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Abstract. Simulating flow of a Bingham fluid in porous media still remains a challenging task as the
yield stress may significantly alter the numerical stability and precision. We present a Lattice-Boltzmann
TRT scheme that allows the resolution of this type of flow in stochastically reconstructed porous media.
Standard LB methods have an intrinsic error associated to the boundary conditions, that is directly linked
to the viscosity. As for non-Newtonian fluids viscosity varies in space the error becomes inhomogeneous
and very important. In contrast to that, the TRT scheme does not present this deficiency and is therefore
adequate to be used for simulations of non-Newtonian fluid flow. We simulated Bingham fluid flow in
porous media and determined a generalized Darcy equation depending on the yield stress, the effective
viscosity, the pressure drop and a characteristic length of the porous medium. By evaluating the flow in the
porous structure, we distinguished three different scaling regimes. Regime I corresponds to the situation
where fluid is unyielded in only one channel. Here, the relation between flow rate and pressure drop is
given by the non-Newtonian Poiseuille law. During Regime II an increase in pressure triggers the opening
of new paths and the relation between flow rate and the difference in pressure to the critical yield pressure
becomes quadratic: ¢ o< (dp — dp,)?. Finally, Regime III corresponds to the situation where all the fluid
has been unyielded. In this case, ¢ o (dp — dp,).

PACS. 47.56.+r Fluid flow through porous media — 47.50.-d Fluid flow non-Newtonian — 62.20.fg Yield
stress

1 Introduction In each throat, a relationship between flow rate and pres-
sure difference is assumed (similarly to the current-voltage
relationship in a network of resistances [3]). This method
has the main advantage to be efficient as it only requires
the resolution of a simplified equation in each throat. How-
ever, the flow rate expression of a yield-stress fluid is a
complex nonlinear function of the pressure gradient (see
for instance eq. (11) for the uniform 2D Poiseuille flow). To
overcome this difficulty, the different approaches assumed
then a simplified flow rate relationship (linear, quadratic,
etc..). Except for the work of Balhoff and Thompson [5]

Non-Newtonian fluids have practical applications in very
different domains. Indeed, polymer mixture, paints, slur-
ries, colloidal suspensions, emulsions, foams or heavy oil
present complex rheologies. Among the large number of
different non-Newtonian fluids an important class of be-
havior is represented by the yield-stress fluids, viz. flu-
ids that require a minimum of stress to flow. Yield stress
fluids are usually modelled as a Bingham fluid or by the
Herschel-Bulkley equation. Yield stress fluid displacements

in porous media have been subject of particular interest the. throat geometry is usua'lly assumed to be uniform
due to the yield-stress behavior of heavy-oil [1] or foam which could affect the effective pressure threshold. Due

[2]. to this simplification the different attempts to compare
the numerical model to the experimental data ([10-13])
were not entirely satisfactory (see [5,7,8)). Additionally,
the presence of a yield stress seems to alter significantly
the stability and the precision of the numerical modelling
[9]. This is illustrated by the fact that pore network mod-
elling correctly reproduces the behavior of non-Newtonian
Send offprint requests to: fluids without yield stress but incorrectly the behavior of
2 talon@fast.u-psud.fr yield stress fluids (see [7] for the two cases).

In the literature, most of the numerical modelling has
been made by means of the so-called “pore network” ap-
proach ([3,2,4-9]). Pore network modelling is based on
a simplified representation of the pore space by a three-
dimensional network of interconnected pores and throats.
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In the present article, we will present a numerical method tends to a finite (large) value for low shear. Indeed, we

that can handle these difficulties. The method is based on
a Lattice Boltzmann scheme ([14-19]) that allows the res-
olution of the (Navier-)Stokes equation at the pore scale
in complex structures. Lattice-Boltzmann methods have
been successfully applied to solve flow of non-Newtonian
fluids without yield stress (see [20-22]). Yet, the presence
of a threshold in the stress induces numerical errors and in-
stabilities. This is due to the fact that it is necessary to de-
fine an effective viscosity that diverges for small shear. One
possibility to cope with this problem has been introduced
by Vikhansky [23] and it is based on an implicit Lattice-
Boltzmann scheme. In the present article, we will follow
the work of [24] who suggested a multiple-relaxation-time
scheme (MRT) to simulate Bingham fluids.

The objective of this article is then mainly twofold.
First, we will present a numerical scheme able to solve

Bingham fluid displacement in a stochastically reconstructed

porous media. Secondly, we will determine a generalized
Darcy equation and investigate the different flow regimes
induced by the yield-stress and the heterogeneities of the
media.

2 Equation of flow - Numerical
Implementation

2.1 Bingham fluid
Momentum equation defining Stokes flow is given by:

0=-VP+V.II, (1)

where IT is the shear stress tensor and P the pressure.
For a Bingham fluid, the shear stress follows

2 ) Aij, (2)

2Ypry
1 8u1 ou;
A== 4 J
K 2 (830] (956,
is the deformation rate tensor and ¥ = /24,; 4;; is the
shear rate. u is the velocity field, 7y is the yield stress, v
the kinematic Bingham viscosity and p the density.
An effective kinematic viscosity can thus be deter-
mined by:

Hij = 2p1yp (1 +

where

, To
v ¥y =1+ —. 3
er(Y) = vo s (3)

For very low shear rates, the effective viscosity diverges
to infinity. However, in order to overcome this restriction
numerically, we use the classical regularized viscosity func-
tion as in [25,24]:

. 70 —mnA
Vers(Y) =vo+ —(1 —e™™7), 4
() =wo PW( ) (4)

where m is a regularization coeflicient.
It is important to note that the main consequence of
such regularized function is the fact that now the viscosity

have:
. . T
ég% ver(h) = vo + —p—— (5)

Thus, in the numerical simulations, the fluid is strictly
yielded but extremely viscous. The yielded viscosity is
mostly characterized by m.

2.2 Poiseuille flow

The velocity profile of a Bingham fluid driven by a (nega-
tive) pressure gradient in a two dimensional configuration
can be easily computed. Naming z and y the gap-wise and
stream-wise direction respectively, eq. (1) becomes:

o°P 0
5 = 5y v 6)

By symmetry, the shear stress is nil in the centre. Thus,
after integration, eq. (6) leads to:

Iy = yO, P. (7)
Eq. (2) can be written as:

Oug

" 0, if [yl <o (8)
Ouy 1 : i
oy = PTO(sz — sign(Ilyy)m0), if [yl > 70

Combining, egs. (7) and (8) and assuming a negative pres-
sure gradient (9, P < 0), the velocity field becomes:

P
ua(y) = Vo, for Jy] < bl 22], )
1 7 70 |9 70
= — P — h—= f —
um(y) UD 2,07/0 b (’y' bTw) or ‘yl > b|7’w |’

where 2b is the width of the channel. The shear at the wall
is given by 7, = —b 0, P > 0 and

1

1
v (10)

Up = ——bry(l — ~2)2.
Tw

By integration, the flow rate is determined as a function
of the pressure gradient:

- %’% (é}_))z (vpP- %)2 (VP+ g—%) .1

It is important to note that the flow condition is given
by the non-dimensional number 75/7, = 70/bV P which
compares the stress at the wall to the yield stress. This
quantity gives also the size ratio of the yielded region to
the unyielded one (see eq. 9).

Qtn
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2.3 TRT scheme

In this section, we will briefly describe the numerical scheme
used to solve the flow equation (for further details see [24,
26-28,19]).

As a matter of principle, the basic idea of the Lattice
Boltzmann method is to discretize the velocity distribu-
tion function of particles on a grid. To this goal, we intro-
duce the population f; as the density of particles moving
with the velocity ¢q. The algorithm is mainly a succession
of two steps. The first is the propagation step (Eq. 12),
where we move the density on the grid according to its ve-
locity. The second is the collision step (Eq. 13), where we
redistribute populations meeting at the same node using
a collision operator that depends on the local macroscopic
quantities (pressure, velocity...).

We used here a two dimensional equation with a nine
population distribution (D2Q9) scheme. The nodes of the
grid are related by the velocity vectors ¢4, ¢ = 1,...,9
and ¢p = 0. We assume that the first 4 vectors ¢4 are op-
posite to the second set of 4 vectors defined as ¢z =
We then operate with the symmetric {f+ (fq + fq)/2}
and the anti-symmetric { f;” = (fy — fg) /2 }) components,
g=1,...,Qm/2 We set faL = fo and f; = 0 for immo-
bile population. The two-relaxation-times (TRT) update
is performed with the prescribed equilibrium distribution
{e£}, the external momentum quantity Sy and two col-
lision eigenvalues s* €]0,2[, s* for all symmetric and s~
for all anti-symmetric non-equilibrium components, {n}}
and {n; }, respectively. Thus, we obtain:

fo(r,t +1) = [fo(1=sT) + steo](r, 1),
fo(r+cq, t+1) = fo(r,t) (12)
with
falrt) = [fy—sT nf-s"ngl(r,t), ¢=1,...,4
falrit) = [fg=s"ng+s7ng](r,1), g =1,...,4,(13)
where
nqi = (f;:—eff), when c;=—¢q, ¢=1,...,4 (14)

Computing the linear collision operator we have ac-
counted that the symmetric components are the same for
two opposite populations, and hence f(;’" = f,j , nq+ = ng,
while the anti-symmetric components have the opposite
signs, and hence f~ = —f7, ng = —ng.

The fluid dynamics are obtained by prescribing the
equilibrium functions e¥. The latter require the computa-

q
tion of two quantities: the local mass

9 4
p=> fo=fo+2> f, (15)
g=0 g=1
and local momentum
9 4
3= ficq=2) ficg (16)
g=1 g=1
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Equilibrium functions then become
4
ef =ciip, e =tiicg), eo=p—2) ef, (17)
q=1

where the weights {t;} take the value {j = {1y =
{3, 5} for respectively the first and second (diagonal) neigh-
bour link in the D2Q9 model.

This TRT scheme models solutions to Stokes equations
(in lattice units) by:

Btp—i-V-j:O, 8tj+VP-_—I/effAj (18)

where the kinematic viscosity is given by vers = %(;1;,— - %),
the pressure P by P = cip and the macroscopic momen-
tum by u = j/po, where po is a constant and taken as the
initial mass average of the fluid (routinely, po equals 1}.

% . In the TRT scheme,

is a free parameter (we recall

The sound velocity ¢, is set to

the second eigenvalue s~
that s~ €]0, 2[).

As discussed in detail in [27,29,19], LBM methods
(BGK, MRT...) may have an intrinsic error associated to
the bounce-back boundary condition. This error is linked
to the viscosity parameter v, as long as the relation be-
tween the odd and even relaxatlon parameter A = (-¢ —

(L - l) is not kept constant. For Newtonian fluids, this
error leads to a dependence of the permeability with the
viscosity (see also [30]) whereas in the TRT scheme vj is
strictly independent of v, as it should for Stokes flow.

For non-Newtonian fluids, this effect is even more dras-
tic as the effective viscosity strongly varies in space (see
below), making the error inhomogeneous. Additionally, we
report that there is a stability problem with the standard
BGK scheme. For that reason, we will hereafter use A as
control parameter rather than s—.

To simulate non-Newtonian fluid flow one needs to in-
troduce an effective viscosity vers that varies with the lo-
cal shear rate 4. An interesting feature of the LBE scheme
is the fact that the local deformation rate tensor is simply
obtained from the non-equilibrium distribution (see [24]):

1 &
R . o
Dyj = —s8 pE TgCqiCqj -
1

The algorithm is implemented as follows. Initially, the
fluid has a homogeneous effective viscosity vers. We ap-
ply a pressure drop AP between the inlet and outlet. At
each time step, the local shear rate is computed using eq.
(19) to update the local effective viscosity using eq. (4).
The iteration is pursued until convergence of the flow field
is reached (which typically takes around 105 — 10° time
steps).

For the lattice Boltzmann scheme, typically used val-
ues are A = 0.2, vy = 1073, 75/p ~ 1075 and m = 10°,
which allow to have several order of magnitude between
the viscosity of the yielded and unyielded fluid. In the fol-
lowing, units of the presented quantities are expressed in
terms of the lattice grid unit and iteration time step.

(19)
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0.5

Fig. 1. Numerical velocity field (normalized by the theoreti-
cal velocity at the centre Up) inside a two dimensional chanel
compared to the theoretical prediction (equ. 9). The numer-
ical parameters are b = 8 dz,m = 10°,4 = 0.2, 5, = 0.001,
0= 107" 79/7w = 0.5.

2.4 Validation

In order to validate the scheme, we will present the results
of the flow simulation performed in a Poiseuille configu-
ration as described in section 2.2. Figure 1 displays the
theoretical velocity profile as well as the numerical one.
The following parameters were used: b = 8, vy = 1073,
m = 10%, A = 0.2 and 79/7, = 0.5. We remark here that
despite the coarse grid used (given by the points in the
figure), the numerical profile is in good accordance with
the theoretical prediction. Moreover, it is also important
to compare the flow for different size ratio of yielded and
unyielding flow. Figure 2 (left) displays the flow rate Q
normalized by the theoretical one (eq. 11) as a function of
the yielded width bro/7,. We can see a good agreement
for bry/ 7, < 6. However, a significant discrepancy can be
observed, when the yielded zone reaches the wall. As it
can be seen in Figure 2 (right), the discrepancy is relative
and due to the fact that the theoretical flow rate tends
to zero (see eq. 10) wheras the numerical one can not as
the numerical viscosity tends not to infinity but to a large
finite value. It should be noted that this discrepancy can
be reduced by increasing the numerical value m. However,
for too high values of m, numerical instabilities have been
observed. Moreover, on this figure, we show that 14Q is
independent of the numerical parameter vyg.

Figure 3 displays the relative error of the flow rate vis
d vis of the discretization b. As expected, the numerical
results become more accurate when the number of grid
points is increased.

Finally, we evaluated the influence of A on the velocity
profile. To this goal, A was varied in the intervall A €
[0.1,0.4). We found a maximal error of Q/Qy, of 2%. Thus,
the influence of the value of A on the results of the present
simulations is negligible.

2.5 Porous media generation

We used the spectral method proposed in [19,31] to gen-
erate the porous medium. To this goal, we first generate

1.2
1) e
0.8
=
go.s-
+‘ro/‘rw =0.1
0.4 1/t =02
0w :
0.2 *To/'cw = 0.5
4*1:0/1W =0.7
cO 10 20 3‘0 40 50 60 70 80

2b[dz)

Fig. 3. Relative error for the flow rate Q/Q:s as function of
the grid width 2b for different yielded width ratio m0/7. The
parameters are the same as in Figure 1

a matrix W(r) of white random noise. After multiplying
its Fourier transform (Z(r)) with a Gaussian function we

obtain:
k 2

Z'(k) = aZ(k)e *s . (20)
A fast inverse fourier transform f(r) = FT~(Z'(k)) leads
then to a Gaussian distributed noise correlated with a
Gaussian correlation function:

FT(.f*) = e

This leads to the autocorrelation function:

k2 2
f*flz) e~ v = o3 (5%) , (21)
where Ay = 7/kg. The prefactor « is set, without loss in
generality, to have a standard deviation equal to one. The
solid lattices are then deduced by a level-set with a given
value, fo: S = {r|f(r) < fo}. The porosity ¢ is related
to the cumulative distribution function, P{f), which is by
construction an error function centered around 0 with a
standard deviation of 1:

fo= P71 (¢).

The porous media is then characterized by its size
(Lz x L), correlation length (\) and porosity {(¢). A pres-
sure drop AP is then applied to the boundaries in order
to drive the fluid. After a transient time (around 10%6t), a
steady velocity field u(r) is reached, from which we com-
pute the volume average flow rate:

q= %/u(r)d’r'. (22)

3 Results and discussion
3.1 Flow rate curve

In this section we investigate the dependence of the aver-
age flow rate ¢ on the characteristics of the porous medium,
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Fig. 2. Left: Numerical flow rate Q normalized by the theoretical flowrate Q:n as a function of the yielded width for two
different viscosities. Right: Numerical flow rate (symbols) and theoretical (line) multiplied by o as a function of the yielded

width bro/7y. The parameters are the same as in Figure 1

the yield stress and the pressure drop in order to deter-
mine a generalized Darcy equation.

Figure 4 displays the average flow rate ¢ as a func-
tion of the applied pressure drop AP for a given value of
the yield 7o = 10~% and different porosities. The trend is
quite similar for all porosities. It can be seen that a min-
imal pressure drop AP, is required for the fluid to flow.
Beyond this threshold, the flow rate seems to increase lin-
early with the applied pressure. This trend is qualitatively
in agreement with the experimental and numerical works
of [10,11,13], where it has been proposed that the flow
rate behaves like

qX k/.ueff(VP - VE)", (23)
where n is the Herschel-Bulkley exponent and k the New-
tonian permeability. In particular, for Bingham fluids (n =
1), this law predicts that at high pressure drop, one should
obtain Darcy’s law, explaining the fact that the slope in-
creases with the porosity. We also note that porosity is
affecting the pressure threshold.

On Figure 5, different velocity fields are represented as
a function of the pressure drop AP. Close to the thresh-
old AP, fluid is flowing in only few paths. For a pressure
difference higher of several orders of magnitude, one can
clearly observe that all the fluid in the medium is now
flowing, corresponding to Darcy’s regime.

Figure 6 (left) displays the flow curves as a function
of the pressure drop for different values of the yield-stress
7o (including the Newtonian case 75 = 0) and a given
porosity ¢ = 0.75. As expected, for large enough pres-
sure drop, all curves collapse on the Newtonian one, given
by the standard Darcy’s law. The threshold pressure is
characterized by the large increase of g (depending on 7o).
It is important at this point to underline that below the
threshold the flow rate is not strictly zero as expected.
This effect is of course a numerical artefact due to the
fact that the flow is never really yielded but has a very
large viscosity (of the order of mmy/p). We also note that

in this regime, the relationship between flow and pressure
drop is linear, which can be understood as being a Darcy’s
law with high viscosity.

In order to determine the dependence of g on the char-
acteristic dimensions of the porous medium we first non-
dimensionalize the pressure-flow rate curve. Indeed, from
the result of the channel flow (sec. 2.2), it is natural to
compare the pressure gradient to the yield stress and the
caracteristic length A\. We thus introduce the dimensiona-
less parameter:

- MAP
dp = .
TOLz

(24)

We have plotted on Figure 6 (right), the non-dimensionalized

flow rate dg = g/ 7o as a function of dp. As can be seen all
curves collapse in the unyielded region. Consequently, the
flow rate can be written as a function of dp, it becomes:

)\AP). (25)

TDLz
The reason why the flow rate is proportional to A7y can be
explained as follows. Indeed, expecting the flow behaving
as a Newtonian fluid for very large pressure drop implies
that

q = Ao F(

_lim F(dp) o< dp.

dp—+oc
In this limit, one should retrieve the standard Darcy’s law,
which is independent of 79 and proportional to the square
of the characteristic length A (Kparey o A?). We thus
have:

K AP K To 7 -
) lim _ S Darcy — Darcy’0 dp o Tgx\zdp.
dp——+o0

proLs Apro

Taking into account the pressure threshold, one can
then write the flow rate curve in the following form:

KDarcyTO AAP 7
= — d
1 Apvg H oLz pe);
with lim H(z) =z + O(z).

T—00

(26)
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3.2 Pressure Threshold - Critical length

In order to finalize the generalized Darcy equation (equ.
26), we determine in the next step the critical pressure
threshold dp, and relate it to a critical length A, a geo-
metrical characteristic of the generated porous medium.
For routine determination of cfpc, the most precise way
is based on the fact that, when the fluid is yielded, it has
a fixed known viscosity vy + 7om/p. Thus, in the yielded
regime, since the flow behaves as a Newtonian fluid, the
quantity vu(r)/V P is independent of the pressure gradi-
ent. Therefore, we first evaluate in the Newtonian case the

quantity:
ax vou(r)
v vP )’

We can then estimate the unyieled region by determining
at which pressure :

Newt __
Wmar =

u(r) 511 1
VP vo + Tom/p

Newt
maz

The coefficient 1.1 is an ad-hoc coefficient. One can also
quantify the averaged unyielded regions by:

= u(r) 1
O(dpc)_‘< >1-1I/0+7‘0m/p

e )

Figure 9 displays the evolution of O(dp). The critical pres-
sure dp, is then determined by the first significant jump
of this quantity.

In order to determine the critical length A from dp,
we follow the argument of [3] and [6] for a pore network
model, suggesting that the critical pressure has a sim-
ple geometrical meaning. Indeed, the critical pressure can
be determined by finding the path which minimizes the
sum of the pressure threshold AP = min(}_ dp.), where
dp. denotes the critical pressure of the links. In our con-
text, the argument can be understood as follows. As we
have seen in Figure 5, close to the pressure threshold, only
one single chanel path remains in which the fluid is not
yielded. This path can be approximated by a channel with
variable opening b(s). Assuming the lubrication approxi-
mation, one can then compute the flow rate along this
channel using eq. (11):

26(s)® /1 2 7o \° To
9= (VP) <VP b<s>) <VP+ 2b<s>> '

(27)
When @ tends to zero, because of mass conservation, it
implies that the quantity VP — %27 tends to zero all along
the channel. The pressure gradient is thus known every-
where. Since the pressure drop is the integration of the
gradient, we have then AP. = [ 79/b(s)ds. Consequently,

the critical pressure drop can be computed by finding the
path that minimizes the quantity:

. 1
AFP. =1y rrgn/gzs—)ds, (28)

where C denotes all the flow paths that connect the inlet
to the outlet.

From the critical pressure drop, one can then define a
critical length as:

Ly A

APC dpc ( )

/\C:To

This length represents thus the harmonic mean of the
opening along the minimum path A, = (1/L; [ b7 1(s)ds)~*.

Figure 7 displays the evolution of ). as a function of
the porosity of the medium (and different realization).
From the argument used previously, it is expected that
the critical length increases with the porosity. Indeed, with
the stochastic procedure used, the distance between solid
regions increases necessarily with the porosity.

To summarize, eq. (26) can thus be rewritten as

KDarcyTO AAP A
= - : 30
1= Yl T @) (30)
with 1‘i~)m H(z) =z + O(z).
e oo

3.3 Flow rate regimes

In this section, we thoroughly analyse the flow rate above
the critical pressure dp,. Below d~pc the theoretical flow
rate is zero. The numerical flow rate follows Darcy’s law
with a very high viscosity as we have already seen before.

On Figure 8, we have plotted the flow rate as a func-
tion of the distance to the critical pressure dp — dp,. One
can clearly observe three scaling regimes given by ¢
(dp—dp,)?. For small pressure differences 8 equals to one
(Regime I), then for a higher pressure difference we state
B = 2 (Regime II), then by increasing the pressure § is
equal to one again (Regime I77T). Remarkably, these three
regimes are identical to those observed by Roux and Her-
mann [3] in a very idealized system. Indeed, they have
used a regular resistance network model with uniformly
distributed pressure thresholds. They have assumed an
affine relationship between the voltage and the current,
which is clearly not the case in the present work. Addition-
ally, they noted that the exponent o = 2 is independent of
the threshold distribution. One should note that this inde-
pendency has been recently proved by Sinha and Hansen
[32] using a mean field approach. However, Roux and Her-
mann have also reported that this scaling regime changes
by modifying the current-voltage relationship (linear to
quadratic). It is therefore quite remarkable that we find a
similar scaling despite the fact that we have a different ge-
ometry and a very different flow rate - pressure difference
relationship inside each throat.

One should then recall the interpretation of Roux and
Hermann for those three regimes.

Regime I corresponds to a single channel flow curve.
Indeed, as we have already observed, just above the critical
pressure only one single flow path is open. This implies
that, for increasing pressure, as long as we do not open
new pathes, one should then expect the flow rate to follow
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eq. (27). In the case of Roux et al., this relationship was
affine, leading to the exponent one. In the present case, the
single channel should have two exponents. At very small
pressure, one should have a quadratic behavior followed
by a linear one. We think that the quadratic behavior is
not seen due to numerical precisions since it involves very
low flow rates. Moreover, the fact, that we do observe the
linear behavior suggests that the first channel reaches its
linear regime before new channels are opened in the media.

Regime I corresponds to the regime where an increase
of pressure triggers an opening of new paths as depicted by
Figure 5. The heuristic argument proposed by Roux and
Hermann is the following. Assuming that in this regime, an
infinitesimal increase of pressure d P leads to a proportion-
ally increase of the number of new channels: dN « dP. A
linear relationship between the flow rate and the pressure
yields then to an exponent of two. Here also, the argument
crucially depends on the linear flow rate curve assumption.
It is thus remarkable that in the present work, we observe
precisely the same coefficient. Additionally this result is
consistent with the analytical result of Sinha and Hansen
[32] which obtain a quadratic dependence using a mean
field approach.

As expected, Regime I'1] corresponds to the case where
all the fluid has been unyieled and has a quasi-Newtonian
behavior. In this case one retrieves the standard Darcy’s
law.

A qualitative confirmation of this argument can be ob-
served on Figure 9, where we have plotted the ratio of
opened fluid (O) as function of the distance to the crit-
ical pressure dp — dp,. Regime I corresponds to a con-
stant value of O(dp — dp.). Regime I starts simultane-
ously with a significant increase of O and Regime IIT
begins once O(dp — dp,) reaches a plateau. Interestingly,
we note that in Regime II, the curve is not completely
smooth but displays at some point a step like evolution
that characterizes the opening of new channels (for in-
stance at dp — dp, >~ 8.1072 on Figure 9). We also remark
that new channels do not necessarily connect the opposite
borders of the porous medium, they might also branch
from prexisiting ones. As the pressure increases, channels
become more difficult to define. It therefore complicates
the estimation of the increase of the number of open chan-
nels.

4 Conclusion

In this work, we have used a Lattice Boltzmann scheme
able to solve yield stress fluid flow in porous media. We
have analysed the different flow structures inside the me-
dia. Three different scaling regimes could be distinguished.
Regime I that corresponds to the situation where fluid is
unyielded in only one channel. Here, the relation between
flow rate and pressure drop is given by the non-Newtonian
Poiseuille law. During Regime II an increase in pressure
triggers the opening of new paths and the relation be-
tween flow rate and the difference in pressure to the crit-
ical yield pressure becomes quadratic: ¢ o« (dp — dp,)?.
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Fig. 4. Average flow rate g as function of the applied pressure
drop AP for different porosities. For each random generation,
the same seed has been used. The statistical properties are then
similar. The numerical parameters are: Ly = 512 dx, A = 6 dz,
m=10°, A = 0.2 and v = 1075,
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Fig. 7. Critical length A. as function of the porosity. The
crosses represent different realizations, the line represents the
statistical average. The other parameters are: Ly = 512 éz,
A=66z, m=10°, A=0.2, vo =107 and 70 = 107°.

Finally, Regime III corresponds to the situation where
all the fluid has been unyielded. In this case, we obtained
g o (dp — dp,). In a recent article, Sinha and Hansen
[32] proposed an analogy between two phase flow with
the Bingham flow problem in porous media. The basic
idea is that immiscible bubbles require a minimal pressure
drop in order to go through pore throats. This threshold
depends on the throat radius and the local saturation.
Using a mean field approach, they derived analytically a
quadratic dependence of the flow rate on the pressure. In
recent simulation of blob dynamics in the same stochastic
porous media, [31] demonstrated numerically such a scal-
ing regime, which confirms the pertinence of this analogy.
Further work will be dedicated to the study of other rhe-
ological laws and boundary conditions (the effect of wall
slippage particularly) in order to test the robustness of
those regimes.

The authors would like to thank Alex Hansen and Irina Ginzburg
for usefull discussions, the “Agence National de la Recherche”
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Fig. 5. Flow field example inside the porous media (solid sites are darker) for different applied pressure drop AP. The numerical
parameters are: ¢ = 0.75, Ly = 1024 éx, A = 6 6z, m = 10°, A =0.2, vo = 10~2 and 7o = 1075.
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Fig. 6. Left: Average flow rate g as function of the applied pressure drop AP for different yield stress 7o plotted on a log-log
scale as function of the pressure drop. Right: non-dimentionalized flow rate q/A7o as function of the nondimentional parameter

dp = AAP/(1oLg).
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Fig. 9. Active proportion O as function of the nondimentional pressure dp and of the distance to the critical pressure dp — d~pc.



Talon et al.: Darcy equation for yield stressed fluid in porous media. 9

d~p - d~pc

Fig. 8. Non-dimensional flow rate q/A7o as function of the
nondimentional distance to the critical pressure dp — dp,. The
two plain lines have a slope of one and the dashed line has
a slope of two. The four circles represent the corresponding
simulations of Figure 5. The parameters are: ¢ = 0.75, Ly =
1024 6z, A = 6 6z, m = 10°, A = 0.2, = 107 and 7 = 10~°.
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