
HAL Id: hal-01018348
https://ifp.hal.science/hal-01018348v2

Submitted on 20 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast multi-core co-simulation of Cyber-Physical
Systems : application to internal combustion engines

Abir Ben Khaled, Mohamed El Mongi Ben Gaïd, Nicolas Pernet, Daniel Simon

To cite this version:
Abir Ben Khaled, Mohamed El Mongi Ben Gaïd, Nicolas Pernet, Daniel Simon. Fast multi-core
co-simulation of Cyber-Physical Systems : application to internal combustion engines. Simulation
Modelling Practice and Theory, 2014, 47 (September), pp.79-91. �10.1016/j.simpat.2014.05.002�. �hal-
01018348v2�

https://ifp.hal.science/hal-01018348v2
https://hal.archives-ouvertes.fr


Fast multi-core co-simulation of Cyber-Physical Systems :
Application to internal combustion engines

Abir Ben Khaleda, Mongi Ben Gaida,∗, Nicolas Perneta, Daniel Simonb

aIFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
bINRIA/LIRMM (UMR 5506) - DEMAR team, 95 rue de la Galéra, 34090 Montpellier, France

Abstract

The design process of complex Cyber-Physical Systems often relies on co-simulations of the
system, involving the interaction of several simulated models of sub-systems. However, reach-
ing real-time simulations is currently prevented by prohibitive CPU times using the single-
threaded existing simulation tools. This paper investigates the problem of the efficient parallel co-
simulation of hybrid dynamical systems. It introduces a finely-grained co-simulation method en-
abling numerical integration speed-ups. It is obtained using a partition across the model into loo-
sely coupled sub-systems with sparse communication between modules. The proposed scheme
leads to schedule a large number of operations with a wide range of execution times. A suitable
off-line scheduling algorithm, based on the input/output dynamics of the models, is proposed to
minimize the simulation errors induced by the parallel execution. This scheme is finally tested
using the phenomenological model of a combustion engine issued from the Functional Mockup
Interface framework. Compared with the sequential case, it shows significant speed-ups while
keeping the numerical integration accuracy under control.

Keywords:
Hybrid dynamical system, Distributed simulation, Cyber-Physical System, Numerical
integration, Model decomposition, Multi-core scheduling

1. Introduction

A major challenge of the 21th century is to succeed the energy transition, from an economy
that is currently based on fossil energy, to an economy that relies on renewable energy and
energy efficiency. This challenge affects the whole energy cycle: production, transport as well as
consumption.

The transport sector consumes significant amounts of energy. It is predominantly reliant on
oil, a resource that is limited and whose availability is expected to vanish during this century.
Reducing fuel consumption and diversifying energy sources are major challenges in this field.

∗Corresponding author at: IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
Tel.:+33147525029

Email addresses: abir.ben-khaled@ifpen.fr (Abir Ben Khaled), mongi.ben-gaid@ifpen.fr (Mongi Ben
Gaid), nicolas.pernet@ifpen.fr (Nicolas Pernet), daniel.simon@inria.fr (Daniel Simon)

Preprint submitted to Simulation Modelling Practice and Theory May 21, 2014



Automobiles are typical examples of Cyber-Physical Systems, where chemical energy (gaso-
line, diesel, ethanol fuel...) or electrical energy is converted to kinetic energy. Electronic con-
trollers and networks present in vehicles interact with vehicles components that are sub-systems
of multi-physical nature (mechanical, thermodynamic, electrical ...) and whose design involves
multi-disciplinary teams.

In this design process, simulation is proven to be an indisputable step between concept design
and prototype validation. Realistic simulations allow for the preliminary evaluation, tuning and
possibly redesign of proposed solutions ahead of implementation, thus lowering the risks. To
be confident in the result, building such simulations needs high fidelity models both for the
components and for their interaction.

Currently, building high fidelity system-level models of Cyber-Physical Systems in general
and automotive cars in particular, is a challenging duty. One problem is the diversity of modeling
and simulation environments used by the various involved multi-disciplinary teams. Particular
environments are preferred for a specific use due to distinctive strengths (modeling language,
libraries, solvers, cost. . . ). The Functional Mock-up Interface (FMI) specification has been pro-
posed to improve this issue [1]. It is a tool independent and open standard1 designed to support
both the exchange and the co-simulation of dynamic models by combining software components
provided by different sources. In particular, it was intended from the beginning to support the use
of the AUTOSAR2 standard and the Modelica language. The Model Exchange part of the stan-
dard provides the encapsulation of models equations in well defined components and interfaces.
The Co-Simulation part allows for the coupling of several models together with their solvers in a
co-simulation environment, designed to manage the data exchange and synchronization between
subsystems.

A second problem is the prohibitive CPU times observed when such high-fidelity models are
run. This is due to the fact that major system-level simulation softwares are currently unable
to exploit multi-core processors, because they are relying on sequential Ordinary Differential
Equation (ODE) and Differential Algebraic equation (DAE) solvers. To solve this issue, several
studies have shown that co-simulation approaches can provide significant improvements. Co-
simulation allows to simulate together models coming from different areas and to validate both
the individual behaviors and their interaction. The simulators may be exported from original
authoring tools as Functional Mock-up Units (FMUs) and then imported in a co-simulation en-
vironment. Hence they cooperate at run-time thanks to the FMI definitions of their interfaces,
and to the master algorithms of these environments. Moreover the “FMI for model exchange”
framework [1] allows for solving independently the sub-models using custom solvers.

Both modeling and numerical integration deal with approximations, hence it is first needed
to find a satisfactory trade-off between the simulation speed and precision. Ultimately, the sim-
ulation of the physical models will take into account some real-time constraints introduced by
the interaction with the real components. Indeed, these models are intended to validate con-
trollers, e.g., to combine high efficiency with clean combustion. Using hardware-in-the-loop
(HIL) simulations means that the interaction between the simulated world and the real world
must be consistent, i.e. that the simulated time and real-time must match at some precise points
[2].

This paper proposes an approach allowing the speed-up and the parallel simulation of Cyber-
Physical Systems modeled by hybrid ODEs and relying on the FMI specification, as well as a

1https://www.fmi-standard.org/
2http://www.autosar.org

2

https://www.fmi-standard.org/
http://www.autosar.org


complex benchmark for its assessment. This approach can be seen as an intermediate method
between simulation and co-simulation.

The paper is structured as follows. Section 2 surveys related works on several paralleliza-
tion approaches. In Section 3, a partitioned model is formalized for co-simulation, then Section
4 describes the model of computation. In Section 5, we propose a co-simulation method that
improves both the integration speed and the accuracy of the solution, compared to the existing
method. Section 6 presents a case study using an internal combustion engine model, and sev-
eral experiments are conducted in Section 7 to demonstrate the effectiveness of the proposed
approach. Section 8 concludes this paper and discuss future work plans.

2. Related work

Burrage proposed a classification into three categories of the methods for the parallel solution
of ODEs [3], that is still valid for hybrid ODEs or DAEs.

2.1. Parallelization across the method

The first idea is to exploit concurrent functions evaluations (like state derivatives) during the
computation of each integration step.

Explicit multistage Runge Kutta methods are sequential. However, in some cases, two or
more stages of Diagonally Implicit Runge Kutta methods can be executed in parallel, if some
coefficients of the strictly lower triangular matrix associated to the method are zero. The paral-
lelization of these methods was studied in [4]. The conclusion is that the parallelization potential
is limited.

In the sixties, Miranker and Liniger [5] have proposed a framework that allows devising
parallel predictor/corrector methods. Later generalizations are reviewed in the surveys by [6]
and [7]. Like the previous approaches, these methods offer a limited parallelization potential.
One drawback is their relatively small stability regions.

Other approaches that can fit this classification rely on parallelizing matrix inversions, which
are needed when using an implicit method [8] or parallelizing operations on vectors for ODEs
resolution by separating them into modules (see PVODE solver [9] implemented using MPI
(Message-Passing Interface) technology).

2.2. Parallelization across the steps

In this approach, equations are solved in parallel over a large number of steps. It is based on a
time decomposition method, originally introduced to solve Partial Differential Equations (PDEs)
using the multi-grid approach [10]. Among the techniques introduced in this area, the Parareal
scheme proposed in [11] and the PITA algorithm described in [12], where both of them were
derived from the multiple shooting method [13]. They follow the approach of splitting the time
domain in sub-domains by considering two levels of time grids. A first parallel computation of
a predicted solution is performed with a fine time grid. After that, at each end of time of sub-
domains, the solution makes a jump with the previous Initial Boundary Value (IBV) of the next
time sub-domain. A correction of the IBV for the next fine grid is then computed on the coarse
time grid. Nevertheless, this approach seems to have difficulties for stiff nonlinear problems.

3



2.3. Parallelization across the model

Numerically integrating PDEs in parallel is made easier by the need to solve across their
spatial dimensions, which naturally leads to data parallelism. However, this is not the case for
ODEs and DAEs, where both models and solvers exhibit a strong sequential nature. Decoupling
this apparently sequential computation is an important issue for distributed simulation, because
the way of decoupling a system could significantly affect the simulation results and speed. Some
important methods tried to exploit the parallelization across the model.

Waveform relaxation [14] is a method that relies on Picard iteration approach for solving ODEs.
It is based on a Jacobi or Gauss-Seidel iterative scheme in the framework of which each relax-
ation element is called a wave. The global system is partitioned into subsystems, which are
solved separately and then, they exchange the computed waves. The algorithm is repeated until
global convergence. The efficiency of this method, i.e. the convergence rate, depends on the
quality of the system partitioning, and works better with weak coupling. In [15], three types of
coupling methods were compared to show how they affect the convergence of the solution.

Transmission line modeling [16] is a discrete modeling method that provides a general ap-
proach for decoupling systems. It represents the physical process by a transmission-line graph.
According to this method, the decoupling point should be chosen where variables change slowly.
Consequently, the decoupled subsystems are seen as if they were connected by constant vari-
ables and the error due to time delays can be significantly decreased or even eliminated (when
the communication step is chosen equal to the real physical delay of the decoupled components).
The Hopsan [17] simulation tool, used primarily for hydro-mechanical simulation, natively im-
plements this method.

Modular time-integration or co-simulation sees the system to be integrated as a connection
of several subsystems. The data exchange between subsystems is restricted to the discrete syn-
chronization points. Between these synchronization points the subsystems are integrated inde-
pendently of each other. The numerical stability of these methods was studied in [18]. In [2],
the application to the context of Hardware-In-The-Loop was studied, and several alternatives
were proposed to perform real-time simulation of complex physical models. The study focused
on the case of fixed time-step solvers, then it was extended in [19] to examine the case of vari-
able time-step solvers. In [20], automatic decoupling techniques, based on incidence matrices,
were studied to improve the parallel performance of hybrid dynamical systems. Parallelization
of Declarative Object-Oriented Models was studied in [21], and an approach for the decompo-
sition into weakly coupled components was proposed in [22].

3. Motivation for multi-simulator approach

3.1. Model partition for numerical integration

Complex physical systems are generally modeled by hybrid non-linear ODEs or DAEs. The
hybrid behavior is due to the discontinuities, raised by events triggered off when a given threshold
is crossed (zero-crossing), and it plays a key role in the complexity and speed of the simulation.
In fact, more the model has events and more the numerical integration is slowed down. This be-
havior is observed for both fixed and variable time-step solvers. Fixed time-step solvers cannot
exactly catch the time of discontinuities, and the time-step must be chosen very small to come
closer to the instant when an event occur. For variable time-step solver which do not have the

4



ability for events detection, the integration time-step is decreased until reaching tiny values to
capture the zero-crossing instant. For those with zero-crossing detection, the integration is any-
way restarted anew at each event occurrence after an iterative event location procedure [23]. It
appears that numerous discontinuities in the hybrid system sadly prevents variable step solvers
to reach the high integration speeds which could be attained only considering the system’s con-
tinuous dynamics [20].

However, it often appears that the incidence matrices between state variables, or between
state variables and events, are sparse. Events are raised only by the evolution of a subset of the
state vector, and the corresponding discontinuities only act upon a subset of the system. Thus,
to improve the simulation speed, it is proposed to partition the model into sub-systems such that
every discontinuity processing can be, as far as possible, encapsulated in a single sub-system.

Hence, each sub-system can be integrated by its own solver, avoiding interrupts coming from
unrelated events. Moreover, events detection and location inside a sub-system involve a smaller
variables set and can be processed faster.

Note that we are especially interested on the modular co-simulation approach. In fact, unlike
the waveform relaxation technique, there are no iterations until convergence, which is more
suitable for real-time and HIL simulation. In addition, compared to TLM, the communication
step can be chosen different from the real physical delay of the decoupled components.

3.2. Model formalization

A formal model is now provided to support the co-simulation analysis. Consider an initial
hybrid dynamical system Σ described by nonlinear differential equations :

Ẋ = f (t, X,D,U) for tn ≤ t < tn+1, (1a)
Y = g(t, X,D,U), (1b)

where X ∈ RnX is the continuous state vector, D ∈ RnD is the discrete state vector, U ∈ RnU is the
input vector, Y ∈ RnY is the output vector and t ∈ R+ is the time.

(tn)n≥0 is a sequence of strictly increasing time instants representing discontinuity points
called “state events”, which are the roots of the equation

h(t, X,D,U) = 0. (2)

h is usually called zero-crossing function or event indicator, used for event detection and loca-
tion [23].

At each time instant tn, a new continuous state vector may be computed as a result of the
event handling

X(tn) = I(tn, X,D,U), (3)

and a new discrete state vector may be computed as a result of discrete state update

D(tn) = J(tn−1, X,D,U). (4)

If no discontinuity affects a component of X(tn), the right limit of this component will be equal
to its value at tn.

It is assumed that Σ is well posed in the sense that a unique solution exists for each admissible
initial conditions X(t0) and D(t0) and that consequently X, D, U, and Y are piece-wise continuous
functions in [tn, tn+1].

5



To execute the system in parallel, the model must be split into several sub-models. For
simplicity, assume that the system is decomposed into two separate blocks denoted model A and
model B in Fig. 2. Our approach generalizes to any decomposition into N blocks of system Σ.

Therefore, the sub-systems can be written as:{
ẊA = fA(t, XA,DA,UA)
YA = gA(t, XA,DA,UA) and

{
ẊB = fB(t, XB,DB,UB)
YB = gB(t, XB,DB,UB) (5)

with X = [XA XB]T and D = [DA DB]T

Here UA are the inputs needed for model A, directly provided by the outputs YB produced by
model B. Similarly, UB are the inputs needed for model B directly provided by the outputs YA

produced by model A.
Note that when the simulators are run in parallel, using the co-simulation approach, they

are periodically synchronized to exchange data at every communication time-step denoted Tc

(Fig. 1). It is assumed that the synchronization steps are by far larger than the internal integration
steps, so that each simulator integrates at its own rate and considers the data coming from other
simulators are held as constant between the communication points.

model A

model B

Initialization Exchange 1 Exchange 2

Integration step

Communication step

Communication step

Integration step

Global model

Tc

Figure 1: Periodic synchronization between simulators

N blocks resulting from system Σ are connected into an arbitrary diagram, each block M is
assigned to a thread and a dedicated solver. In a preliminary approach, a common communication
step-size Tc is shared by all blocks, so that they all read their inputs and update their outputs at
communication points that are multiple of Tc.

3.3. Model decomposition and data dependencies cycles

To exploit the parallelism provided by the multi-core platform a physical model is partitioned
into co-simulation components. However, the partitioning process may lead to the generation of
dependency loops between the components (as in Fig. 2).

To start the co-simulation, these loops must be broken by choosing an execution order. De-
pending on this choice, it is possible that some outputs are delayed, thus inducing simulation
errors. The next section examines how to break these loops.

6



K

K

K

K

∫

∫

∫

∫

+
+

+
+

UA1

UA2

YA1

YA2

YB1

YB2

UB1

UB2

X1

X2

X1 = K.X1 + X2

X2 = K.X2
{

Global model

Model A

Model B

X1

X2

.

.

Figure 2: Loop creation due to the model splitting

4. Model of computation with the modular co-simulation approach

As mentioned in section 3.3, breaking the created loop may lead to delayed outputs, depend-
ing on the models input/output properties. A model is Non Direct Feedthrough (NDF) when all
its outputs depend only on its state vector : Y = g(t, X). It is Direct Feedthrough (DF) if at least
one of its outputs is a direct function of the inputs : Y = g(t, X,U). Two cases are considered.

4.1. 1st case: Coexistence of DF and NDF models

In this case, model A and model B are respectively considered NDF and DF. Since the initial
conditions (k = 0) of XA(tk) and XB(tk) are known, only the outputs YA(tk) (and consequently
UB(tk)) are ready to be computed. After their calculation, ẊB(tk) and YB(tk) (and consequently
UA(tk)) are ready to run. Once UA(tk) is available, the computing of ẊA(tk) is ready to be run.
The same cycle is repeated until the end of simulation (Fig. 3).

   YA(k)
      =
gA(XA(k)) YA(k)

UB(k)
   =

.
     XB(k)  
         =
fB(XB(k),UB(k)) 

YB(k)

UA(k)
   =

.
     XA(k) 
          =
fA(XA(k),UA(k)) 

        YB(k) 
           =
gB(XB(k),UB(k))

Model A Model B Model A

Figure 3: Defined execution order between NDF and DF models

7



In fact the loop is not algebraic because the execution order is naturally defined. Therefore,
the delay is avoided when starting with the NDF models, i.e. using NDF→DF order. In other
words the whole (update outputs/update states) procedure takes place in a single instant (t = tk)
of the simulated time. Obviously, it is enough to have one NDF model in the loop to prevent the
outputs from being delayed by a causality cycle.

4.2. 2nd case: All the models are DF

In this case, model A and model B are both DF. At initial conditions (k = 0), XA(tk) and XB(tk)
are known but none of YA(tk), YB(tk), ẊA(tk) and ẊB(tk) are ready to be computed. Indeed, YA(tk)
and ẊA(tk) need UA(tk) = YB(tk), and at the same instant YB(tk) and ẊB(tk) need UB(tk) = YA(tk).
This is a deadlock configuration and the loop is called algebraic. An execution order between A
and B must be specified.

Regardless the execution order, it is inevitable to have at least a delayed model corresponding
to the first executed one (Fig. 4). In fact, breaking the algebraic loop means that the link between
the two models is replaced by a delay equal to the communication time-step Tc.

YA(k)

UB(k)
   =

.
     XB(k)  
         =
fB(XB(k),UB(k)) 

YB(k)

UA(k)
   =

.
     XA(k) 
          =
fA(XA(k),UA(k)) 

        YB(k) 
           =
gB(XB(k),UB(k))

        YA(k)
           =
gA(XA(k),UA(k))

~

Delay

Model A Model B Model A

~

YB(k-1)

UA(k)
   =

Figure 4: Delayed outputs due to the breaking of the algebraic loop

However, by having a good knowledge on the models, the delay-induced errors may be re-
duced. In fact, knowing if the outputs of a model are weakly or strongly coupled to its inputs
and/or if they are slowly (e.g. pressure, temperature) or rapidly changing may help to determine
an efficient execution order. It is interesting in that case to begin by the model where the majority
of its outputs are weakly coupled to its inputs and/or that are changing smoothly because its be-
havior can be assimilated to a NDF or a weak DF model. Nevertheless, even if the delay-induced
errors are reduced, they cannot be totally eliminated.

5. Proposed model of computation: The refined co-simulation approach

5.1. Refined dependency graph with the FMI/FMU specification

Even with an efficient execution order, when all the models are DF, delayed outputs still exist
in the modular co-simulation approach. To take advantage of the model splitting without adding
useless delays, it deserves to look at the problem with a refined viewpoint. Thanks to the FMI

8



Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Figure 5: Input/Output connection through intra and inter models view

specifications, it is possible to access information about the relationships between inputs and
outputs inside a model encapsulated in a FMU (Fig. 5).

Therefore the co-simulation processing can be refined. Instead of considering the entire mod-
ule as DF or NDF, it is possible with FMI to sort the outputs by identifying locally if they are DF
or NDF. For example, in Fig. 5, model A and model B are both DF at the module level. Exploring
the input and output links inside each model reveals there is no cycle which contains only DF
outputs. Furthermore, a FMU provides different functions to compute each output separately (i.e.
components of (1b)), and a specific one to update the model states (i.e. integrate (1a)). By know-
ing both intra and inter model dependencies between inputs and outputs, these functions allow
various execution possibilities without a strict model execution order. The parallelization granu-
larity is increased and the distribution of the different operations among the different processors
becomes a more complex problem.

A co-simulation of the different FMUs with constant communication steps can be described
by a directed graph where vertices are operations and edges are precedence relations between
these operations. Moreover, knowing that the global model is described by ODEs and does not
present algebraic loop, such graph is necessarily a Direct Acyclic Graph (DAG) (Fig. 6). More
precisely, operations are either update output (updateout), update input (updatein) or update state
(updatestate) function calls. An edge from an updateout to an updatein corresponds to an inter
model data dependency (for example from YB2 to UA1 in Fig. 6). These edges are the expres-
sion of the data dependencies between the models. An edge from an updatein to an updateout
expresses an intra model DF dependency (for example from UB3 to YB1 in Fig. 6). These depen-
dencies are listed in each model FMU. There is an edge from each updatein to the updatestate of
the same model (for example from UA2 to ẊA in Fig. 6), which means that all model inputs are
necessary to update the state of the model. Finally, there is an edge from each updateout to the
updatestate of the same model (for example from YA3 to ẊA in Fig. 6), because the computation
of Y(tk) needs X(tk) which is no longer available after updatestate computed X(tk+1). To run a co-
simulation, each co-simulation step needs the whole DAG execution. Nevertheless the previous
DAG execution must be totally finished before beginning the new one.

9



YA1 UB1

YB2 UA1

UA2

YA2

YA3YB1UB3

UB2

XB

XA
.

.

Figure 6: Refined dependency graph

5.2. Scheduling heuristic

To achieve fast multi-core simulation, operations must be distributed and scheduled among
the different available cores. To be effective, the distributed schedule must take into account
the time cost of each operation. We propose to use an off-line heuristic approach similar to
the one of [24]. The heuristic considers start and end dates for each operation and tends to
minimize the critical path latency of a DAG, in which a computation time is attached to each
operation. For real-time simulation purpose, these computation times are estimated by their
Worst Case Execution Time. Here, the goal is fast simulation, which is not safety critical, so
that an average computation time (e.g. of a single-core simulation benchmark) can be used.
In practical examples, the updatestate operations are by far more costly than updateout, while
updatein are simple data copy whose cost is negligible.

The heuristic cost function computes the schedule pressure of a given operation on a specific
core. This schedule pressure is the difference between the critical path increase (by setting this
operation on this core) and the operation flexibility (difference between its earliest start time and
its latest end time). At each step, for each remaining operation for which all predecessors have
already been scheduled, the heuristic computes the schedule pressure of this operation on each
core, and sets this operation on its best core, i.e. the one which minimizes the pressure. Then,
among all the pending operations, the one with the largest pressure (on its best core) is selected
and added to the schedule.

Nevertheless, there are other operation allocation constraints. Indeed, FMI standard does
not force a FMU operation to be thread safe and currently, the FMU operations updateout calls
cannot be performed in parallel. Because this constraint might be relaxed either with a next FMI
version or from another FMU tool, it is decided to temporarily reduce the heuristic search space.
All the operations related to a given FMU are bind to the same core, which is the one elected
by the heuristic for the first scheduled operation of the given FMU. Each time an operation is
scheduled, synchronization operations are inserted if needed. For example if YA1 and UB3 are
allocated by the heuristic on different cores, a semaphore is signalled just after YA1 on its core,
and a waiting semaphore operation is executed on the other core just before UB3.

Using the computation time Ci of each operation OPi, the first step for the scheduling heuris-
tic is to compute the start and end dates from the graph start denoted S i and Ei, then the critical

10



path CP := max
i

Ei. After that, the start and end dates from the graph end denoted S ∗i and E∗i
and then the flexibility Fi := CP− Ei − E∗i can be performed. Finally, the heuristic incrementally
builds the scheduling by defining the best core allocation for each ready operation and then by
selecting the one with the maximal cost (see Algorithm 1).

Initialization;
Set Ω the set of all the operations;
Set Γ the set of all the available cores;
foreach OPi ∈ Ω do

Set FixedCorei := NOT ALLOCATED; (operation OPi is not already allocated);
end
foreach Core j ∈ Γ do

Set TCore j := 0; (where TCore j corresponds to the first idle time on Core j);
end
Set O the set of operations without predecessors;
while O , ∅ do

foreach OPi ∈ O do
if FixedCorei == NOT ALLOCATED then

Set costi to∞; (cost of OPi is set to the maximum value);
foreach Core j ∈ Γ do

S ′i := max(S i,TCore j ); (new start date of OPi when executed on Core j);
costi, j := S ′i + Ci + E∗i − CP; (cost of OPi when executed on Core j);
if costi, j < costi then

Set costi := costi, j;
Set BestCorei := Core j;

end
end

else
Set BestCorei := FixedCorei;
S ′i := max(S i,TCoreBestCorei

);
costi := S ′i + Ci + E∗i − CP;

end
end
Find OPi with maximal costi in O;
Schedule OPi on its core BestCorei;
Set k := BestCorei;
TCorek := TCorek + Ci; (Advance the time of Corek);
if OPi is the first operation scheduled for its FMU then

foreach OP j of this FMU do
FixedCore j := BestCorei;

end
end
Remove OPi from the set O;
Add to the set O all successors of OPi for which all predecessors are already scheduled;

end

Algorithm 1: Scheduling heuristic: minimization of cost function.

Compared to distributed co-simulation approaches with a model-based granularity, the re-
fined approach has two important advantages. First, using a finer granularity potentially increases
the models decoupling possibilities and allows to reach increased co-simulation speed-up. Sec-
ond, dependencies between the models inputs and outputs are satisfied through both inter and
intra model dependencies, allowing to find a valid schedule without inserting useless delays. It
makes the co-simulation results closer to the reference simulation ones. The next section illus-

11



trates these advantages on an powertrain case study.

6. Case study

6.1. Engine simulator
In this study, a Spark Ignition (SI) RENAULT F4RT engine has been modeled. It is a four-

cylinder in line Port Fuel Injector (PFI) engine in which the engine displacement is 2000 cm3.
The air path is made of a turbocharger with a mono-scroll turbine controlled by a waste-gate, an
intake throttle and a downstream-compressor heat exchanger.

The engine model was developed using ModEngine library [25]. ModEngine is a Mod-
elica [26] library that allows for the modeling of a complete engine with diesel and gasoline
combustion models. The engine model and the split parts were imported into xMOD model
integration and virtual experimentation tool [27], using the FMI export features of Dymola.

The engine model has 118 state variables and 312 event indicators (of discontinuities).

6.2. Decomposition approach
The partitioning of the engine model is performed by separating the four-cylinder from the

air path (AP), then by isolating the cylinders (Ci/i = 1..4) from each other. This kind of splitting
allows for the reduction of the number of events acting on each sub-system. In fact, the com-
bustion phase raises most of the events, which are located in the firing cylinder. The solver can
process them locally during the combustion cycle of the isolated cylinder, and then enlarge its
integration time-step until the next cycle.

From a thermodynamic point of view, the cylinders are loosely coupled, but a mutual data
exchange does still exist between them and the air path. Since the dynamics of the air path is
slow (it produces slow outputs to the cylinders, e.g. temperature) and those of the cylinders are
fast (they produce fast outputs to the air path, e.g. torque), the execution order of the split model
is chosen from air path to cylinders in accordance with the analysis in section 4.2

The model is divided into 5 components and governed by a basic controller denoted CTRL.
It gathers 91 inputs and 98 outputs. The scheduling of the refined co-simulation approach deals
with 103 operations (5 updatestate and 98 updateout).

6.3. Models of computation
This study compares the simulation performance, observing the trade-offs between the sim-

ulation speed and simulation accuracy, for the following approaches:

• Simulation of the whole engine model in a single thread using a single solver, to provide the
reference for precision evaluations.

• Modular co-simulation of the split model with respect to data dependencies. This is the standard
version of the modular co-simulation, denoted “sv-MCosim”, where the execution order is fixed
from models with slow changing outputs to those with fast changing outputs. For the case study,
all the cylinders must wait for the execution of the AP.

• Modular co-simulation of the split model with broken data dependencies. This is the extended
version of the modular co-simulation approach, denoted “ev-MCosim”, where all the data de-
pendencies are relaxed. For the case study, the AP and all the cylinders are integrated in parallel
during each communication interval.

12



• Refined co-simulation of the split model, this method is denoted “RCosim”. For the case study,
all the inputs and the outputs are updated following the order of scheduling heuristic, then the
integration of the AP and the cylinders are performed in parallel.

These methods are sketched in Fig. 7, where DT is the execution time during a Tc. DT gathers
the integration of the models in the blocks Xi (e.g. XAP for AP) and the input and output updates,
as in the IN/OUT blocks for modular co-simulation and in the IN/OUT/WAIT blocks for refined
co-simulation (the waiting times are introduced by the scheduling heuristic). The models are
simulated on separate cores using their own solver.

IN/OUT IN/OUT IN/OUT/WAIT

XAP

XC1

XAP

DT1=DTAP + max(DTCi / i=1..4)

DT1 DT2 DT3

DT2,3=max(DTAP, max(DTCi / i=1..4))

XC2

XC3

XC4

XC1

XC2

XC3

XC4

XC1

XC2

XC3

XC4

XAP

DTAP

DTC1

(a) (b) (c)

Figure 7: (a) sv-MCosim method; (b) ev-MCosim method; (c) RCosim method

7. Tests and results

Tests are performed on a platform with 16 GB RAM and 2 “Intel Xeon” processors, each
running 8 cores at 3.1 GHz.

7.1. Model validation
The model validation is based on the observation of the intake and exhaust manifold pressures

(Pman, Pexh), air-fuel equivalence ratio (AFR) and torque. These outputs are computed using
LSODAR which is a variable time-step solver with a root-finding capability to detect the events
occurring during the simulation. It has also the ability to adapt the integration method depending
on the observed system stiffness.

The simulation reference Yref is built from the integration of the entire engine model, the
solver tolerance (tol) being decreased until reaching stable results, which is given for tol = 10−7

at the cost of a slow simulation speed.
Then, to explore usable trade-offs between the simulation speed and precision, the relative

integration error Er (defined in (6)) is set to be less than 1 %.
13



Er(%) =
100
N
.

N−1∑
i=0

(∣∣∣∣∣Yref(i) − Y(i)
Yref(i)

∣∣∣∣∣) (6)

with N the number of saved points during 1s of simulation.
Iterative tests show that the desired error (Er ≤ 1 %) can be reached with tol = 10−4 (Ta-

ble. 1). Using the split model, each of its 5 components is assigned to a dedicated core and
integrated by LSODAR with tolerance tol = 10−4.

Table 1: Relative integration error
Outputs Pman Pexh Torque AFR
Er(%) 0.027 0.05 0.38 0.37

The modular co-simulation executes for each model all the updateout operations in one single
block as for the updatestate operation. Fig. 8 illustrates the time-chart and shows the waiting
period on the AP which it represents the difference between sv-MCosim and ev-MCosim.

CTRL
AP
C1
C2
C3
C4

CTRL
AP
C1
C2
C3
C4

1 updatestateoperation 1 updateout operation 

sv-MCosim

ev-MCosim

Figure 8: Modular co-simulation time-chart

The refined co-simulation schedules the 103 updateout and updatestate operations. As de-
scribed in Fig. 9, the computation time of updateout are negligible compared to updatestate. A
zoom on the time-chart shows the scheduling of the updateout operations.

7.2. Accuracy tests
7.2.1. DF outputs

The torque is a DF output of the air path. Test results show that the torque is delayed by
Tc with the modular co-simulation method, as expected since all the models are DF. However,
thanks to the refined co-simulation method, the torque is almost identical to the reference as
indicated in Fig. 10.

Then, the relative integration error is computed for several communication steps as in Ta-
ble. 2. The results show that the refined co-simulation method keeps the integration stable even

14



CTRL
AP
C1
C2
C3
C4

RCosim

Zoom on updateout operations 1 updatestate operation

Figure 9: Scheduling of the update operations with RCosim

0.76 0.765 0.77 0.775
−80

−60

−40

−20

0

20

40

60

80

100

A
irp

at
h 

O
ut

pu
t: 

T
or

qu
e 

(N
.m

)

time (s)

 

 Reference
sv−MCosim; Tc=500µs
ev−MCosim; Tc=500µs
RCosim; Tc=500µs

Delay = Tc 
           = 500µs

Figure 10: The behavior of a DF output regarding the different methods

for large Tc. In fact, Er stays close to 1 %, whereas the modular co-simulation method suffers
from delay-induced errors up to almost 20 %.

15



Table 2: Relative integration error on the (DF) torque
Simulation method sv-MCosim ev-MCosim RCosim

Er(%) with Tc = 100 µs 2.95 4.38 0.68
Er(%) with Tc = 250 µs 9.12 9.33 1.1
Er(%) with Tc = 500 µs 19.83 19.19 1.37

7.2.2. NDF outputs
The manifold pressure is a NDF output of the air path. For this case, there is no delay

whatever the method. As for the torque, the relative integration error of the pressure also depends
on Tc (Fig. 11). However, the step width is not so harmful as there are not loop-induced delays.

0.76 0.765 0.77 0.775

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
x 105

A
ir

P
at

h
 O

u
tp

u
t:

 P
re

ss
u

re
 (

P
a)

time (s)

 

 Reference
RCosim; Tc=100µs
RCosim; Tc=250µs
RCosim; Tc=500µs

Figure 11: Effect of Tc on a NDF output for RCosim method

Table. 3 shows that the refined method is again advantageous for the simulation accuracy.
To approach the desired error both for DF and NDF outputs, Tc must be restricted to 100 µs for
modular co-simulation whereas it can be enlarged up to 500 µs with refined co-simulation.

Table 3: Relative integration error on the (NDF) manifold pressure
Simulation method sv-MCosim ev-MCosim RCosim

Er(%) with Tc = 100 µs 0.61 0.63 0.5
Er(%) with Tc = 250 µs 1.2 1.11 0.88
Er(%) with Tc = 500 µs 1.8 1.75 1.23

7.3. Simulation time speed-up
The integration of the engine model (118 state variables and 312 event indicators) is time-

consuming. With tol = 10−4, the sequential simulation on a single-core is 76.5 times slower than
16



real-time. Compared with the reference case, speed-ups have been measured for Tc = 250 µs (to
keep Er ≈ 1 %). Table. 4 show that the speed-up reaches 7.82 for sv-MCosim and 8.84 for ev-
MCosim (with relaxed dependencies between the air path and cylinders). The largest speed-up is
gained with the refined co-simulation method and reaches 10.87, so that the simulation speed is
now only 7.04 times slower than real-time. In fact, while integrating with the right (undelayed)
input values at each Tc, the variable time-step solver rapidly finds the largest possible integration
step. Indeed this later speed-up cannot be observed using fixed-step solvers.

Table 4: Simulation speed-up with the different approaches
Simulation method sv-MCosim ev-MCosim RCosim

Speed-up 7.82 8.84 10.87

It is remarkable that, in all cases, the usual execution time penalty due to the multi-threading
and distribution on 5 cores is greatly overcompensated by the gains due to the wise partition
across the original model.

7.4. Critical analysis of the results

The refined co-simulation technique showed significant improvements on results accuracy
without deteriorating the speed-up provided by the modular co-simulation. This new technique
allows a non-expert user to split a complex dynamic model without care of the execution order
of the different blocks nor how to cut. In fact, by preserving a fine-grained execution order
between updateout operations, the integration and the states computation can be performed in
parallel without implying delays on DF outputs. However, the efficiency of this approach lies
in the assumption that the states integration is by far time consuming compared to the outputs
computation. This assumption was based on work experience and major encountered industrial
models and it was verified for the engine model.

To generalize the test results to any hybrid dynamical model, it is necessary to take into
consideration the limits of the method’s efficiency. This is reached when the sum of all the
computation times of updateout operations –that belong to the critical path CP– is approaching
the computation time of an updatestate operation. In that case, the cost of updateout operations
cannot longer be neglected. However, it can always be compensated by the use of variable-time
solver and the speed-up will be then similar to ev-MCosim.

Finally, our refined co-simulation proposed method aims at improving the accuracy of the
existent modular co-simulation, assuming that a suitable split system is already provided. In
fact, an associated system decomposition methodology is given in a previous work ([19]) that
explain why and how the relaxation of the number of discontinuities (by splitting the hybrid
dynamical system) improves the computation time and provides a supra-linear speedup. Then in
[20], a system splitting using the block-diagonal form of incidence matrices, related to states and
events was studied and applied to a mono-cylinder model which is not intuitive to split.

8. Summary and Perspectives

Cyber-Physical Systems gather a large number of physical and digital components, and sim-
ulation appears to be a key tool for their design and early validation. Beyond their size, their
simulation is made difficult by their hybrid behavior combining ODE/DAEs with events, which
prevents the usual sequential single-threaded simulation tools to reach fast simulation speeds.

17



Co-simulation allows to simulate together models coming from multi-disciplinary areas. This
modular decomposition, based on the structure of the engineering system, provides a natural way
to parallelize the original system across the model. More precisely, an efficient decomposition
is intended to decouple the sub-models and minimize, as far as possible, their data and events
related dependencies. Thus each model can be integrated by its own solver using an optimal
integration step size, while data exchange is only possible at precise communication points. A
suitable off-line scheduling of operations, taking care of the models I/O dynamics, allows for
supra-linear speed-ups of simulations on a multi-core architecture, while keeping the simulation
precision under control.

In practical applications, current co-simulation set-ups use a constant communication grid
shared by all the models. Further improvements are expected from adaptive communication step
sizes which may better handle the various changing dynamics of the models [28]. The size of the
communication steps has a direct impact on the simulation errors, and effective communication
step control should rely on on-line estimations of the errors induced by slackened exchange rates.
Data extrapolation over steps is also expected to enhance the simulation precision over large
communication steps. Indeed the stability of multi-rate simulators with adaptive steps needs to
be carefully assessed, for example based on recent works on errors propagation inside modular
co-simulations [18].

Finally, this study focused on numerical solvers based on time discretization and it is expected
for the future to compare their efficiency to those based on state quantization since they are
suitable for discontinuous ODEs [29].

References

[1] T. Blochwitz, T. Neidhold, M. Otter, M. Arnold, C. Bausch, M. Monteiro, C. Clauß, S. Wolf, H. Elmqvist, H. Ols-
son, A. Junghanns, J. Mauss, D. Neumerkel, J.-V. Peetz, The functional mockup interface for tool independent
exchange of simulation models, in: 8th Int. Modelica Conf., Linköping Univ. Electronic Press, Dresden, Germany,
2011. doi:10.3384/ecp11063105.

[2] C. Faure, M. Ben Gaı̈d, N. Pernet, M. Fremovici, G. Font, G. Corde, Methods for real-time simulation of cyber-
physical systems : Application to automotive domain, in: 7th Int. Wireless Communications and Mobile Computing
Conf. IWCMC, Istanbul, Turkey, 2011, pp. 1105 – 1110. doi:10.1109/IWCMC.2011.5982695.

[3] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Oxford Science Publications,
1995.

[4] A. Iserles, S. Nørsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10 (1990) 463–488.
[5] W. L. Miranker, W. Liniger, Parallel methods for the numerical integration of ordinary differential equations, J.

Math. Comput. 21 (1967) 303–320.
[6] K. R. Jackson, A survey of parallel numerical methods for initial value problems for ordinary differential equations,

IEEE Trans. Magn. 27 (1991) 3792–3797.
[7] K. Burrage, Parallel methods for initial value problems, Appl. Numer. Math. 11 (1993) 5–25.
[8] P. J. van der Houwen, B. P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize control,

J. Comput. Appl. Math. 29 (1990) 111–127.
[9] G. D. Byrne, A. C. Hindmarsh, PVODE, an ODE solver for parallel computers, Int. J. High Perform. Comput.

Appl. 13 (1999) 254–365.
[10] G. Horton, S. Vandewalle, A Space-Time Multigrid Method For Parabolic PDEs, Technical Report, Univ. Erlangen,

1993.
[11] J. Lions, Y. Maday, G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”, Comptes Rendus de

l’Académie des Sciences - Series I - Mathematics 332 (2001) 661–668.
[12] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators : Theory and feasibility studies for fluid,

structure, and fluid-structure applications, Int. J. Numer. Meth. Eng. 58 (2003) 1397–1434.
[13] P. Deuflhard, Newton Methods for Nonlinear Problems, volume 35 of Springer Series in Computational Mathe-

matics, Springer, 2004.

18

http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.1109/IWCMC.2011.5982695


[14] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, The waveform relaxation method for time-domain
analysis of large scale integrated circuits, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1 (1982) 131–
145.

[15] S. Y. R. Hui, C. Christopoulos, Numerical simulation of power circuits using transmission-line modelling, IEE
proceedings. Part A. Physical science, Measurements and instrumentation, Management and education, Reviews
137 (1990) 379–384.

[16] M. Sjölund, R. Braun, P. Fritzson, P. Krus, Towards efficient distributed simulation in Modelica using Transmission
Line Modeling, in: 3rd Workshop on Equation-Based Object-Oriented Modeling Languages and Tools EOOLT,
Linköping Univ. Electronic Press, 2010, pp. 71–80.

[17] B. Eriksson, P. Nordin, P. Krus, Hopsan NG, a C++ implementation using the TLM simulation technique, in: 51th
Conf. on Simulation and Modelling SIMS, Oulu, Finland, 2010.

[18] M. Arnold, Stability of sequential modular time integration methods for coupled multibody system models, J.
Comput. Nonlin. Dyn. 5 (2010).

[19] A. Ben Khaled, M. Ben Gaı̈d, D. Simon, G. Font, Multicore simulation of powertrains using weakly synchronized
model partitioning, in: IFAC Workshop on Engine and Powertrain Control Simulation and Modeling ECOSM,
Rueil-Malmaison, France, 2012, pp. 448–455. doi:10.3182/20121023-3-FR-4025.00018.

[20] A. Ben Khaled, M. Ben Gaı̈d, D. Simon, Parallelization approaches for the time-efficient simulation of hybrid
dynamical systems : Application to combustion modeling, in: 5th Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools EOOLT, Linköping Univ. Electronic Press, Nottingham, UK, 2013, pp. 27–36.

[21] F. Casella, A strategy for parallel simulation of declarative object-oriented models of generalized physical networks,
in: 5th Workshop on Equation-Based Object-Oriented Modeling Languages and Tools EOOLT, Linköping Univ.
Electronic Press, Nottingham, UK, 2013, pp. 45–51.

[22] A. V. Papadopoulos, A. Leva, Automating dynamic decoupling in object-oriented modelling and simulation tools,
in: 5th Workshop on Equation-Based Object-Oriented Modeling Languages and Tools EOOLT, Linköping Univ.
Electronic Press, Nottingham, UK, 2013, pp. 37–44.

[23] F. Zhang, M. Yeddanapudi, P. Mosterman, Zero-crossing location and detection algorithms for hybrid sys-
tem simulation, in: 17th IFAC World Congress, Seoul, South Korea, 2008, pp. 7967–7972. doi:10.3182/
20080706-5-KR-1001.01346.

[24] T. Grandpierre, Y. Sorel, From algorithm and architecture specification to automatic generation of distributed real-
time executives : A seamless flow of graphs transformations, in: 1st ACM/IEEE Int. Conf. on Formal Methods
and Models for Codesign MEMOCODE, Mont Saint-Michel, France, 2003, pp. 123–132. doi:10.1109/MEMCOD.
2003.1210097.

[25] Z. Benjelloun-Touimi, M. Ben Gaı̈d, J. Bohbot, A. Dutoya, H. Hadj-Amor, P. Moulin, H. Saafi, N. Pernet, From
physical modeling to real-time simulation : Feedback on the use of modelica in the engine control development
toolchain, in: 8th Int. Modelica Conf., Dresden, Germany, 2011.

[26] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica, Wiley-IEEE Computer Society
Pr, 2003.

[27] M. Ben Gaı̈d, G. Corde, A. Chasse, B. Léty, R. De La Rubia, M. Ould Abdellahi, Heterogeneous model integra-
tion and virtual experimentation using xMOD : Application to hybrid powertrain design and validation, in: 7th
EUROSIM Congress on Modeling and Simulation, Prague, Czech Republic, 2010.

[28] T. Schierz, M. Arnold, C. Clauß, Co-simulation with communication step size control in an FMI compatible master
algorithm, in: 9th Int. Modelica Conf., Munich, Germany, 2012, pp. 205–214. doi:10.3384/ecp12076205.

[29] G. Migoni, M. Bortolotto, E. Kofman, F. E. Cellier, Linearly implicit quantization-based integration methods for
stiff ordinary differential equations, Simulation Modelling Practice and Theory 35 (2013) 118 – 136.

19

http://dx.doi.org/10.3182/20121023-3-FR-4025.00018
http://dx.doi.org/10.3182/20080706-5-KR-1001.01346
http://dx.doi.org/10.3182/20080706-5-KR-1001.01346
http://dx.doi.org/10.1109/MEMCOD.2003.1210097
http://dx.doi.org/10.1109/MEMCOD.2003.1210097
http://dx.doi.org/10.3384/ecp12076205

	Introduction
	Related work
	Parallelization across the method
	Parallelization across the steps
	Parallelization across the model

	Motivation for multi-simulator approach
	Model partition for numerical integration
	Model formalization
	Model decomposition and data dependencies cycles

	Model of computation with the modular Lg approach
	 Lg case: Coexistence of DF and NDF models
	Lg case: All the models are DF

	Proposed model of computation: The refined Lg approach
	Refined dependency graph with the FMI/FMU specification
	Scheduling heuristic

	Case study
	Engine simulator
	Decomposition approach
	Models of computation

	Tests and results
	Model validation
	Accuracy tests
	DF outputs
	NDF outputs

	Simulation time speed-up
	Critical analysis of the results

	Summary and Perspectives

