are progressively
improved, refined, calibrated and validated. For those rea-
sons, within one big entity, different models are available,
at different abstraction levels and precision. However, the
integration and exploitation of these models is still limited,
mainly due to model exchange obstacles, and the lack of
dedicated tools allowing model exploitation, and which
separates model building from model exploitation.

2.1 Model exchange obstacles

In current model-based design processes, various obstacles
limit the possibilities of model exchange. Among these
obstacles, we may cite:

• The difficulty to integrate and exploit heterogeneous
models without having to explore their programming
details and without having to be proficient in their
modeling languages or development environments.

• Model exchange between different entities (for ex-
ample, an OEM and a tier 1 supplier) requires the
protection of the confidential know-how contained
in the exchanged models. A current practice within
the automotive industry is to exchange controllers
or models as Matlab/Simulink mexw32 s-functions.
Although this means allows to protect model equa-
tions, it does not allow to efficiently personalize the
model interface (for example, selecting the variables
or signals that may be monitored), nor to numerically
integrate the s-functions with different solvers.

• Bridges (i.e. co simulation interfaces) between the
different modeling and simulation tools do not always
exist. Some existing bridges have inherent limitations,
which reduce the co-simulation performance and pos-
sibilities (Lee and Zheng (2007)).

• The lack of collaborative tools, ensuring the collab-
orative development and exchange of models during
the whole development cycle.

2.2 Model exploitation handicaps

Moreover, there is a lack of tools allowing the efficient
exploitation of models through off-line simulation. In fact,
modeling and simulation environments are mainly tar-
geted to models building. However, test, experimentation
and validation tools, such as dSPACE’ ControlDesk or
National Instruments’ LabVIEW provide virtual instru-
mentation facilities allowing simple, efficient and intuitive
interaction with physical equipment. Virtual instruments
like gauges, buttons, potentiometers, bar graphs or graphs
allow the construction of user specified dashboards to
interact and to monitor a physical system. However, this
virtual instrumentation is mainly targeted to be inter-
faced with a specific hardware, and to be executed with
hard real-time timing requirements. We believe that using
this virtual instrumentation to interact with a simulated
model, without having these hardware and real-time con-
straints, would provide an efficient way for model exploita-
tion. In fact, virtual dashboards allow abstracting the
modeling language in which a model has been construed.
They may be customized in order to only display the
features that a model user, in other department, division
or company needs (abstraction capabilities).

2.3 Reference platform requirements

Based on these ideas, a set of requirements defining an
ideal model exchange, integration and virtual prototyping
platform have been formalized. This platform has to fulfill
the following requirements:

• Facilitate the exchange of models between the differ-
ent engineering teams

• The exchange has to be based on a domain specific
language (a minimal and simple language that cap-
tures the essential characteristics of all used modeling
and simulation environments)

• Improve simulation speed by enabling the efficient
exploitation of multi-core processors, and allowing the



application of a different step-size and solver, to the
each integrated model (depending on its stiffness)

• Be compatible with modeling and simulation stan-
dards

• Be simple and user-friendly (intuitive)

These needs were the motivation behind the development
of xMOD. In the following, the main concepts of xMOD
are overviewed, and the way this platform addresses the
aforementioned needs is illustrated.

3. THE XMOD PLATFORM

3.1 Main concept

The xMOD concept relies on separating the phases of
model building and model exploitation of the model life-
cycle. It focuses on the latter phase. The main idea of
xMOD is to combine, within the same platform:

• A heterogeneous model integration environment
• A virtual experimentation laboratory

xMOD aims to use the concept of “the gray to black” box
as a main basis for model exchange. The exchanged models
are instrumented using virtual instruments dashboards,
allowing to abstract their modeling language. Figure 1 il-
lustrates the concept of instrumented heterogeneous model
representing the model exchange format that xMOD aims
to promote.

Fig. 1. Instrumented heterogeneous model in xMOD, rep-
resenting the basis for model exchange

xMOD does not intend to replace the original modeling
and simulation tools, but aims at promoting their coexis-
tence. In fact, models lifecycle may be decomposed in two
parts : model construction and model exploitation. xMOD
targets to address this second phase of model exploitation.

3.2 Model import in xMOD

This feature is achieved by the xMOD Target, which
provides a set of mechanisms allowing to convert a model
to a unified representation which is independent from
its original modeling environment. In xMOD, models are

seen as gray boxes, whose “darkness” is customizable
by the model owner. In this representation, models are
characterized by inputs, outputs, parameters and signals.

Fig. 2. Gray box vs. black box model

The xMOD target relies on Matlab Real-Time Workshop
code generator. Exported parameters and signals may
be selected by the model developer, prior to exporting
its model to xMOD. This allows the model developer
to protect its know-how. It may chose to hide all the
parameters and signals of its model, and to export it as
a black box. Other information (version, step-size ...) is
included in the model interface description xml file.

3.3 xMOD contributions

The different case-studies that have been undertaken with
xMOD show that the xMOD concept provides significant
improvement to the current model-based design method-
ologies. It allows fulfilling expressed and non expressed
needs of both model suppliers and model users. xMOD
contributions may be summarized in the following points:

• Heterogeneous model integration: xMOD pro-
vides a heterogeneous model integration environment
for models built by different persons using different
languages and tools and working within different
entities. Currently, xMOD allows the integration of
Matlab/Simulink, LMS Imagine.Lab AMESim and
Dymola models.

• Virtual experimentation features: xMOD allows
creating virtual dashboards, containing virtual in-
struments, which may are linked to the different
parameters or signals of the model that have to be
displayed (and that the model designer allowed to
make accessible). xMOD allows also to create auto-
mated virtual test benches using different scripting
languages. These features enable validating the sys-
tem model which was built through the integration of
different components, dimensioning components (de-
sign parameters optimization using simulation), pre-
calibrating control algorithms parameters or running
robustness tests.

• Simulation speed: xMOD runs binary models com-
piled from their associated C code, activating the code
full optimization during compilation. For that reason,
execution times are several times faster than those
obtained while simulating interpreted modeling lan-
guages. xMOD associates an execution thread to each
integrated model. Mechanisms for guaranteeing the
synchronization between the different threads were
implemented. This allows xMOD to execute models
embedding different solvers at different step-times on
multi-core and multiprocessor architectures.

• Standalone execution : xMOD offers an integra-
tion, co-simulation and virtual prototyping platform,
which is able to run models without any need to the



existing modeling and simulation tools. xMOD allows
the integration and exploitation of models without
requiring the installation, on the same computer or
network, of the original modeling tools (Simulink,
AMESim or Dymola) that have been used to produce
these models (in opposition to other collaborative co-
simulation environments, which are based on tools
coupling, and which ensures the co-simulation by
running the models on their original simulation envi-
ronments and exchanging data using DDE or DCOM
protocols). Imported models embed all the needed
data: no data files are referred to. This significantly
eases model exchange and increases simulation per-
formance.

• Congregates the benefits of each tool: xMOD
allows to exploit the forces of each modeling and
simulation tool (modeling language or environment
suitability with an engineering field, solvers efficiency,
language expressivity, modeler proficiency, existence
of adapted libraries...).

• Co-simulation benefits: In comparison to a global
simulation of a complete system using a single solver,
a co-simulation where the system is conveniently
decomposed, for example to isolate stiff parts, pro-
vides a more efficient execution and better simulation
times (Larsson et al. (1999)). In fact, isolating stiff
components of the system model avoids constrain-
ing the whole model with their solving requirements.
Non-stiff parts may be integrated with lighter solvers,
and with greater step-sizes.

• Confidentiality management and know-how
protection: xMOD executes models in binary form.
When a model is converted to xMOD import format,
two files are generated: a model interface description
xml file (whose content is customizable) and a dy-
namic link library, which is compiled directly from
C code. This provides a generally acceptable level of
model details protection. The xMOD target allows
specifying exactly the signals and the parameters that
have be included in the model interface and made ac-
cessible during model exploitation and co-simulation.

• Life-cycle continuity: Dashboards, model descrip-
tion format and automation scripts used in xMOD
are compatible with HIL and test bench automation
software in use in IFP (Morphee 2 from D2T). Thanks
to this compatibility, the model-in-the loop validation
performed with xMOD allows to prepare and to sig-
nificantly reduce the time of the subsequent phases
(which are more expansive).

4. A CASE STUDY: HYBRID POWERTRAIN DESIGN
AND VALIDATION

xMOD has been used in the cooperative research project
HyHIL 1 , which involved IFP, D2T, LMS Imagine, G2Elab
and Renault. This project focused on hardware-in-the-
loop (HIL) applications to hybrid powertrains design and
assessment. The main goal of this study was the evaluation
of hybrid propulsion concepts and the benefits of different
degrees of hybridization in a flexible architecture, by using
a chain of simulation platforms: from the co-simulation to

1 http://www.ifp.com/actualites/communiques-de-
presse/lancement-du-projet-hyhil

the high-dynamics engine-in-the-loop test bed, through a
virtual version of the latter. In this project, xMOD has
been used for the development and validation of the engine
and vehicle simulation models, the associated controllers
and the energy management supervisor (EMS).

4.1 Description of the analyzed parallel hybrid architecture

The parallel hybrid architecture analyzed in this case
study is depicted in Figure 3. The engine is a gasoline

Fig. 3. The parallel hybrid architecture

turbocharged engine. The pre-transmission electric ma-
chine is a starter-generator (SSG), which is only allowed
to start the engine, without any boosting or regenerat-
ing capabilities. In contrast, the post-transmission electric
machine (MOT) allows for power assist, including purely
electric drive, and battery recharge, including regenerative
braking. The transmission ratio between the electric ma-
chine and the wheels is constant, while the gearbox is an
automated manual transmission.

4.2 Overview of hybrid vehicle models and controllers

After choosing the parameters of each vehicle component
and computing the performance potentials, the next devel-
opment stage of a hybrid vehicle is the control design. This
phase generally relies on a simulator that integrates vehicle
and powertrain models with the different controllers and
supervisors. For an accurate design and validation of the
controllers, it is necessary to use dynamic models.

Fig. 4. Co-simulation architecture describing the involved
models

Figure 4 illustrates the architecture of the hybrid vehi-
cle simulator. The simulator includes the EMS detailed



in (Chasse et al. (2009)). The EMS and the low-level con-
trollers were written in Matlab/Simulink. The controllers
have been coupled with models aimed at representing the
system dynamics in a much more accurate way than the
simple models used to design and derive the optimization
laws. The simulator is made of the following sub-models:

• A high-frequency zero-dimensional spark-ignition en-
gine simulator developed in AMESim. It represents
the main physical phenomena with a temporal reso-
lution in the order of one crank angle. Such a precision
is necessary to represent the impact, on the system, of
the engine transient maneuvers, including start-ups.
This model has an order of 115. Its maximum step-
size is 100 µs (with any fixed-step solver).

• A high-frequency transmission model of order 14
(dual-mass flywheel, clutch and gearbox) developed in
AMESim. The model stiffness required using a fourth-
order Runge-Kutta solver.

• A battery model written in Simulink. In the presented
version of this case study, an equivalent-circuit model
of the battery was included. However, in the subse-
quent versions, electrochemical models of the battery
will be used (Sauvant-Moynot et al. (2009)). The
xMOD integration facilities allows easily replacing
the equivalent-circuit battery model with the electro-
chemical one.

• The cycle manager, allowing to apply a selected
standardized cycle.

• The driver model, which simulates a human driver
that tries to follow the specified cycle.

• The global controller, written in Simulink, and which
includes the vehicle energy management system
(EMS), the engine controller and low-level controllers
(transmission controller...). The EMS distributes the
driver torque request taking into account optimiza-
tion considerations. The engine and motor controllers
try to apply the torque request from the EMS to
the physical components. The EMS and the other
controllers have specific execution rates (1 ms for the
EMS, 1 ms for the transmission controller, whereas
the engine controller is asynchronous and driven on
TDC (Top Dead Center)). The different involved sub-
rates are handled using Simulink Triggering function-
alities. Since interrupts are not available on a pure
simulation environment on desktop PC, the global
controller is executed as a discrete-time system, with
a base period of 100 µs (in order to allow a precise em-
ulation of the TDC and crank angle-based sensors).

4.3 Integration and validation using xMOD

Building the full hybrid vehicle simulator requires inte-
grating these Simulink and AMESim models. This inte-
gration was performed using the xMOD integration func-
tionalities. A screen shot of the hybrid vehicle simula-
tor integration in xMOD is given in Figure 5. Based
on this integration project, an xMOD simulation project
was constructed. It allows to link the different quantities
(inputs, outputs, parameters and signals) of the hybrid
vehicle model integration to virtual dashboards, as shown
in Figure 6.

Fig. 5. Integration project of the hybrid vehicle in xMOD

Fig. 6. Simulation project of the hybrid vehicle in xMOD

This xMOD simulation project was then used to validate
the EMS and the low-level controllers on different driving
tests (tip-in, tip-out, driving cycle,...) and to assess the
behavior of the physical components models. It allowed
to visualize in a simple and intuitive way the different
choices of the EMS (starting or stopping the spark-ignition
engine, starting and stopping the electric motor, charging
the batteries...) during the driving cycle, and to observe
their impact on fuel consumption.

Fig. 7. Simulation execution in xMOD: EMS operation,
torques and energies visualization

Figure 7 shows a simulation dashboard under execution
in xMOD, where the hybrid vehicle components (engine,
electric motor, battery) are highlighted when active. In
the particular screen shot of Figure 7, the electric motor is
highlighted, which indicates that it is delivering the torque
(whereas the spark-ignition engine is stopped).



4.4 Comparison between Simulink, xMOD in terms of
simulation CPU time

Two integration setups of the simulator were tested and
compared. First, the Simulink and AMESim models were
integrated in Simulink (where the AMESim models were
imported as s-functions). The integration of the hybrid
vehicle models and controllers in Simulink imposes to
apply the same time-step and the same solver to all the
continuous-time models, especially the involved physical
models. A fourth-order Runge-Kutta solver with a step-
time of 100 µs was selected in the Simulink integration.

In contrast, in xMOD integration project, each model
may be imported with its specific solver and time-step.
Each model is executed in a separate thread and may be
potentially dispatched on a different processor core. For
that reason, the AMESim vehicle model that was imported
in xMOD was generated with a fourth-order Runge-Kutta
solver and a solver step-time of 500 µs, whereas the
spark-ignition engine model was generated with a first-
order Euler solver and a solver step-time of 100 µs. Cycle
manager, driver and global control (including the EMS
and all the low-level controllers) models are executed as
discrete-time blocks (with no embedded solver) at the
respective sample times of 10 ms, 10 ms and 100 µs. This
co-simulation scheme led to a significant improvement of
the simulation speed with respect to the Simulink-based
integration, as shown in Table 1. This Table summarizes
the CPU time needed to simulate, on a standard laptop
PC with an Intel Core 2 Duo Processor at 2.40 GHz,
the 1180 seconds of a NEDC cycle with both xMOD
and Matlab/Simulink R2007b (which does not support
yet multi-core simulation). Simulation results show that
xMOD allowed to speedup the simulations with a factor
of 6. This illustrates simulation performance potentials
of xMOD (optimized C code execution, multithreaded
execution on multi-core processors...).

Table 1. Comparison of simulation CPU time
obtained with Simulink and xMOD

CPU Time (s)
Conventional

Vehicle
Stop & Start Hybrid

Simulink 7920 8025 9110

xMOD 1272 1284 1372

Speedup 6.2 6.2 6.6

4.5 Comparison between Simulink, xMOD and experimental
results in terms of fuel consumption

Finally, the simulation results obtained with xMOD were
compared to the Simulink simulator and to the experi-
mental engine-in-the-loop test bench (where the engine is
real but the vehicle is simulated in real-time). Table 2
compares the conventional engine-driven operation, the
same operation with a stop-and-start capability suppress-
ing the idle consumption, and the hybrid operation with
the EMS (all under the NEDC drive cycle). The benefit
in fuel consumption reduction using the hybrid capability
and its energy management is clearly observed, particu-
larly in urban driving conditions. Table 2 summaries also
the fuel consumption results obtained using the Simulink
simulator, the xMOD simulator and on the experimental

test bench. The xMOD simulator results were closest to
the experimental results. This is due to the multithreaded
model execution semantics of xMOD, which are similar to
the real-time model execution semantics of the test bench.

Table 2. Comparison of the different fuel
consumptions (in [l/100km]) obtained with

Simulink, xMOD and experimentally

Conventional
Vehicle

Stop & Start Hybrid

Simulink 7.01 6.46 (-7.8%) 4.20 (-40.1%)

xMOD 7.25 6.69 (-7.7%) 4.42 (-39.0%)

Test bench 7.20 6.70 (-7.9%) 4.64 (-36.3%)

5. CONCLUSION

This paper introduced the new model integration and
virtual experimentation xMOD platform, aiming at sim-
plifying model exchange and exploitation. After reviewing
the main motivations behind the development of xMOD,
it described the main concepts and contributions of this
software platform. The application of xMOD to the design
and validation of a hybrid vehicle was then presented,
allowing an easy visualization, interaction and understand-
ing of simulation results, and an increased simulation per-
formance with respect to the usual integration platform.

REFERENCES

Albrecht, A., Grondin, O., Le Berr, F., and Le Solliec,
G. (2007). Towards a stronger simulation support for
engine control design: a methodological point of view.
Oil & Gas Science and Technology, 62(4), 437–456.

Chasse, A., Hafidi, G., Pognant-Gros, P., and Sciarretta,
A. (2009). Supervisory control of hybrid powertrains:
an experimental benchmark of offline optimization and
online energy management. In Proc. 2009 IFAC Work-
shop on Engine and Powertrain Control, Simulation and
Modeling, Rueil-Malmaison.

Colin, O., Pires da Cruz, A., and Jay, S. (2005). Detailed
chemistry based auto-ignition model including low tem-
perature phenomena applied to 3d engine calculations.
In Proc. 30th International Symp. on Combustion, Pitts-
burgh, 2649–2656.

Larsson, J., Krus, P., and Palmberg, J.O. (1999). Power
Transmission and Motion Control, chapter Methods for
Organising Co-simulation Among Several Participants.
Professional Engineering Publishing Limited, London
and Bury St Edmunds, UK.

Lee, E.A. and Zheng, H. (2007). Leveraging synchronous
language principles for heterogeneous modeling and de-
sign of embedded systems. In Proc. International Conf.
on Embedded Software. Salzburg, Austria.

Mosterman, P.J. and Vangheluwe, H. (2004). Computer
automated multi-paradigm modeling: an introduction.
Simulation, 80(9), 433–450.

Sauvant-Moynot, V., Prada, E., Bernard, J., Martin, J.,
Sciarretta, A., Rajapakse, N., Touzani, Y., Dabadie,
J.C., and Badin, F. (2009). An integrated approach to
high power modeling: from the electrochemistry to the
vehicle. In Proc. International Battery, Hybrid and Fuel
Cell Electric Vehicle Symp. & Exhibition, Norway.


