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Résumé — Développement d’une méthodologie générale de modélisation pour l’hydroconversion de

résidu sous vide — Ce travail porte sur le développement d’une méthodologie de modélisation

cinétique de procédés de raffinage, et plus particulièrement de procédés pour la conversion de

résidus sous vide. L’approche proposée permet de surmonter le manque de détail moléculaire

des fractions pétrolières et de simuler la transformation des molécules de la charge en

molécules de l’effluent au moyen d’une procédure en deux étapes. Dans la première étape, un

mélange synthétique de molécules représentant la charge du procédé est généré par une

méthode de reconstruction moléculaire appelée SR-REM. Dans la seconde étape, une méthode

de Monte-Carlo cinétique est utilisée pour simuler les réactions de conversion sur ce mélange

de molécules. La reconstruction moléculaire a été appliquée à plusieurs résidus pétroliers et est

illustrée pour un résidu sous vide Athabasca (Canada). La méthode de Monte-Carlo cinétique

est ensuite décrite en détail. Afin de valider cette approche stochastique, un modèle

déterministe regroupé pour la conversion de résidu sous vide a été simulé en utilisant

l’algorithme de simulation stochastique de Gillespie. Malgré le fait que les deux approches

sont fondées sur des hypothèses très différentes, l’algorithme de simulation stochastique simule

les réactions de conversion avec la même précision que l’approche déterministe. En utilisant

des voies réactionnelles au niveau moléculaire, l’approche de simulation stochastique fournit

ainsi des informations détaillées sur la composition de l’effluent et est brièvement illustrée pour

l’hydrocraquage du résidu sous vide d’Athabasca.

Abstract — Development of a General Modelling Methodology for Vacuum Residue Hydroconver-

sion — This work concerns the development of a methodology for kinetic modelling of refining pro-

cesses, and more specifically for vacuum residue conversion. The proposed approach allows to

overcome the lack of molecular detail of the petroleum fractions and to simulate the transformation

of the feedstock molecules into effluent molecules by means of a two-step procedure. In the first step,

a syntheticmixture ofmolecules representing the feedstock for the process is generated via amolecular

reconstruction method, termed SR-REM molecular reconstruction. In the second step, a kinetic

Monte-Carlomethod (kMC) is used to simulate the conversion reactions on thismixture ofmolecules.

The molecular reconstruction was applied to several petroleum residues and is illustrated for an

Athabasca (Canada) vacuum residue. The kinetic Monte-Carlo method is then described in detail.

In order to validate this stochastic approach, a lumped deterministic model for vacuum residue conver-

sion was simulated using Gillespie’s Stochastic Simulation Algorithm. Despite the fact that both

approaches are based on very different hypotheses, the stochastic simulation algorithm simulates
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the conversion reactions with the same accuracy as the deterministic approach. The full-scale stochas-

tic simulation approach usingmolecular-level reaction pathways provides high amounts of detail on the

effluent composition and is briefly illustrated for Athabasca VR hydrocracking.

ABBREVIATIONS

CME Chemical Master Equation

FT-ICR-MS Fourier Transform Ion Cyclotron Reso-

nance Mass Spectrometry

kMC Kinetic Monte-Carlo

LCO Light Cycle Oils

NMR Nuclear Magnetic Resonance

PDF Probability Distribution Function

REM Reconstruction by Entropy Maximisation

SARA Saturates, Aromatics, Resins, Asphaltenes

SR Stochastic Reconstruction

SR-REM Coupling SR-REM

SSA Stochastic Simulation Algorithm

VR Vacuum Residue

cv Stochastic rate parameter of the reaction v

DR Normalised cumulative probability distri-

bution for all possible reactions

E(xi) Shannon entropy criterion

hv Number of distinguishable combinations

of the reactant molecules for the reaction v

kv Deterministic rate parameter of the reac-

tion v

M Total number of possible reactions that

can occur in reaction volume V

Nj Number of molecules of lump j

Pv Normalised probability for the occurrence

of the reaction v

rv Probability that the reaction v will occur in

the reaction volume V

Rj Deterministic production rate of lump j

t Reaction time

V Reaction volume

Dt Reaction time step

INTRODUCTION

Nowadays, the world demand for high quality products

such as gasoline and diesel continues to increase, while

the available crude oil is becoming heavier. In this con-

text, refining processes that convert heavy petroleum

cuts into valuable products become increasingly more

vital for the refining industry.

Heavy petroleum fractions are complex mixtures of

hydrocarbons that contain a large number of different

chemical species. These hydrocarbons are mainly

composed of carbon and hydrogen, but also contain

heteroatoms such as sulphur, nitrogen and oxygen. Even

metals such as nickel and vanadium are present [1].

Heavy oil conversion processes, such as residue hydro-

cracking or catalytic cracking, are based on the degrada-

tion of the largest molecules by thermal and/or catalytic

cracking reactions at high temperature.

In order to improve the performance of conversion

processes, reliable and accurate kinetic models are

needed. Classic kinetic models for transformation of

complex hydrocarbon mixtures generally use a lumped

kinetics strategy, in which molecular components are

grouped into several chemical families, according to

their global properties (boiling point, solubility, etc.).

However, the lumping approach assumes that the prop-

erties of these families do not change during the reaction,

which is not true. Moreover, for heavy hydrocarbon

mixtures, the number of families and of reaction path-

ways turns out to be so vast that this lumping approach

is no longer manageable.

The limitations of lumped models motivated the

development of more detailed kinetic models containing

molecule-based reaction pathways [2-19]. Such models

expect a molecular description of the feedstock, how-

ever. The most advanced analytical techniques applied

to petroleum characterisation, such as high resolution

FT-ICR-MS, allow identifying a large number of com-

pounds and classes of chemical families. Unfortunately,

the complete and quantitative molecular detail of heavy

feedstocks remains still unknown [20].

The present work is dedicated to the development of a

methodology for modelling processes that treat heavy

petroleum fractions, and is applied to the hydrocracking

of vacuum residues. The proposed methodology allows

to overcome the lack of molecular detail of the petro-

leum fractions and to simulate the degradation reactions

of conversion processes through a two-step procedure.

In the first step, a mixture of molecules representing

the feedstock is generated via a molecular reconstruction

method. In the second step, a method called ‘‘Kinetic

Monte-Carlo’’ is utilised to simulate the degradation

reactions of this mixture of molecules.

1 MOLECULAR REPRESENTATIONOFVACUUMRESIDUES

The first step of the proposed methodology aims at

determining an accurate representation of the process
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feedstock from partial analytical data. For this purpose,

a molecular reconstruction algorithm, termed SR-REM,

has been developed during previous works [21-25]. This

algorithm results from the coupling of two methods, Sto-

chastic Reconstruction (SR) [21, 26, 27] and Reconstruc-

tion by Entropy Maximisation (REM) [21, 28-30].

During previous works, the SR-REM algorithm was

applied to various petroleum vacuum residues [23, 24].

In the present work, the reconstruction of an Athabasca

Vacuum Residue (VR) will be illustrated.

1.1 Brief Description of the SR-REM Algorithm

By using the SR and REM algorithms in series, the

SR-REM molecular reconstruction approach generates

a set of molecules with the same properties as the petro-

leum fraction to be represented.

The idea behind the SR step is to generate an equimo-

lar set of molecules from a set of Probability Distribu-

tion Functions (PDF) for functional and structural

attributes (e.g. molecule type, number of rings, number

of side chains, length of the chains, etc.) of molecules.

Each petroleum fraction is characterised by its own

molecular attributes. By applying a Monte-Carlo proce-

dure, the PDFs’ are sampled, according to a sequence

defined by a building diagram, to select a set of molecu-

lar attributes which are then assembled to obtain the

structure of a molecule. The construction of a molecule

is repeated N times to obtain a mixture of molecules.

For each molecule, its properties are calculated either

by direct inspection of its structure or by group contribu-

tion methods. Upon creating such a mixture of N mole-

cules, its average properties are calculated from the pure

component properties by means of mixing rules and

compared to the available analyses through an objective

function. The value of the objective function is then min-

imised by an elitist genetic algorithm that modifies the

parameters of the distributions of structural attributes.

Starting from the representative mixture generated by

the SR step, the REM step only needs to slightly modify

the molar fractions of the molecules to represent the ana-

lytical data in an optimal way. Adjusting the molar frac-

tions is done by maximising the Shannon’s information

entropy [31]. Entropy maximisation ensures that no

molecule is preferred over any other, when no constraint

(i.e. analytical information) is imposed. On the other

hand, the introduction of constraints distorts the

uniform distribution of the set of molecules until the

entropic criterion is met. As opposed to the stochastic

reconstruction technique, the entropy maximisation

method uses classical optimisation techniques and its

computational effort is much smaller.

For more details concerning to the SR-REM algo-

rithm, the reader is referred to Verstraete et al. [23]

and de Oliveira et al. [24].

1.2 Application to the Athabasca Vacuum Residue

A VR is a petroleum fraction that is drawn from the bot-

tom of a vacuum distillation column. This petroleum cut

is an extremely complex mixture of hydrocarbons that

contains several thousands to millions of different

species. As mentioned above, a complete molecular char-

acterisation cannot be achieved with the current analyt-

ical techniques. For this reason, VR streams are

generally characterised by their bulk properties obtained

from the elemental analysis (C, H, S, N, O), specific grav-

ity, simulated distillation, average molecular weight, 13C

NMR, and SARA analysis. The SARA analysis classi-

fies molecules according to their polarity into Saturates

(non-polar), Aromatics (slightly polar), Resins (polar)

or Asphaltenes (highly polar). The analytical data show

that VR molecules are mainly composed of carbon and

hydrogen, but also contain heteroatoms such as sulphur,

nitrogen and oxygen. Even metals such as nickel and

vanadium are present in the form of the porphyrin struc-

tures. VR fractions contain both acyclic (paraffins) and

cyclic structures, the latter being combined into cores.

These cores (poly-cyclic structures) may be composed

of naphthenic rings, benzene rings and/or heterocycles,

such as thiophenes, pyridines, pyrroles or furans.

According to the 13C NMR data, the alkyl chains are

also present in these molecules. The boiling point of

the molecules is typically higher than 350�C at atmo-

spheric pressure, which corresponds to molecules more

than 25 carbon atoms [24]. As the VR contains non-vol-

atile molecules, the final boiling point cannot be deter-

mined and consequently the maximum number of

carbon atoms remains unknown.

Despite the complexity of VR fractions, several

authors [1, 20, 32-34] have succeeded in obtaining molec-

ular information by combining different analytical tech-

niques, such elementary analysis, distillation, gas and

liquid chromatography, mass spectrometry. In our

study, 16 molecular attributes listed in Table 1 were

selected to create a molecular representation of the VR

fractions. Metals were not accounted for during the

molecular reconstruction due to their low abundance.

VR molecules may have 0 cores (paraffins), one core

(naphthenes and aromatic mono-core molecules) or mul-

tiple interconnected cores (archipelago structures). Each

molecule is therefore initially defined according to its

type, which may vary between paraffins (type 0), naphth-

enes (type 1), aromatic mono-core (type 2) or
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aromatic multi-core (type 3). Given the low concentra-

tion of heteroatoms in the paraffins and naphthenes,

these elements were not taken into account for this type

of molecules. The aliphatic structures (paraffins and

alkyl chains) are considered to be linear. Paraffins are

therefore described by a chain length, while naphthenes

are characterised by a number of cycles, a degree of

substitution by alkyl chains and a length for each of their

alkyl chains. For aromatic molecules, each core is char-

acterised by a number of naphthenic rings, a number of

benzene rings, a number of heterocycles (thiophene, pyr-

idine, pyrrole or furan), and a degree of substitution by

alkyl chains. Their alkyl chains are described by a chain

length and a degree of substitution by heteroatoms

(S, N or O).

Three types of PDFs’ were used as optimisation vari-

ables: histograms, exponential and gamma functions.

Histograms are applied for molecular attributes contain-

ing a narrow range of possible values (less than three),

while the exponential and gamma functions describe

attributes with a range of more than three possible val-

ues. If large values of an attribute are improbable, the

molecular attribute is characterised by an exponential

function; otherwise this is described by a gamma func-

tion. A gamma distribution has two free parameters: a

shape parameter (a) and a scale parameter (b). However,

in order to reduce the number of parameters, it was

assumed that the scale parameter is twice the shape

parameter. For a more detailed description of the struc-

tural attributes and building diagram used in the present

work, the reader is referred to Verstraete et al. [23] and

de Oliveira et al. [24].

Concerning the pure component properties, chemical

formula, molecular weight and aromatic carbon content

(13C NMR spectrum) are obtained by direct inspection

of the structure. The normal boiling point is calculated

through a group contribution initially developed by

Hudebine and Verstraete [28] and extended by

de Oliveira et al. [24]. The molecules are classified into

the SARA fractions according to its molecular weight

TABLE 1

Structural attributes of VR molecules

Structural attribute Values Distribution (Par.)

1. Type of molecule* 0, 1, 2 or 3 Histogram (3)

2. Number of cores >1 Exponential (1)

3. Type of heterocyclic* 0, 1, 2 or 3 Histogram (3)

4. Number of benzene rings per core >0 Exponential (1)

5. Total number of rings per core >1 Gamma (1)

6. Number of thiophenes per core 0, 1 or 2 Histogram (2)

7. Number of pyridines per core 0, 1 or 2 Histogram (2)

8. Number of pyrroles per core 0, 1 or 2 Histogram (2)

9. Number of furans per core 0, 1 or 2 Histogram (2)

10. Degree of substitution in alkyl chains 0 or 1 Histogram (1)

11. Length of the paraffinic chains >1 Gamma (1)

12. Length of an alkyl chains >1 Exponential (1)

13. Sulphur substitution probability 0 or 1 Histogram (1)

14. Heteroatom substitution probability 0 or 1 Histogram (1)

15. Type of heteroatom substitution* 0 or 1 Histogram (1)

16. Type of oxygen group* 0 or 1 Histogram (1)

* Type of molecule: 0 – paraffins; 1 – naphthenes; 2 – aromatic mono-core; 3 – aromatic multi-core.

Type of heterocyclic: 0 – thiophene; 1 – pyridine; 2 – pyrrole; 3 – furan.

Type of heteroatom: 0 – nitrogen; 1 – oxygen.

Type of oxygen group: 0 – ether function; 1 – carbonyl function.
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and hydrogen content by using a SARA diagram [24].

The SARA diagram is based on the solvent-resid phase

diagram proposed by Wiehe [35].

The Athabasca VR was represented by a set of 5 000

molecules in order to ensure an optimal balance between

the required CPU time and the accuracy of the feedstock

representation. Elemental analyses (carbon, hydrogen

and sulphur, nitrogen and oxygen), 13C NMR, SARA

analysis, simulated distillation and average molecular

weight were used as input to the SR-REM algorithm.

All experimental data were obtained at IFP Energies

nouvelles. The “experimental” value for the average

molecular weight was obtained from an API correlation

that is based on specific gravity and simulated distilla-

tion [36]. The comparison between analytical and calcu-

lated properties of the Athabasca VR is shown in

Table 2.

As can be seen in the second column of Table 2 (SR

output), a good agreement is observed between the

properties of the equimolar mixture obtained after

the SR step and experimental data. The elemental

analysis, SARA fraction and 13C NMR are well repre-

sented. However, average molecular weight and the

simulated distillation show deviations between experi-

mental and calculated values. These deviations may

be caused by the group contribution method used to

estimate the boiling point. This group contribution

method has been developed on the basis of a large

database of boiling points, but most of the data avail-

able pertain to molecules with less than 42 carbon

atoms [24, 28]. Therefore, extrapolation to very large

compounds may increase the uncertainty of the

method. Nevertheless, the application of the REM step

leads to a clear improvement in the mixture propert-

ies, as illustrated in the third column of Table 2

(SR+REM output). The elemental analysis, SARA

fractions separation and 13C NMR were predicted

perfectly. In the case of the molecular weight and

simulated distillation, the observed deviations were sig-

nificantly reduced except for the initial boiling point.

This is due to the fact that the initial boiling point is

determined by a single molecule, the lightest one.

In conclusion, the results shown above illustrate that

the SR-REM algorithm is able to generate a correct

molecular representation of the process feedstock to be

used in kinetic models.

2 SIMULATION OF THE DEGRADATION REACTIONS

The second step of the methodology simulates the effect

of conversion reactions over the set of molecules gener-

ated in the previous step. The VR molecules, especially

the asphaltenes, have a complex and large structure.

Therefore, each molecule can undergo a large number

of reactions and the kinetic network becomes too large

to be simulated by traditional deterministic approaches.

For this reason, the reactions of VR conversion are sim-

ulated using a kMC approach. In the present work, the

classical kMC algorithm proposed by Gillespie [37, 38],

termed Stochastic Simulation Algorithm (SSA), was uti-

lised. The kMC step was validated by simulating the

kinetic network of an existing model for the VR hydro-

conversion.

2.1 Stochastic Simulation Algorithm

Instead of tracking the concentrations of the chemical

species, the kMC method tracks the reactions of each

molecule in a probabilistic way. The temporal evolution

of the species population is analytically described by a

single differential-difference equation for a probability

function, termed the Chemical Master Equation

(CME) [38, 39]. The CME is given in (1):

oP ~X i; t
� �

@t
¼

X

~X j

P ~X j; t
� �

T ~X j ! ~X i

� �� �

�P ~X i; t
� �X

~X j

T ~X i ! ~X j

� � ð1Þ

For most reaction systems, the CME is extremely

complicated to solve, both analytically and numerically.

This fact motivated Gillespie [37] to develop the SSA.

The SSA is a numerical procedure to determine the tem-

poral trajectory of the molecular population in exact

accordance with the CME. The theorems that prove

the mathematical validity of the SSA to reproduce the

solution of the CME have been demonstrated by Gilles-

pie [37-39]. The various steps of the SSA are illustrated in

Figure 1.

First, all potential reactions are identified from the

reaction rules and the structure of each reactant mole-

cule. The normalised probability of each reaction is

determined based on the probability that the reaction v

will occur in the reaction volume V (rv), divided by the

sum of all probabilities for all possible reactions, as

shown in (2):

Pv ¼ rv
PM

i
ri

ð2Þ

This stochastic rate constant is defined as the product

of the number of distinguishable combinations of the
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reactant molecules (hv) and the stochastic rate parameter

(cv), as illustrated in (3):

rv ¼ hv � cv ð3Þ
For monomolecular reactions, the number of distin-

guishable combinations of the reactant molecules (hv)

equals 1.

The stochastic rate parameters can be determined

from the deterministic rate parameters (kv), which are

based on the average molecular concentration. As shown

by Gillespie [37], for monomolecular reactions, kv and cv
are equal; for bimolecular reactions, cv equals kv divided

by the reaction volume V; for tri-molecular reactions, cv
equals kv divided by V2.

In the SSA, a first Random Number (RN1) is drawn

to determine the reaction time step (Dt) between the

current time t and the time at which the next, yet

undefined, reaction will occur. This reaction time step

is calculated using (4), as proposed by Gillespie [37]:

�t ¼ � ln RN 1ð Þ
PM

i
ri

ð4Þ

The cumulative probability distribution DR at time t

contains all reactions that can occur in the mixture at

that reaction time. The probability of each reaction

is given by their rate constant and the number of

TABLE 2

Comparison between experimental and calculated properties after the Stochastic Reconstruction (SR) step and the Entropy Maximisation (REM) step

Experimental data Simulation (SR output) Simulation (SR + REM output)

Elemental analysis

Carbon wt% 82.8 84.7 82.8

Hydrogen wt% 9.9 9.9 9.9

Sulphur wt% 5.7 3.8 5.7

Nitrogen wt% 0.6 0.5 0.6

Oxygen wt% 1.0 1.1 1.0

SARA

Saturates wt% 6.8 7.0 6.8

Aromatics wt% 31.2 29.4 31.2

Resins wt% 47.9 48.8 47.9

Asphaltenes wt% 14.1 14.8 14.1

13C NMR

Saturated C at% 66.8 67.9 66.8

Aromatic C at% 33.2 32.1 33.2

Simulated distillation

0 wt% �C 358 334 334

5 wt% �C 474 454 474

10 wt% �C 505 524 505

20 wt% �C 540 637 541

30 wt% �C 577 714 577

Others

Average molecular weight g/mol 799.5 778.4 796.7
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occurrences of this reaction. In the Gillespie’s SSA, this

cumulative probability distribution DR, is then ran-

domly sampled in order to select the next reaction (l)
that will be executed in the next reaction time step.

The reaction selection procedure is computed by draw-

ing a second Random Number (RN2) between zero

and one. The value of this random number selects the

next reaction from the cumulative probability distribu-

tion DR. This is shown in (5).

DRl�1 < RN 2 � DRl ð5Þ

Once the reaction time step Dt has been determined

and the reaction has been selected, the reaction system

is updated by executing the selected reaction and incre-

menting the simulation time by Dt. The simulation pro-

ceeds event-by-event (reaction-by-reaction) until the

final simulation time is reached. The molecule mixture

at the end of the simulation now represents the effluent

of the process.

2.2 Stochastic Simulation of a Lumped Model for VR
Conversion

As discussed in Section 1.2, the molecular composition

of the heavy petroleum fractions remains unknown. This

is why the kinetic modelling of the VR conversion is gen-

erally based on a lumping strategy. In lumped models,

the molecules are grouped into several chemical families,

termed lumps, according to their global properties (boil-

ing point, solubility, etc.). These lumps are then con-

nected by global reaction pathways in order to obtain

the kinetic network. The reactions pathways are often

described by a power law model (a rate constant and a

reaction order) or by Langmuir-Hinshelwood kinetics.

To validate the kMC simulation procedure, a lumped

kinetic model for VR hydrocracking [40] was simulated

in a stochastic way (kMC simulation) and in a “classical”

deterministic way, which corresponds to the numerical

resolution of the mass balances. In our example, the

kinetic network (Fig. 2) developed by Schweitzer and

Kressmann [40] was used to simulate the reactions. Their

Reactions rules
and rate constants 

Reactant
molecules

Calculation of reaction
probabilities 

Reaction probabilities
distribution (DR) 

Choose reaction event by
sampling of the DR

Determination of the
reaction time step (Δt)

Execute reaction event t < tfinal ?
Product

molecules

Generation two random
numbers (RN1 & RN2) 

RN1 RN2

No

Yes

Update reaction
probabilities 

Initial conditions
tinitial, tfinal, ...

Figure 1

Schematic representation of the SSA.
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kinetic network is composed of 4 lumps that correspond

to 4 distinct petroleum cuts: vacuum residue, vacuum

gas oil, atmospheric gas oil and naphtha. This kinetic

model was used to simulate a perfectly mixed batch reac-

tor by solving the set of Ordinary Differential Equations

(ODEs) given by the continuity equations for each

lump:

dNj

dt
¼ Rj � V ð6Þ

In our study, a set of 1 000 molecules representing the

Athabasca VR has been generated by the SR-REM algo-

rithm. The molecules were then classified a posteriori

according to their boiling point into the lumps of the

kinetic model, as illustrated in Table 3. The rate param-

eters for our stochastic simulation were obtained by

using Equations (2), (3) and (4) and the values of the

deterministic rate constants given in [40].

Both the deterministic and stochastic simulations

were performed up to a conversion of 70% of the

vacuum residue (lump A), which corresponds to the

value that is typically obtained at the outlet of the VR

hydrocracking unit. The comparison between the deter-

ministic and the stochastic simulations is illustrated in

Figure 3.

In Figure 3, the blue lines correspond to the vacuum

residue (A), the green lines correspond to the vacuum

gas oil (B), the red/orange lines represent the atmo-

spheric gas oil (C) and the grey lines represent the evolu-

tion of the naphtha fraction (D).

For a single stochastic simulation, slight deviations

are observed between the kMC method and the deter-

ministic approach. This deviation is due to the stochastic

nature of the kMC method. This result shows that the

number of reaction sampling steps provided by a single

stochastic simulation is not large enough to obtain an

accurate representation of the VR conversion. However,

by increasing the number of simulations and thus

increasing the number of reaction sampling steps, a clear

improvement is observed in the average value of the sto-

chastic simulations with respect to the deterministic sim-

ulation. This is shown in the graphs “Average of 10

simulations” and “Average of 100 simulations” of

Figure 3. These results illustrate that the kMC method

is able to simulate the conversion reactions with the same

accuracy as that of deterministic simulations. It needs to

be stressed that the SSA reproduces the exact solution of

the CME (Eq. 1), while the deterministic model solves a

set of continuity equations (ODEs) given by Equation (6).

Despite the fact that both approaches are based on very

different hypotheses, they yield exactly the same

solution.

As any solution technique, the SSA has advantages

and limitations. The SSA is exact and mathematically

rigorous. Unlike standard methods to numerically solve

systems of ordinary differential equations, the stochastic

simulation algorithm never approximates infinitesimal

time increments dt by finite time steps Dt. This is espe-
cially advantageous when dealing with systems in which

the molecular composition can change suddenly and

sharply with time. The SSA is also very easy to code

for any specified set of chemical reactions, and the corre-

sponding computer code will normally require very little

computer memory. When ensemble averages, such as

means and variances, cannot be readily calculated from

the CME, the stochastic simulation approach offers a

universally straightforward way of numerically estimat-

ing them.

On the other hand, the SSA also has a number of lim-

itations. For a single simulation, the computing time is

directly proportional to the number of samplings of the

cumulative probability distribution DR. Indeed, the

denominator of Equation (4) depends on the number

of reactions M and the reaction probabilities ri. For a

given reaction system, the computing time is therefore

TABLE 3

Description of the lumps of the VR hydroconversion model

Lumps Boiling

range (�C)
Initial

number of

molecules

A Vacuum residue 524+ 816

B Vacuum gas oil 343-524 184

C Atmospheric gas oil 177-343 0

D Naphtha 80-177 0

A

B

C

D

k1

k5

k4

k2

k3

k6

Figure 2

Kinetic network of VR hydroconversion [40].
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roughly proportional to the total number of reactions,

and hence approximately to the total number of mole-

cules. Systems with very high reactivities and/or a very

high number of molecules, each of which can undergo

a large number of reactions, will not be simulated very

efficiently using the SSA method. As with any stochastic

procedure, the SSA requires quite some CPU time,

mainly due to the fact that a relatively important number

(100 to 1 000) of simulations need to be run before

obtaining a stable ensemble average. This is somewhat

offset by the fact that the SSA typically occupies only

a small amount of computer memory, and that the var-

ious simulations can easily be run independently. Hence,

the SSA computer code is therefore highly parallelisable.

On the numerical side, it needs to be stressed that the

SSA requires a reliable uniform random number genera-

tor. Fortunately, many of the generators available today

are quite good, as they run fast, have very large periods,

exhibit low correlation between successive values, and

are equidistributed even in high dimensions.

Given the molecular representation of a VR fraction

generated by the SR-REM approach, one can also utilise

the chemical structure of the molecules. Indeed, in the

example above, the 1 000 generated molecules were

simply classified according to their boiling point. The lat-

ter therefore defines their reaction pathways and their

reactivity, ignoring the actual structure of each molecule.

Instead of using global reaction pathways between

lumps and average reactivities, the information available

through the molecular representation can now be used to

exactly identify the various molecular-level reactions of

each molecule, and to attribute a molecule-dependent

reactivity to each pathway. Such molecular-level simula-

tions of hydrotreating and hydroconversion reactions

are presented in detail elsewhere. The hydrogenation of

benzene rings, dehydrogenation of naphthenic rings

and hydrodesulphurization of thiophenes were added

to the kMCalgorithm, and themethodologywas success-

fully applied to the hydrotreating of LCO gas oil [41].

Cracking reactions have also been included to be able
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Comparison between the deterministic simulation and the stochastic simulation.
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to simulate VR hydrocracking [42-43]. Applying the full

stochastic simulation methodology allows to utilise the

molecular detail provided by the stochastic reconstruc-

tion algorithm and to generate much more details on

the evolution of the composition. This is illustrated in

Figure 4 and in Figure 5 for Athabasca vacuum residue

hydrocracking. More detailed information on the imple-

mentation of the various reaction types can be found in

[42].

The proposed overall approach has several advanta-

ges: first of all, the complex feedstock is represented by

means of a set of molecules. The molecular description

of the reaction system is retained throughout the entire

reactor simulation. Finally, the simulation of the reac-

tions can be performed without a pre-defined kinetic net-

work. In the SSA method, the kinetic network is

generated “on-the-fly” as the reactions proceed.

CONCLUSIONS

A novel two-step kinetic modelling strategy for heavy oil

conversion processes has been presented in this paper.

The first step transforms the available analytical infor-

mation into a set of molecules whose properties are the

same as those of the process feedstock. This transforma-

tion is carried out by using the SR-REM molecular

reconstruction algorithm, which results from the cou-

pling two independent methods, Stochastic Reconstruc-

tion (SR) and Reconstruction by Entropy Maximisation

(REM). The SR method is first applied to generate an

initial equimolar set of molecules whose properties are

close to the analytical data. The molar fractions of the

generated molecules are then adjusted to obtain a mix-

ture whose properties are closely aligned to those of

the feedstock.

The molecular reconstruction step was applied to an

Athabasca Vacuum Residue. As shown above, the gen-

erated set of molecules has the same properties as the

feedstock. The results prove that the SR-REM algorithm

is able to generate a correct representation of the VR

feedstock.

The second step of the approach consists in simulating

the effect of the conversion reactions on the set of mole-

cules generated in the previous step by using a kinetic

Monte-Carlo (kMC) method. To this aim, an algorithm

based on the stochastic simulation algorithm (SSA)

developed by Gillespie has been utilised.
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VR conversion
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Figure 4

Results of the full stochastic simulation at the molecular

level: prediction of the sulphur removal and the vacuum

residue conversion for the Athabasca vacuum residue.
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Results of the full stochastic simulation at the molecular level: evolution of the molecular weight distribution of the hydrocarbon effluent

during Athabasca vacuum residue hydroconversion.
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In this work, the kMC simulation step was validated

by simulating a lumped kinetic model for VR hydro-

cracking. The simulation results of the stochastic

approach were compared to the results of the determin-

istic simulation, illustrating that the kMC method

simulates the conversion reactions with the same

accuracy as the deterministic approach, despite the

fact that both approaches are based on very different

hypotheses.

As the SR-REM algorithm provides a molecular

representation of a VR fraction, one can also utilise

the chemical structure of the molecules to simulate the

conversion reactions by means of molecular-level reac-

tions of each molecule and by assigning a molecule-

dependent reactivity to each pathway. This approach

provides high amounts of detail and was illustrated for

Athabasca VR hydrocracking.

The proposed overall approach has several advanta-

ges: first of all, the complex feedstock is represented by

means of a set of molecules. This representation retains

a molecular description of the reaction system through-

out the entire reactor simulation. Moreover, the simula-

tion of the reactions can be performed without a

pre-defined kinetic network. In the kMC method, the

kinetic network is generated “on-the-fly” as the reactions

proceed.
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