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Abstract

The design process of complex Cyber-Physical Systems often relies on co-sim-

ulations of the system, involving the interaction of several simulated models of

sub-systems. However, reaching real-time simulations is currently prevented by

prohibitive CPU times using the single-threaded existing simulation tools. This

paper investigates the problem of the efficient parallel co-simulation of hybrid dy-

namical systems. It introduces a finely-grained co-simulation method enabling

numerical integration speed-ups. It is obtained using a partition across the model

into loosely coupled sub-systems with sparse communication between modules.

The proposed scheme leads to schedule a large number of operations with a wide

range of execution times. A suitable off-line scheduling algorithm, based on the

input/output dynamics of the models, is proposed to minimize the simulation er-

rors induced by the parallel execution. This scheme is finally tested using the phe-

nomenological model of a combustion engine issued from the Functional Mockup

Interface framework. Compared with the sequential case, it shows significant

speed-ups while keeping the numerical integration accuracy under control.
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1. Introduction

A major challenge of the 21th century is to succeed the energy transition, from

an economy that is currently based on fossil energy, to an economy that relies on

renewable energy and energy efficiency. This challenge affects the whole energy

cycle: production, transport as well as consumption.

The transport sector consumes significant amounts of energy. It is predomi-

nantly reliant on oil, a resource that is limited and whose availability is expected

to vanish during this century. Reducing fuel consumption and diversifying energy

sources are major challenges in this field.

Automobiles are typical examples of Cyber-Physical Systems, where chem-

ical energy (gasoline, diesel, ethanol fuel...) or electrical energy is converted to

kinetic energy. Electronic controllers and networks present in vehicles interact

with vehicles components that are sub-systems of multi-physical nature (mechan-

ical, thermodynamic, electrical ...) and whose design involves multi-disciplinary

teams.

In this design process, simulation is proven to be an indisputable step between

concept design and prototype validation. Realistic simulations allow for the pre-

liminary evaluation, tuning and possibly redesign of proposed solutions ahead of

implementation, thus lowering the risks. To be confident in the result, building

such simulations needs high fidelity models both for the components and for their

interaction.

Currently, building high fidelity system-level models of Cyber-Physical Sys-

tems in general and automotive cars in particular, is a challenging duty. One

problem is the diversity of modeling and simulation environments used by the var-

ious involved multi-disciplinary teams. Particular environments are preferred for

a specific use due to distinctive strengths (modeling language, libraries, solvers,

cost. . . ). The Functional Mock-up Interface (FMI) specification has been pro-

posed to improve this issue [1]. It is a tool independent and open standard1 de-

signed to support both the exchange and the co-simulation of dynamic models by

combining software components provided by different sources. In particular, it

was intended from the beginning to support the use of the AUTOSAR2 standard

and the Modelica language. The Model Exchange part of the standard provides

the encapsulation of models equations in well defined components and interfaces.

The Co-Simulation part allows for the coupling of several models together with

1https://www.fmi-standard.org/
2http://www.autosar.org

2

https://www.fmi-standard.org/
http://www.autosar.org


their solvers in a co-simulation environment, designed to manage the data ex-

change and synchronization between subsystems.

A second problem is the prohibitive CPU times observed when such high-

fidelity models are run. This is due to the fact that major system-level simulation

softwares are currently unable to exploit multi-core processors, because they are

relying on sequential Ordinary Differential Equation (ODE) and Differential Alge-

braic equation (DAE) solvers. To solve this issue, several studies have shown that

co-simulation approaches can provide significant improvements. Co-simulation

allows to simulate together models coming from different areas and to validate

both the individual behaviors and their interaction. The simulators may be ex-

ported from original authoring tools as Functional Mock-up Units (FMUs) and

then imported in a co-simulation environment. Hence they cooperate at run-time

thanks to the FMI definitions of their interfaces, and to the master algorithms of

these environments. Moreover the “FMI for model exchange” framework [1] al-

lows for solving independently the sub-models using custom solvers.

Both modeling and numerical integration deal with approximations, hence it

is first needed to find a satisfactory trade-off between the simulation speed and

precision. Ultimately, the simulation of the physical models will take into account

some real-time constraints introduced by the interaction with the real components.

Indeed, these models are intended to validate controllers, e.g., to combine high

efficiency with clean combustion. Using hardware-in-the-loop (HIL) simulations

means that the interaction between the simulated world and the real world must be

consistent, i.e. that the simulated time and real-time must match at some precise

points [2].

This paper proposes an approach allowing the speed-up and the parallel simu-

lation of Cyber-Physical Systems modeled by hybrid ODEs and relying on the

FMI specification, as well as a complex benchmark for its assessment. This

approach can be seen as an intermediate method between simulation and co-

simulation.

The paper is structured as follows. Section 2 surveys related works on several

parallelization approaches. In Section 3, a partitioned model is formalized for

co-simulation, then Section 4 describes the model of computation. In Section

5, we propose a co-simulation method that improves both the integration speed

and the accuracy of the solution, compared to the existing method. Section 6

presents a case study using an internal combustion engine model, and several

experiments are conducted in Section 7 to demonstrate the effectiveness of the

proposed approach. Section 8 concludes this paper and discuss future work plans.
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2. Related work

Burrage proposed a classification into three categories of the methods for the

parallel solution of ODEs [3], that is still valid for hybrid ODEs or DAEs.

2.1. Parallelization across the method

The first idea is to exploit concurrent functions evaluations (like state deriva-

tives) during the computation of each integration step.

Explicit multistage Runge Kutta methods are sequential. However, in some

cases, two or more stages of Diagonally Implicit Runge Kutta methods can be

executed in parallel, if some coefficients of the strictly lower triangular matrix as-

sociated to the method are zero. The parallelization of these methods was studied

in [4]. The conclusion is that the parallelization potential is limited.

In the sixties, Miranker and Liniger [5] have proposed a framework that allows

devising parallel predictor/corrector methods. Later generalizations are reviewed

in the surveys by [6] and [7]. Like the previous approaches, these methods offer

a limited parallelization potential. One drawback is their relatively small stability

regions.

Other approaches that can fit this classification rely on parallelizing matrix

inversions, which are needed when using an implicit method [8] or parallelizing

operations on vectors for ODEs resolution by separating them into modules (see

PVODE solver [9] implemented using MPI (Message-Passing Interface) technol-

ogy).

2.2. Parallelization across the steps

In this approach, equations are solved in parallel over a large number of steps.

It is based on a time decomposition method, originally introduced to solve Partial

Differential Equations (PDEs) using the multi-grid approach [10]. Among the

techniques introduced in this area, the Parareal scheme proposed in [11] and the

PITA algorithm described in [12], where both of them were derived from the

multiple shooting method [13]. They follow the approach of splitting the time

domain in sub-domains by considering two levels of time grids. A first parallel

computation of a predicted solution is performed with a fine time grid. After that,

at each end of time of sub-domains, the solution makes a jump with the previous

Initial Boundary Value (IBV) of the next time sub-domain. A correction of the

IBV for the next fine grid is then computed on the coarse time grid. Nevertheless,

this approach seems to have difficulties for stiff nonlinear problems.

4



2.3. Parallelization across the model

Numerically integrating PDEs in parallel is made easier by the need to solve

across their spatial dimensions, which naturally leads to data parallelism. How-

ever, this is not the case for ODEs and DAEs, where both models and solvers

exhibit a strong sequential nature. Decoupling this apparently sequential compu-

tation is an important issue for distributed simulation, because the way of decou-

pling a system could significantly affect the simulation results and speed. Some

important methods tried to exploit the parallelization across the model.

Waveform relaxation [14] is a method that relies on Picard iteration approach

for solving ODEs. It is based on a Jacobi or Gauss-Seidel iterative scheme in the

framework of which each relaxation element is called a wave. The global system

is partitioned into subsystems, which are solved separately and then, they ex-

change the computed waves. The algorithm is repeated until global convergence.

The efficiency of this method, i.e. the convergence rate, depends on the quality of

the system partitioning, and works better with weak coupling. In [15], three types

of coupling methods were compared to show how they affect the convergence of

the solution.

Transmission line modeling [16] is a discrete modeling method that provides a

general approach for decoupling systems. It represents the physical process by a

transmission-line graph. According to this method, the decoupling point should

be chosen where variables change slowly. Consequently, the decoupled subsys-

tems are seen as if they were connected by constant variables and the error due

to time delays can be significantly decreased or even eliminated (when the com-

munication step is chosen equal to the real physical delay of the decoupled com-

ponents). The Hopsan [17] simulation tool, used primarily for hydro-mechanical

simulation, natively implements this method.

Modular time-integration or co-simulation sees the system to be integrated as

a connection of several subsystems. The data exchange between subsystems is

restricted to the discrete synchronization points. Between these synchronization

points the subsystems are integrated independently of each other. The numer-

ical stability of these methods was studied in [18]. In [2], the application to

the context of Hardware-In-The-Loop was studied, and several alternatives were

proposed to perform real-time simulation of complex physical models. The study

focused on the case of fixed time-step solvers, then it was extended in [19] to

examine the case of variable time-step solvers. In [20], automatic decoupling

techniques, based on incidence matrices, were studied to improve the parallel
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performance of hybrid dynamical systems. Parallelization of Declarative Object-

Oriented Models was studied in [21], and an approach for the decomposition into

weakly coupled components was proposed in [22].

3. Motivation for multi-simulator approach

3.1. Model partition for numerical integration

Complex physical systems are generally modeled by hybrid non-linear ODEs

or DAEs. The hybrid behavior is due to the discontinuities, raised by events trig-

gered off when a given threshold is crossed (zero-crossing), and it plays a key role

in the complexity and speed of the simulation. In fact, more the model has events

and more the numerical integration is slowed down. This behavior is observed

for both fixed and variable time-step solvers. Fixed time-step solvers cannot ex-

actly catch the time of discontinuities, and the time-step must be chosen very

small to come closer to the instant when an event occur. For variable time-step

solver which do not have the ability for events detection, the integration time-step

is decreased until reaching tiny values to capture the zero-crossing instant. For

those with zero-crossing detection, the integration is anyway restarted anew at

each event occurrence after an iterative event location procedure [23]. It appears

that numerous discontinuities in the hybrid system sadly prevents variable step

solvers to reach the high integration speeds which could be attained only consid-

ering the system’s continuous dynamics [20].

However, it often appears that the incidence matrices between state variables,

or between state variables and events, are sparse. Events are raised only by the

evolution of a subset of the state vector, and the corresponding discontinuities

only act upon a subset of the system. Thus, to improve the simulation speed, it

is proposed to partition the model into sub-systems such that every discontinuity

processing can be, as far as possible, encapsulated in a single sub-system.

Hence, each sub-system can be integrated by its own solver, avoiding inter-

rupts coming from unrelated events. Moreover, events detection and location in-

side a sub-system involve a smaller variables set and can be processed faster.

Note that we are especially interested on the modular co-simulation approach.

In fact, unlike the waveform relaxation technique, there are no iterations until

convergence, which is more suitable for real-time and HIL simulation. In addition,

compared to TLM, the communication step can be chosen different from the real

physical delay of the decoupled components.
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3.2. Model formalization

A formal model is now provided to support the co-simulation analysis. Con-

sider an initial hybrid dynamical system Σ described by nonlinear differential

equations :

Ẋ = f (t, X,D,U) for tn ≤ t < tn+1, (1a)

Y = g(t, X,D,U), (1b)

where X ∈ RnX is the continuous state vector, D ∈ RnD is the discrete state vector,

U ∈ RnU is the input vector, Y ∈ RnY is the output vector and t ∈ R+ is the time.

(tn)n≥0 is a sequence of strictly increasing time instants representing disconti-

nuity points called “state events”, which are the roots of the equation

h(t, X,D,U) = 0. (2)

h is usually called zero-crossing function or event indicator, used for event detec-

tion and location [23].

At each time instant tn, a new continuous state vector may be computed as a

result of the event handling

X(tn) = I(tn, X,D,U), (3)

and a new discrete state vector may be computed as a result of discrete state update

D(tn) = J(tn−1, X,D,U). (4)

If no discontinuity affects a component of X(tn), the right limit of this component

will be equal to its value at tn.

It is assumed that Σ is well posed in the sense that a unique solution exists for

each admissible initial conditions X(t0) and D(t0) and that consequently X, D, U,

and Y are piece-wise continuous functions in [tn, tn+1].

To execute the system in parallel, the model must be split into several sub-

models. For simplicity, assume that the system is decomposed into two separate

blocks denoted model A and model B in Fig. 2. Our approach generalizes to any

decomposition into N blocks of system Σ.

Therefore, the sub-systems can be written as:

{

ẊA = fA(t, XA,DA,UA)

YA = gA(t, XA,DA,UA)
and

{

ẊB = fB(t, XB,DB,UB)

YB = gB(t, XB,DB,UB)
(5)
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with X = [XA XB]T and D = [DA DB]T

Here UA are the inputs needed for model A, directly provided by the outputs

YB produced by model B. Similarly, UB are the inputs needed for model B directly

provided by the outputs YA produced by model A.

Note that when the simulators are run in parallel, using the co-simulation ap-

proach, they are periodically synchronized to exchange data at every communica-

tion time-step denoted Tc (Fig. 1). It is assumed that the synchronization steps are

by far larger than the internal integration steps, so that each simulator integrates

at its own rate and considers the data coming from other simulators are held as

constant between the communication points.

model A

model B

Initialization Exchange 1 Exchange 2

Integration step

Communication step

Communication step

Integration step

Global model

Tc

Figure 1: Periodic synchronization between simulators

N blocks resulting from system Σ are connected into an arbitrary diagram,

each block M is assigned to a thread and a dedicated solver. In a preliminary

approach, a common communication step-size Tc is shared by all blocks, so that

they all read their inputs and update their outputs at communication points that

are multiple of Tc.

3.3. Model decomposition and data dependencies cycles

To exploit the parallelism provided by the multi-core platform a physical model

is partitioned into co-simulation components. However, the partitioning process

may lead to the generation of dependency loops between the components (as in

Fig. 2).

To start the co-simulation, these loops must be broken by choosing an execu-

tion order. Depending on this choice, it is possible that some outputs are delayed,
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Figure 2: Loop creation due to the model splitting

thus inducing simulation errors. The next section examines how to break these

loops.

4. Model of computation with the modular co-simulation approach

As mentioned in section 3.3, breaking the created loop may lead to delayed

outputs, depending on the models input/output properties. A model is Non Direct

Feedthrough (NDF) when all its outputs depend only on its state vector : Y =

g(t, X). It is Direct Feedthrough (DF) if at least one of its outputs is a direct

function of the inputs : Y = g(t, X,U). Two cases are considered.

4.1. 1st case: Coexistence of DF and NDF models

In this case, model A and model B are respectively considered NDF and DF.

Since the initial conditions (k = 0) of XA(tk) and XB(tk) are known, only the outputs

YA(tk) (and consequently UB(tk)) are ready to be computed. After their calculation,

ẊB(tk) and YB(tk) (and consequently UA(tk)) are ready to run. Once UA(tk) is avail-

able, the computing of ẊA(tk) is ready to be run. The same cycle is repeated until

the end of simulation (Fig. 3).

In fact the loop is not algebraic because the execution order is naturally de-

fined. Therefore, the delay is avoided when starting with the NDF models, i.e.

using NDF→DF order. In other words the whole (update outputs/update states)
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   YA(k)
      =
gA(XA(k)) YA(k)

UB(k)
   =

.
     XB(k)  
         =
fB(XB(k),UB(k)) 

YB(k)

UA(k)
   =

.
     XA(k) 
          =
fA(XA(k),UA(k)) 

        YB(k) 
           =
gB(XB(k),UB(k))

Model A Model B Model A

Figure 3: Defined execution order between NDF and DF models

procedure takes place in a single instant (t = tk) of the simulated time. Obviously,

it is enough to have one NDF model in the loop to prevent the outputs from being

delayed by a causality cycle.

4.2. 2nd case: All the models are DF

In this case, model A and model B are both DF. At initial conditions (k = 0),

XA(tk) and XB(tk) are known but none of YA(tk), YB(tk), ẊA(tk) and ẊB(tk) are ready

to be computed. Indeed, YA(tk) and ẊA(tk) need UA(tk) = YB(tk), and at the same

instant YB(tk) and ẊB(tk) need UB(tk) = YA(tk). This is a deadlock configuration

and the loop is called algebraic. An execution order between A and B must be

specified.

Regardless the execution order, it is inevitable to have at least a delayed model

corresponding to the first executed one (Fig. 4). In fact, breaking the algebraic

loop means that the link between the two models is replaced by a delay equal to

the communication time-step Tc.

However, by having a good knowledge on the models, the delay-induced er-

rors may be reduced. In fact, knowing if the outputs of a model are weakly or

strongly coupled to its inputs and/or if they are slowly (e.g. pressure, tempera-

ture) or rapidly changing may help to determine an efficient execution order. It

is interesting in that case to begin by the model where the majority of its outputs

are weakly coupled to its inputs and/or that are changing smoothly because its

behavior can be assimilated to a NDF or a weak DF model. Nevertheless, even if

the delay-induced errors are reduced, they cannot be totally eliminated.
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~

Delay
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~

YB(k-1)

UA(k)
   =

Figure 4: Delayed outputs due to the breaking of the algebraic loop

5. Proposed model of computation: The refined co-simulation approach

5.1. Refined dependency graph with the FMI/FMU specification

Even with an efficient execution order, when all the models are DF, delayed

outputs still exist in the modular co-simulation approach. To take advantage of the

model splitting without adding useless delays, it deserves to look at the problem

with a refined viewpoint. Thanks to the FMI specifications, it is possible to access

information about the relationships between inputs and outputs inside a model

encapsulated in a FMU (Fig. 5).

Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Figure 5: Input/Output connection through intra and inter models view

Therefore the co-simulation processing can be refined. Instead of considering

the entire module as DF or NDF, it is possible with FMI to sort the outputs by
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identifying locally if they are DF or NDF. For example, in Fig. 5, model A and

model B are both DF at the module level. Exploring the input and output links

inside each model reveals there is no cycle which contains only DF outputs. Fur-

thermore, a FMU provides different functions to compute each output separately

(i.e. components of (1b)), and a specific one to update the model states (i.e. inte-

grate (1a)). By knowing both intra and inter model dependencies between inputs

and outputs, these functions allow various execution possibilities without a strict

model execution order. The parallelization granularity is increased and the distri-

bution of the different operations among the different processors becomes a more

complex problem.

A co-simulation of the different FMUs with constant communication steps

can be described by a directed graph where vertices are operations and edges

are precedence relations between these operations. Moreover, knowing that the

global model is described by ODEs and does not present algebraic loop, such

graph is necessarily a Direct Acyclic Graph (DAG) (Fig. 6). More precisely, oper-

ations are either update output (updateout), update input (updatein) or update state

(updatestate) function calls. An edge from an updateout to an updatein corresponds

to an inter model data dependency (for example from YB2 to UA1 in Fig. 6). These

edges are the expression of the data dependencies between the models. An edge

from an updatein to an updateout expresses an intra model DF dependency (for

example from UB3 to YB1 in Fig. 6). These dependencies are listed in each model

FMU. There is an edge from each updatein to the updatestate of the same model

(for example from UA2 to ẊA in Fig. 6), which means that all model inputs are

necessary to update the state of the model. Finally, there is an edge from each

updateout to the updatestate of the same model (for example from YA3 to ẊA in

Fig. 6), because the computation of Y(tk) needs X(tk) which is no longer available

after updatestate computed X(tk+1). To run a co-simulation, each co-simulation step

needs the whole DAG execution. Nevertheless the previous DAG execution must

be totally finished before beginning the new one.

5.2. Scheduling heuristic

To achieve fast multi-core simulation, operations must be distributed and sche-

duled among the different available cores. To be effective, the distributed schedule

must take into account the time cost of each operation. We propose to use an off-

line heuristic approach similar to the one of [24]. The heuristic considers start and

end dates for each operation and tends to minimize the critical path latency of a

DAG, in which a computation time is attached to each operation. For real-time

simulation purpose, these computation times are estimated by their Worst Case
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Figure 6: Refined dependency graph

Execution Time. Here, the goal is fast simulation, which is not safety critical, so

that an average computation time (e.g. of a single-core simulation benchmark) can

be used. In practical examples, the updatestate operations are by far more costly

than updateout, while updatein are simple data copy whose cost is negligible.

The heuristic cost function computes the schedule pressure of a given opera-

tion on a specific core. This schedule pressure is the difference between the critical

path increase (by setting this operation on this core) and the operation flexibility

(difference between its earliest start time and its latest end time). At each step, for

each remaining operation for which all predecessors have already been scheduled,

the heuristic computes the schedule pressure of this operation on each core, and

sets this operation on its best core, i.e. the one which minimizes the pressure.

Then, among all the pending operations, the one with the largest pressure (on its

best core) is selected and added to the schedule.

Nevertheless, there are other operation allocation constraints. Indeed, FMI

standard does not force a FMU operation to be thread safe and currently, the FMU

operations updateout calls cannot be performed in parallel. Because this constraint

might be relaxed either with a next FMI version or from another FMU tool, it is

decided to temporarily reduce the heuristic search space. All the operations related

to a given FMU are bind to the same core, which is the one elected by the heuristic

for the first scheduled operation of the given FMU. Each time an operation is

scheduled, synchronization operations are inserted if needed. For example if YA1

and UB3 are allocated by the heuristic on different cores, a semaphore is signalled

just after YA1 on its core, and a waiting semaphore operation is executed on the

other core just before UB3.
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Using the computation time Ci of each operation OPi, the first step for the

scheduling heuristic is to compute the start and end dates from the graph start

denoted S i and Ei, then the critical path CP := max
i

Ei. After that, the start and

end dates from the graph end denoted S ∗
i

and E∗
i

and then the flexibility Fi :=

CP − Ei − E∗
i

can be performed. Finally, the heuristic incrementally builds the

scheduling by defining the best core allocation for each ready operation and then

by selecting the one with the maximal cost (see Algorithm 1).

Compared to distributed co-simulation approaches with a model-based gran-

ularity, the refined approach has two important advantages. First, using a finer

granularity potentially increases the models decoupling possibilities and allows

to reach increased co-simulation speed-up. Second, dependencies between the

models inputs and outputs are satisfied through both inter and intra model de-

pendencies, allowing to find a valid schedule without inserting useless delays. It

makes the co-simulation results closer to the reference simulation ones. The next

section illustrates these advantages on an powertrain case study.

6. Case study

6.1. Engine simulator

In this study, a Spark Ignition (SI) RENAULT F4RT engine has been modeled.

It is a four-cylinder in line Port Fuel Injector (PFI) engine in which the engine

displacement is 2000 cm3. The air path is made of a turbocharger with a mono-

scroll turbine controlled by a waste-gate, an intake throttle and a downstream-

compressor heat exchanger.

The engine model was developed using ModEngine library [25]. ModEngine

is a Modelica [26] library that allows for the modeling of a complete engine with

diesel and gasoline combustion models. The engine model and the split parts were

imported into xMOD model integration and virtual experimentation tool [27], us-

ing the FMI export features of Dymola.

The engine model has 118 state variables and 312 event indicators (of discon-

tinuities).

6.2. Decomposition approach

The partitioning of the engine model is performed by separating the four-

cylinder from the air path (AP), then by isolating the cylinders (Ci/i = 1..4) from

each other. This kind of splitting allows for the reduction of the number of events

acting on each sub-system. In fact, the combustion phase raises most of the events,
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Initialization;

Set Ω the set of all the operations;

Set Γ the set of all the available cores;

foreach OPi ∈ Ω do

Set FixedCorei := NOT ALLOCATED; (operation OPi is not already allocated);

end

foreach Core j ∈ Γ do

Set TCore j
:= 0; (where TCore j

corresponds to the first idle time on Core j);

end

Set O the set of operations without predecessors;

while O , ∅ do

foreach OPi ∈ O do

if FixedCorei == NOT ALLOCATED then

Set costi to∞; (cost of OPi is set to the maximum value);

foreach Core j ∈ Γ do

S ′
i

:= max(S i,TCore j
); (new start date of OPi when executed on Core j);

costi, j := S ′
i
+Ci + E∗

i
− CP; (cost of OPi when executed on Core j);

if costi, j < costi then

Set costi := costi, j;

Set BestCorei := Core j;

end

end

else

Set BestCorei := FixedCorei;

S ′
i

:= max(S i,TCoreBestCorei
);

costi := S ′
i
+Ci + E∗

i
− CP;

end

end

Find OPi with maximal costi in O;

Schedule OPi on its core BestCorei;

Set k := BestCorei;

TCorek
:= TCorek

+Ci; (Advance the time of Corek);

if OPi is the first operation scheduled for its FMU then

foreach OP j of this FMU do

FixedCore j := BestCorei;

end

end

Remove OPi from the set O;

Add to the set O all successors of OPi for which all predecessors are already

scheduled;

end

Algorithm 1: Scheduling heuristic: minimization of cost function.
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which are located in the firing cylinder. The solver can process them locally dur-

ing the combustion cycle of the isolated cylinder, and then enlarge its integration

time-step until the next cycle.

From a thermodynamic point of view, the cylinders are loosely coupled, but

a mutual data exchange does still exist between them and the air path. Since the

dynamics of the air path is slow (it produces slow outputs to the cylinders, e.g.

temperature) and those of the cylinders are fast (they produce fast outputs to the

air path, e.g. torque), the execution order of the split model is chosen from air

path to cylinders in accordance with the analysis in section 4.2

The model is divided into 5 components and governed by a basic controller

denoted CTRL. It gathers 91 inputs and 98 outputs. The scheduling of the refined

co-simulation approach deals with 103 operations (5 updatestate and 98 updateout).

6.3. Models of computation

This study compares the simulation performance, observing the trade-offs be-

tween the simulation speed and simulation accuracy, for the following approaches:

• Simulation of the whole engine model in a single thread using a single solver, to

provide the reference for precision evaluations.

• Modular co-simulation of the split model with respect to data dependencies. This

is the standard version of the modular co-simulation, denoted “sv-MCosim”,

where the execution order is fixed from models with slow changing outputs to

those with fast changing outputs. For the case study, all the cylinders must wait

for the execution of the AP.

• Modular co-simulation of the split model with broken data dependencies. This

is the extended version of the modular co-simulation approach, denoted “ev-

MCosim”, where all the data dependencies are relaxed. For the case study, the

AP and all the cylinders are integrated in parallel during each communication

interval.

• Refined co-simulation of the split model, this method is denoted “RCosim”. For

the case study, all the inputs and the outputs are updated following the order of

scheduling heuristic, then the integration of the AP and the cylinders are per-

formed in parallel.

These methods are sketched in Fig. 7, where DT is the execution time during a Tc.

DT gathers the integration of the models in the blocks Xi (e.g. XAP for AP) and
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the input and output updates, as in the IN/OUT blocks for modular co-simulation

and in the IN/OUT/WAIT blocks for refined co-simulation (the waiting times are

introduced by the scheduling heuristic). The models are simulated on separate

cores using their own solver.

IN/OUT IN/OUT IN/OUT/WAIT

XAP

XC1

XAP

DT1=DTAP + max(DTCi / i=1..4)

DT1 DT2 DT3

DT2,3=max(DTAP, max(DTCi / i=1..4))

XC2

XC3

XC4

XC1

XC2

XC3

XC4

XC1

XC2

XC3

XC4

XAP

DTAP

DTC1

(a) (b) (c)

Figure 7: (a) sv-MCosim method; (b) ev-MCosim method; (c) RCosim method

7. Tests and results

Tests are performed on a platform with 16 GB RAM and 2 “Intel Xeon” pro-

cessors, each running 8 cores at 3.1 GHz.

7.1. Model validation

The model validation is based on the observation of the intake and exhaust

manifold pressures (Pman, Pexh), air-fuel equivalence ratio (AFR) and torque.

These outputs are computed using LSODAR which is a variable time-step solver

with a root-finding capability to detect the events occurring during the simulation.

It has also the ability to adapt the integration method depending on the observed

system stiffness.

The simulation reference Yref is built from the integration of the entire en-

gine model, the solver tolerance (tol) being decreased until reaching stable results,

which is given for tol = 10−7 at the cost of a slow simulation speed.
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Then, to explore usable trade-offs between the simulation speed and precision,

the relative integration error Er (defined in (6)) is set to be less than 1 %.

Er(%) =
100

N
.

N−1
∑

i=0

(
∣

∣

∣

∣

∣

Yref(i) − Y(i)

Yref(i)

∣

∣

∣

∣

∣

)

(6)

with N the number of saved points during 1s of simulation.

Iterative tests show that the desired error (Er ≤ 1 %) can be reached with

tol = 10−4 (Table. 1). Using the split model, each of its 5 components is assigned

to a dedicated core and integrated by LSODAR with tolerance tol = 10−4.

Table 1: Relative integration error

Outputs Pman Pexh Torque AFR

Er(%) 0.027 0.05 0.38 0.37

The modular co-simulation executes for each model all the updateout oper-

ations in one single block as for the updatestate operation. Fig. 8 illustrates the

time-chart and shows the waiting period on the AP which it represents the differ-

ence between sv-MCosim and ev-MCosim.

CTRL
AP
C1
C2
C3
C4

CTRL
AP
C1
C2
C3
C4

1 updatestateoperation 1 updateout operation 

sv-MCosim

ev-MCosim

Figure 8: Modular co-simulation time-chart

The refined co-simulation schedules the 103 updateout and updatestate opera-

tions. As described in Fig. 9, the computation time of updateout are negligible
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compared to updatestate. A zoom on the time-chart shows the scheduling of the

updateout operations.

CTRL
AP
C1
C2
C3
C4

RCosim

Zoom on updateout operations 1 updatestate operation

Figure 9: Scheduling of the update operations with RCosim

7.2. Accuracy tests

7.2.1. DF outputs

The torque is a DF output of the air path. Test results show that the torque is

delayed by Tc with the modular co-simulation method, as expected since all the

models are DF. However, thanks to the refined co-simulation method, the torque

is almost identical to the reference as indicated in Fig. 10.

Then, the relative integration error is computed for several communication

steps as in Table. 2. The results show that the refined co-simulation method keeps

the integration stable even for large Tc. In fact, Er stays close to 1 %, whereas

the modular co-simulation method suffers from delay-induced errors up to almost

20 %.

7.2.2. NDF outputs

The manifold pressure is a NDF output of the air path. For this case, there

is no delay whatever the method. As for the torque, the relative integration error

of the pressure also depends on Tc (Fig. 11). However, the step width is not so

harmful as there are not loop-induced delays.
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Figure 10: The behavior of a DF output regarding the different methods

Table 2: Relative integration error on the (DF) torque

Simulation method sv-MCosim ev-MCosim RCosim

Er(%) with Tc = 100 µs 2.95 4.38 0.68

Er(%) with Tc = 250 µs 9.12 9.33 1.1

Er(%) with Tc = 500 µs 19.83 19.19 1.37

Table. 3 shows that the refined method is again advantageous for the simula-

tion accuracy. To approach the desired error both for DF and NDF outputs, Tc

must be restricted to 100 µs for modular co-simulation whereas it can be enlarged

up to 500 µs with refined co-simulation.

Table 3: Relative integration error on the (NDF) manifold pressure

Simulation method sv-MCosim ev-MCosim RCosim

Er(%) with Tc = 100 µs 0.61 0.63 0.5

Er(%) with Tc = 250 µs 1.2 1.11 0.88

Er(%) with Tc = 500 µs 1.8 1.75 1.23
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Figure 11: Effect of Tc on a NDF output for RCosim method

7.3. Simulation time speed-up

The integration of the engine model (118 state variables and 312 event indica-

tors) is time-consuming. With tol = 10−4, the sequential simulation on a single-

core is 76.5 times slower than real-time. Compared with the reference case, speed-

ups have been measured for Tc = 250 µs (to keep Er ≈ 1 %). Table. 4 show that

the speed-up reaches 7.82 for sv-MCosim and 8.84 for ev-MCosim (with relaxed

dependencies between the air path and cylinders). The largest speed-up is gained

with the refined co-simulation method and reaches 10.87, so that the simulation

speed is now only 7.04 times slower than real-time. In fact, while integrating with

the right (undelayed) input values at each Tc, the variable time-step solver rapidly

finds the largest possible integration step. Indeed this later speed-up cannot be

observed using fixed-step solvers.

Table 4: Simulation speed-up with the different approaches

Simulation method sv-MCosim ev-MCosim RCosim

Speed-up 7.82 8.84 10.87

It is remarkable that, in all cases, the usual execution time penalty due to

the multi-threading and distribution on 5 cores is greatly overcompensated by the
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gains due to the wise partition across the original model.

7.4. Critical analysis of the results

The refined co-simulation technique showed significant improvements on re-

sults accuracy without deteriorating the speed-up provided by the modular co-

simulation. This new technique allows a non-expert user to split a complex dy-

namic model without care of the execution order of the different blocks nor how

to cut. In fact, by preserving a fine-grained execution order between updateout op-

erations, the integration and the states computation can be performed in parallel

without implying delays on DF outputs. However, the efficiency of this approach

lies in the assumption that the states integration is by far time consuming com-

pared to the outputs computation. This assumption was based on work experience

and major encountered industrial models and it was verified for the engine model.

To generalize the test results to any hybrid dynamical model, it is necessary to

take into consideration the limits of the method’s efficiency. This is reached when

the sum of all the computation times of updateout operations –that belong to the

critical path CP– is approaching the computation time of an updatestate operation.

In that case, the cost of updateout operations cannot longer be neglected. However,

it can always be compensated by the use of variable-time solver and the speed-up

will be then similar to ev-MCosim.

Finally, our refined co-simulation proposed method aims at improving the ac-

curacy of the existent modular co-simulation, assuming that a suitable split system

is already provided. In fact, an associated system decomposition methodology is

given in a previous work ([19]) that explain why and how the relaxation of the

number of discontinuities (by splitting the hybrid dynamical system) improves

the computation time and provides a supra-linear speedup. Then in [20], a system

splitting using the block-diagonal form of incidence matrices, related to states and

events was studied and applied to a mono-cylinder model which is not intuitive to

split.

8. Summary and Perspectives

Cyber-Physical Systems gather a large number of physical and digital compo-

nents, and simulation appears to be a key tool for their design and early valida-

tion. Beyond their size, their simulation is made difficult by their hybrid behavior

combining ODE/DAEs with events, which prevents the usual sequential single-

threaded simulation tools to reach fast simulation speeds.
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Co-simulation allows to simulate together models coming from multi-disci-

plinary areas. This modular decomposition, based on the structure of the engi-

neering system, provides a natural way to parallelize the original system across

the model. More precisely, an efficient decomposition is intended to decouple the

sub-models and minimize, as far as possible, their data and events related depen-

dencies. Thus each model can be integrated by its own solver using an optimal

integration step size, while data exchange is only possible at precise communica-

tion points. A suitable off-line scheduling of operations, taking care of the models

I/O dynamics, allows for supra-linear speed-ups of simulations on a multi-core

architecture, while keeping the simulation precision under control.

In practical applications, current co-simulation set-ups use a constant commu-

nication grid shared by all the models. Further improvements are expected from

adaptive communication step sizes which may better handle the various changing

dynamics of the models [28]. The size of the communication steps has a direct

impact on the simulation errors, and effective communication step control should

rely on on-line estimations of the errors induced by slackened exchange rates.

Data extrapolation over steps is also expected to enhance the simulation precision

over large communication steps. Indeed the stability of multi-rate simulators with

adaptive steps needs to be carefully assessed, for example based on recent works

on errors propagation inside modular co-simulations [18].

Finally, this study focused on numerical solvers based on time discretization

and it is expected for the future to compare their efficiency to those based on state

quantization since they are suitable for discontinuous ODEs [29].

References

[1] T. Blochwitz, T. Neidhold, M. Otter, M. Arnold, C. Bausch, M. Mon-

teiro, C. Clauß, S. Wolf, H. Elmqvist, H. Olsson, A. Junghanns, J. Mauss,

D. Neumerkel, J.-V. Peetz, The functional mockup interface for tool in-

dependent exchange of simulation models, in: 8th Int. Modelica Conf.,
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