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We introduce a method for the numerical determination of the steady-state response of complex
charged porous media to pressure, salt concentration and electric potential gradients. The macro-
scopic fluxes of solvent, salt and charge are computed within the framework of a Pore Network
Model (PNM), which describes the pore structure of the samples as networks of pores connected
to each other by channels. The PNM approach is used to capture the couplings between solvent
and ionic flows which arise from the charge of the solid surfaces. The microscopic transport coef-
ficients on the channel scale, taken here of a simple analytical form obtained previously by solving
the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel, are upscaled for a given
network by imposing conservation laws for each pores, when macroscopic gradients are applied to
the sample. The complex pore structure of the material is captured by the distribution of channel
diameters. We investigate the combined effects of this complex geometry, the surface charge and
the salt concentration on the macroscopic transport coefficients. The upscaled numerical model
preserves the Onsager relations between the latter, as expected. The calculated macroscopic co-
efficients behave qualitatively like their microscopic counterparts, except for the permeability and
the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively,
the electrokinetic couplings increase the difference between the macroscopic coefficients and the
microscopic ones for a single channel of average diameter.

I. INTRODUCTION

In charged porous media, the coupling between dif-
ferent transport phenomena arises from the excess elec-
tric charge of the fluid which compensates that of the
solid walls. This charge may result both in the acceler-
ation of the whole fluid under an applied electric field
(electro-osmosis) and in the transport of charge if the
fluid flows under an applied pressure gradient (stream-
ing potential). In geophysics, the electroseismic effect,
by which an electro-magnetic wave is generated from the
motion of underground fluids under an applied acoustic
wave, is exploited to determine the properties of geolog-
ical formations [1–3]. Streaming potentials and electro-
osmotic flows can be measured in the laboratory to char-
acterize the properties of porous media [4]. Electroki-
netic phenomena also play an important role in biol-
ogy [5–7], membrane technology [8, 9], microfluidics [10–
12] with electrokinetic pumps [13] and more recently
nanofluidics [14].

From the modelling perspective, upscaling the usual
electrokinetic transport equations such as Poisson-
Nernst-Planck (PNP) and Navier-Stokes (NS), from the
microscopic scale where the couplings occur, to that
of a macroscopic sample on which most experiments
are performed, is a challenging task. Recently, signifi-
cant progress has been made in this direction [15–17].
From the mathematical point of view, this upscaling can
be performed rigorously using the homogenization ap-
proach [18–20]. The resulting set of coupled partial dif-
ferential equations must then be solved numerically for
a given cell representing the small scale of the porous

medium. For practical applications, most studies of elec-
trokinetic couplings rely on an oversimplified idealization
of the geometry, with single slit pores or cylinders with
dimensions or surface charge densities estimated from the
macroscopic properties of the real system [21, 22]. How-
ever, the heterogeneity of the material, combined with
the electrokinetic couplings, may influence the overall be-
haviour on the sample sacle, so that such idealizations
may not reflect the actual response of the medium. Di-
rect numerical resolution of the coupled PNP and NS
equations in various complex systems (random packings,
reconstructed and fractured porous media) has also been
proposed by Adler and co-workers [23–25]. Such an ap-
proach is usually difficult to implement for macroscopic
samples, due to the lack of experimental data on the fine
structure of the material over large distances. The com-
putational cost of direct numerical simulation also pre-
vents the systematic study of a representative number of
samples.

In the present paper, we introduce an alternative nu-
merical scheme allowing for the description of trans-
port through macroscopic charged porous materials at
low computational cost, thereby enabling the systematic
study of the combined effects of electrokinetic couplings
and sample heterogeneity. Of course, such a goal can be
achieved only at the price of simplifying the description.
The proposed algorithm to upscale the electrokinetic cou-
plings is based on the Pore Network Model (PNM). Such
a model, originally developed by Fatt [26] to predict mul-
tiphase flow properties in porous media, describes the
porosity as a network of pores connected by channels.
During the last decades, it has been extensively used and
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extended by petrophysicists in various situations: capil-
larity and multiphase flow through porous media [27–31],
pore evolution and changes in petrophysical properties
due to particle capture [32], filtration combustion [33],
mineral dissolution and precipitation caused by CO2 se-
questration [34] and adsorption/reaction processes [35].
Recently, Varloteaux et al. [36] studied the reactive trans-
port in porous media using a PNM. Bernabé et al. [37]
proposed a PNM approach for the streaming potential in
geophysics based on the description of the electrokinetic
effects in porous media of [38].

In a nutshell, the PNM approach amounts to solving
a set of conservation equations on the nodes of the net-
work (in analogy with Kirchhoff’s law for a network of
resistors), on the basis of local fluxes through the chan-
nels connecting the nodes, under the effect of an exter-
nal, macroscopic gradient. In most of the cases treated
to date (see [36] for an exception), the solution to this
problem is a linear one. On the channel scale, the de-
scription of the electrokinetic transport used here follows
the approach of Rice and Whitehead [39] and allowed us
to derive the longitudinal ionic and solvent flows through
an infinite charged cylinder driven by a gradient of pres-
sure, salt concentration or electric potential [40]. We
take advantage here, for the determination of the fluxes
through each channel, from the observation of Gupta et
al. [41] that the electrokinetic effects in non-trivial ge-
ometries can be captured by a simpler one, provided that
the problem on the pore scale is renormalized by an ap-
propriate length scale, initially introduced by Johnson et
al. [42]. The transport coefficients through each channel
depend here on the properties of the pores at both ends,
leading to a non-linear structure of the macroscopic prob-
lem. The objective is then two-fold: On the one hand,
to introduce the numerical scheme for the upscaling of
the electrokinetic transport equations with the PNM ap-
proach; on the other hand, to investigate how the up-
scaled properties depend on the distribution of channel
diameters inside the material, in addition to the surface
charge density and the salt concentration.

The paper is organized as follows. In Sec. II, we first
recall the description of coupled transport phenomena
in porous media on the macroscopic (sample) and micro-
scopic (pore) scales. The homogenization procedure used
to upscale these quantities is presented in Sec. III, as is
the construction of the network realizations from channel
diameter distributions. Finally, all macroscopic trans-
port coefficients, determined numerically as a function
of the salt concentration and the surface charge density,
are presented in Sec. IV for heterogeneous samples. We
discuss the influence of the channel diameter distribution
on the macroscopic properties.

II. ELECTROKINETIC TRANSPORT
THROUGH CHARGED POROUS MEDIA

A. Pore Network Model of charged porous media

We consider here the linear response of a macroscopic
sample, initially in equilibrium with two solution reser-
voirs, to macroscopic pressure, salt concentration and
electric potential gradients, which result in solvent and
monovalent cations and anions (or equivalently, salt con-
centration and electric charge) flows. On the macroscopic
scale, the steady state total flows of solvent, Q0, salt, Q1,
and charge, Q2, through the network are proportional to
the macroscopic pressure, P , salt chemical potential, C
(see below), and electric potential, V gradients. The aim
of the present work is thus to determine the macroscopic
transfer matrix K, defined by: Q0

Q1

Q2

 = −L
2
n

η

 KP
0 KC

0 KV
0

KP
1 KC

1 KV
1

KP
2 KC

2 KV
2

 ∇P∇C
∇V

 , (1)

with Ln the total width of the sample (hence the distance
between the two solution reservoirs) and η the fluid vis-
cosity. This matrix should be symmetric, as a result of
Onsager’s reciprocity principle [20, 43].

As previously mentioned, the PNM consists of a lattice
of pores connected to each other by channels. The pores
are characterized only by their fluid pressure, salt con-
centration and electric potential, while the channels are
characterized by their diameter and their surface charge
density. The transfer properties of each channel depend
on the amount of salt inside it, which in turn is controlled
by the Donnan equilibrium existing between the channel
and the pores (or, equivalently at equilibrium, between
the channel and external reservoirs). In the linear re-
sponse regime, the solvent and ionic flows are propor-
tional to the local gradients and thus determined by the
transfer (or conductance) matrix of each channel, which
may be determined by solving the underlying transport
equations on the channel scale. Figure 1 illustrates the
main features of this pore network model (PNM).

The central ingredient of a PNM is the conductance
(here conductance matrix) of the channels, not the ac-
tual geometry of the medium. Note that no geometrical
features of the pores enters in the present model: their
effect on the flow is entirely encompassed in their indirect
effect on the channels (Donnan equlibrium which influ-
ences the conductance matrix of the channel and gra-
dient across the channel). In addition, the conductance
matrix of each channel (see below) is computed for an in-
finite cylindrical channel. In particular, the pores do not
have a definite size and the converging-diverging nature
of real pores [44, 45] is not taken into account explic-
itly. This can be interpreted as assuming a separation of
length scales between the pore and channel characteristic
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FIG. 1: Two-dimensional representation of a cubic network
consisting of N =n×n×n pores, between two reservoirs, la-
belled 0 and N + 1. Each pore is characterized by a pressure
Pi, a salt concentration ci leading to an ideal part of the chem-
ical potential Ci = kBT ln(ci/cN+1), and an electric potential
Vi. Two connected pores i and j (denoted i v j) are sepa-
rated by a length L (hence a total width of Ln = nL). The
flows of solvent, salt and charge between these pores under the
effect of pressure, salt concentration and potential gradients
is, in the linear response regime, determined by the transfer
(or conductance) matrix (g)ij , which depends on the surface
charge density and on the salt concentration inside the cor-
responding channel. The latter is governed by the Donnan
equilibrium between the channel and the pores.

lengths. Note that it is possible to introduce pore sizes
in a PNM, at the price of introducing short-range corre-
lations between the pore and channel diameters [46, 47].

In the following, we address the combined role of the
channel size distribution inside the sample, which may be
very heterogeneous, as well as that of the surface charge
density of the solid and of the salt concentration in the
reservoirs, on the transfer matrix. Before turning to the
upscaling from the channel to the sample scale, we first
recall the influence of the channel diameter, the surface
charge density and the salt concentration, on the transfer
properties of a single channel.

B. Transfer matrix on the channel scale

The linear response of a channel ij between two pores
i and j follows the same structure as the macroscopic
reponse (1). The local flows of solvent, q0, salt, q1, and
charge (electric current), q2 are written as: q0

q1
q2


ij

= −πd
2

4η

 gP0 gC0 gV0
gP1 gC1 gV1
gP2 gC2 gV2


ij

 ∇ijP∇ijC
∇ijV

 , (2)

where d is the pore diameter and where the gradient of
pore variables are defined as

∇ijX =
Xj −Xi

L
. (3)

with L the distance between pore centers. L is also
the length of the channels. Pi is the pressure, Ci =
kBT ln(ci/cN+1) is the salt chemical potential and Vi =
ψi − ψN+1 the electric potential. The salt concentra-
tion ci in pore i enters in the ideal chemical potential
together with a reference concentration, taken as the one
in the reservoir in the absence of perturbing gradient. In
the following, we will assume without loss of generality
that gradients are imposed by changing the properties of
the left reservoir (labelled 0, see Figure 1). The right
reservoir (labelled N + 1) is then used as the reference
for the salt concentration and electric potential. Hence
CN+1 = VN+1 = 0. The absolute value of the pres-
sure does not play a role and we also set by convenience
PN+1 = 0.

The coefficients of the channel transfer matrix defined
by (2) can be determined by examining the mechanisms
underlying the coupling between the solvent and ionic
flows. In principle the coefficients could be determined
with any method, including numerically from molecu-
lar simulations, as a function of the relevant parameters.
The standard description of these coupled solvent and
ionic flows rely on the solution of a set of coupled dif-
ferential equations, namely: (a) Navier-Stokes, which ac-
counts for momentum conservation inside the fluid and
captures the effect of all local forces, including the elec-
tric force arising from the local electric charge and electric
field; (b) Nernst-Planck, which accounts for the conser-
vation of ions and includes the effect of advection by the
fluid flow; (c) Poisson, which determines the electric po-
tential distribution arising from the charge distribution.
The fluxes of solvent and ions under pressure, salt con-
centration and electric potential gradients can then be
solved for a given channel geometry and boundary con-
ditions at its surface.

Here we consider for simplicity the case of infinite
cylindrical channels of diameter d with a fixed, homo-
geneous surface charge density σ (in e.nm−2), with a sol-
vent of viscosity η and permittivity ε, and monovalent
cations and anions with diffusion coefficients D±, at a
temperature T . While the cylindrical geometry seems
far from a realistic representation of a complex porous
medium, one should keep in mind that within a PNM
approach it is the channel conductance (matrix) which is
relevant, not its geometry. It has been shown previously
by Gupta et al. that the transfer properties through more
complex channels can be captured by a simple expres-
sion for the cylindrical geometry, provided that a correct
renormalizing length scale (Λ) is used [41]. Under the as-
sumption of small potential differences between the walls
and the solution, the Poisson equation can be linearized
and the set of equations solved analytically for this ge-
ometry. We have previously validated these approximate
results against numerical simulation in the range of pa-
rameters used here [40]. Outside the range of validity
of this assumption, e.g. for large surface charge densi-
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ties, the coefficients can be computed numerically and
introduced in the present PNM.

More precisely, the PNM requires the knowledge of the
flows of solvent, q0, salt, q1, and charge (electric current),
q2, which in the case of cylindrical channel read:

qγα =

∫ d/2

0

jγk 2πr dr (4)

where j0 = u is the local solvent velocity, j1 = j+ + j−
and j2 = e(j+ − j−), with j+ (resp. j−) the local cation
(resp. anion) flux. The superscript γ = (P,C, V ) refers
to the applied forcing, namely a pressure, concentration
(in fact, salt chemical potential) and potential gradient,
respectively.

Under the above assumptions, the coefficients of the
transfer matrix defined by (2) are as follows (the channel
label ij is omitted for clarity). For the solvent under a
pressure gradient one finds the usual permeability (note
the πd2/4η prefactor in Eq. (2)):

gP0 =
d2

32
. (5)

Under a concentration gradient, the osmotic term which
by symmetry corresponds to the salt flux under a pres-
sure gradient is

gC0 = gP1 =
κ2d2

128πlB
, (6)

where κ2 = 4πlB(c+ + c−) is the square of the inverse
Debye screening length, with lB = βe2/4πε the Bjer-
rum length (β = 1/kBT ) and c+ (resp. c−) the average
cation (resp. anion) concentrations in the channel, to
be discussed below. Under an applied electric field the
electro-osmosic solvent flux (by symmetry, it also governs
the streaming current) is given by:

gV0 = gP2 = −4σ

κ

I2
I1
, (7)

where Im = Im(κd/2) are modified Bessel functions of the
first kind. The salt flux under a concentration gradient
follows from

gC1 = βη(D+c
+ +D−c

−) +
κ4d2

512π2l2B
, (8)

with a diffusive part (Fick) and an advective part due to
osmosis. Under an applied electric field, the motion of
ions contains a direct (Nernst-Einstein) contribution and
an advective part due to electro-osmosis, resulting in

gV1 = gC2 = eβη(D+c
+ −D−c−)− σκ

4lB

I2
I1

(9)

for the flux of salt and in

gV2 =e2βη(D+c
+ +D−c

−)− σ2

[
1− I0I2

I21

]
, (10)

for the electric current. The symmetry of the transfer
matrix is explicit in Eqs. (6) and (7) for the solute and
electric current arising from a pressure gradient, and in
Eq. (9) for the electric current under a concentration gra-
dient.

C. Donnan equilibrium

It appears from the previous section that the coeffi-
cients of the channel ij transfer matrix (g)ij depend on
the average ionic concentrations c+ij and c−ij inside the
channel. As we consider the linear response around an
equilibrium situation, these concentrations can be deter-
mined by considering the (Donnan) equilibrium of the
ions between the charged channel and the adjacent pores
seen as an equivalent reservoir. Writing the equality of
ionic chemical potentials in the channel and in the reser-
voir, one obtains:

β(µ±ij − µ
±
res) = ln

c±ij
cres
± βe(Vij − Vres) = 0 , (11)

with Vij the so-called Donnan potential, and cres =
√
cicj

(resp. Vres = (Vi + Vj)/2) the salt concentration (resp.
potential) in the electrically neutral reservoir. Noting
that the excess of counterions with respect to co-ions bal-
ances that of the surface, i.e. c+ij − c

−
ij = cσij = −4σ/edij

in a cylindrical channel with diameter dij , the two equal-
ities (11) straitforwardly lead to:

c±ij =

√
(cres)2 +

(
cσij
2

)2

±
cσij
2
. (12)

The ionic concentrations in the channel can thus be com-
puted from the channel diameter dij , the surface charge
density σ and the salt concentration in the reservoir with
which the channel is in equilibrium. Once the salt con-
centration in the channel is known, all the transport co-
efficients can be computed as described in the previous
section.

III. TRANSPORT ON THE MACROSCOPIC
SCALE

A. Determination of the transport coefficients

The macroscopic transfer matrix (K) defined by
Eq. (1) can now be determined for a given network, char-
acterized by the diameter dij of each channel and the
corresponding transfer matrix (g)ij – keeping in mind
that the latter also depends on the surface charge den-
sity and on the reservoir salt concentration. To that end,
macroscopic gradients are imposed through the network
by changing the pressure, salt concentration or electric
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potential of the left reservoir (the right one being main-
tained at the initial values). The steady state local fluxes
are then computed by ensuring the conservation of sol-
vent, salt and charge in each pore i, i.e.:

∑
ivj

 q0
q1
q2


ij

= 0 . (13)

This provide a set of non-linear equations for the pore
variables {Pi}, {Ci} and {Vi} at steady state. The non-
linearity arises from the fact that the coefficients of the
matrix in (2) depend on the pore variables via the local
Donnan equilibrium. In practice, we solve this system of
equations numerically using a non-linear Newton solver
described in [48]. Periodic boundary conditions are used
in the directions perpendicular to the macroscopic gra-
dient. The macroscopic fluxes through the sample are
finally computed at the interface with either reservoir: Q0

Q1

Q2

 =
∑
j0

 q0
q1
q2


0, j0

=
∑
jN+1

 q0
q1
q2


iN+1, N+1

, (14)

where j0 (resp. iN+1) labels all the pores connected to
the left (resp. right) reservoir. Evaluating the coefficients
of the matrix K requires solving 3 times the system of
non-linear equations (13) for the pore variables, corre-
sponding to the three macroscopic gradients (pressure,
concentration and potential). Each macroscopic gradient
induces 3 macroscopic flows (solvent, salt and charge),
thereby providing the 9 coefficients. As an example, the
first column of the matrix K is computed by imposing
only a macroscopic pressure gradient (i.e. ∇C = 0 and
∇V = 0) as:

KP
α = − η Qα

L2
n∇P

, α = 0, 1, 2 . (15)

For α = 0 this is simply Darcy’s law. The macroscopic
matrix K is expected to be symmetric [20, 43] regard-
less of the diameter distribution inside the network, a
property which is verified in our numerical simulations.
Finally, it is worth noting that the overall balance of lo-
cal fluxes may be achieved by the compensation of fluxes
induced by local gradients of different nature than the
macroscopic one (e.g. a local electric field in the absence
of macroscopic potential difference).

B. Statistical properties of pore networks

The previous sections allow us to determine the trans-
fer matrix K for a given network. When studying porous
materials, an important question is that of the represen-
tativity of a given model. If detailed geometric informa-
tion is available from appropriate imaging techniques, an

equivalent network can be built for a given experimental
sample. Most often, however, only indirect information
such as a pore size distribution is available experimen-
tally. In that case, the transfer matrix of a single network
is not sufficient to describe the macroscopic properties.
Rather, one should consider the statistical properties of
the transfer matrix over networks drawn from the avail-
able (or model) size distribution. In particular, we inves-
tigate here how the macroscopic coefficients depend on
the mean and standard deviation of the channel diameter
distribution.

We thus consider here the properties of ensemble of
networks characterized by a uniform temperature, fluid
viscosity and permittivity, surface charge density, ion dif-
fusion coefficients, and channel length but with varying
channel diameters. More precisely, the channel diame-
ters dij are drawn randomly from a Weibull distribution
function,

f(d; dmin, k, λ) =
k

λ
g

(
d− dmin

λ

)
, (16)

with g(x) = xk−1e−x
k

, dmin the minimum diameter, and
k and λ two positive parameters defining the shape of the
distribution. They control in particular the mean diame-
ter d̄ = λΓ(1+1/k) and the variance δ2 = λ2Γ(1+2/k)−
d̄2, where Γ is the gamma function. The distributions in-
vestigated numerically in the following are illustrated in
Fig. 2. For a given distribution function, we generate M
networks and compute the macroscopic transfer matrix.
We finally determine the average coefficients over the M
samples (i.e. realizations of the distribution function)
and the corresponding variances.

C. Validation of the method

We now turn to the numerical validation of the pro-
posed algorithm. To that end, we consider values of
the various physical parameters having in mind the case
of clay minerals, which are typical examples of natu-
ral charged porous media. More specifically, we con-
sider a system at T = 298 K with water as a solvent
(η = 10−3 Pa s and ε = 78.5) with NaCl as monovalent
salt (D+ = 1.3 10−9 m2 s−1 and D− = 2.0 10−9 m2 s−1).
The surface charge density is taken in the range σ ∈
[−0.1, 0] e nm−2, with Na+ as a counterion, and salt
concentrations in the range c ∈ [10−3, 10−1] mol L−1.
The distance between pore centers is L = 160 nm and
the minimum channel diameter is dmin = 4 nm. While
smaller pores can be found in clay minerals, the PNP
model used here to describe the electrolyte in the chan-
nels is not accurate below this limit. Since the purpose of
the present work is not to accurately describe a specific
system but rather to demonstrate the relevance of the
PNM approach to model complex charge porous materi-
als, we simply restrict ourselves to situations where the



C Validation of the method 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50

pd
f

d (nm)

(d̄, δ)
(18,12)
(18,6)

(18,1.5)
(24,6)
(30,6)
(36,6)

FIG. 2: (Color online) Weibull distribution functions used in
this study to generate networks, labelled according to their
mean diameter and standard deviation (d̄, δ). Solid lines
correspond to the same mean diameter d̄ = 18 nm, while
dashed and dotted lines correspond to the same standard de-
viation δ = 6 nm. The minimum diameter (see Eq. 16) is
dmin = 4 nm.

microscopic model on the channel scale applies. The ex-
tension of the PNM beyond its domain of validity is only
limited by the availability of appropriate expressions for
the conductance matrix of the channel.

We consider several values of the mean diameter d̄ (18,
24, 30 and 36 nm) and standard deviation δ (1.5, 6 and
12 nm). We found that for this range of parameters,
a number M = 80 samples to perform averages over
networks for a given distribution functions provided a
good compromise between accuracy and computational
cost. This parameter will be kept constant throughout
this paper. In order to remain in the linear response
regime, which is the only one considered here, we ap-
ply small macroscopic gradients. More specifically, the
results reported below were performed with ∇P = 10−6

Pa nm−1, ∇C = 10−9 J nm−1 and ∇V = 10−14 V nm−1.
Another consequence of the linear response is that the
fluxes measured in the presence of several macroscopic
gradients should be additive. We have checked that this
is indeed verified numerically in all the considered cases
(with relative errors smaller than 10−5%).

The last parameter which should be chosen carefully is
the number N=n3 of network nodes. This number should
be sufficiently large to ensure a good sampling of the
size distribution function. The measured average trans-
fer matrix Kn should converge for large network sizes to
a limit K∞, which is the “true” average over the size dis-
tribution (note that one should also consider the limit of
infinite number M of samples). As an example of this
convergence, results for the permeability KP

0 as a func-

tion of n are reported in Figure 3, for a mean diameter
d̄ = 18 nm and several values of the standard deviation
δ. For each network size n, the average and variance
of the permeability over the M samples are indicated.
The average permeability converges toward a finite value
K∞ for large n and the variance of the distribution of
K around K∞ decreases as n increases or as δ decreases,
as expected. Note that in the simple case where all the
channels are identical (δ = 0 nm), the macroscopic trans-
fer matrix K should be equal to that of each channel g.
For the range of parameters given above, this is indeed
the case with relative errors smaller than 10−5 % for sizes
n < 30. In the following, we use n = 20, which typically
provides estimates of K∞ within 1%. Such a network size
is comparable to previsous PNM studies of other trans-
port phenomena (see e.g. [46]).
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-0.05

0

0.05
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0.15

0.2

10 15 20 25 30

K K
∞

−
1

n

(18,12)
(18,6)

(18,1.5)
0

FIG. 3: (Color online) Permeability KP
0 as a function of the

network size n for a surface charge density σ = −0.1 enm−2

and salt concentration in the reservoir c = 0.001 mol L−1.
Results are reported compared to the limit K∞ (taken as
the value for n = 30), for diameter distributions of mean
d̄ = 18 nm and standard deviation: δ = 12 nm (black),
6 nm (red) and 1.5 nm (green). The average and variance
are computed over M = 80 realizations for each distribution.
The results obtained with other values for c and σ are very
similar.

IV. MACROSCOPIC TRANSFER MATRIX

We now turn to the numerical study of the macro-
scopic transfer coefficients. We first investigate, for a
given channel diameter distribution, the influence of the
solid surface charge density and of the salt concentration
in the reservoir. We then turn, for a fixed surface charge
density, to the combined effect of diameter distribution
and salt concentration. As explained above, for each dis-
tribution the reported results correspond to an average
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over several samples from this distribution.

A. Influence of surface charge density and salt
concentration

We first study the influence of the salt concentration c
in the reservoirs and of the surface charge σ for a Weibull
distribution with a mean diameter d̄ = 18 nm and a stan-
dard deviation δ = 12 nm, with the other parameters
taken as described in the previous section. The macro-
scopic transport matrix is symmetric, as expected, and
we report its coefficients in the same way as the channel
coefficients in Section II B.
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FIG. 4: (Color online) Macroscopic permeability KP
0 (in nm2)

as a function of the salt concentration c in the reservoirs in
equilibrium with the charged porous material, and of the sur-
face charge density σ of the channels.

Fig. 4 reports the macroscopic permeability KP
0 .

While for neutral walls (σ = 0) it is independent of the
salt concentration c in the reservoirs, KP

0 decreases with
increasing |σ| or decreasing c. Such a result may seem
surprising, because for a single channel the permeability
(Eq. 5) does not depend on the presence of charges on
the wall or in solution. This variation on the macroscopic
scale is due to the fact that the macroscopic fluxes result
from a balance between different local fluxes, including
electrokinetic ones. As an example, a macroscopic pres-
sure gradient induces local streaming currents which tend
to separate charges locally. In turn, this results in lo-
cal electric potential gradients across the channels which
induce electro-osmotic flow, thereby mitigating the lo-
cal pressure-driven solvent flow. Such electrokinetic cou-
plings are more pronounced for large |σ| and low c. For
large salt concentrations (near 0.1 mol L−1), the screen-
ing of electrostatic interactions results in smaller elec-

trokinetic effects, hence a smaller influence of the sur-
face charge density on the macroscopic permeability. As
will be discussed below, the coupling between the var-
ious types of local fluxes and the resulting decrease in
the macroscopic permeability KP

0 also depends on the
heterogeneity of the material.
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FIG. 5: (Color online) Macroscopic osmotic coefficient KC
0

(in nm−1) as a function of the salt concentration c in the
reservoirs in equilibrium with the charged porous material,
and of the surface charge density σ of the channels.

The osmotic coefficient KC
0 , governing the solvent flow

under a salt concentration gradient, is reported in Fig. 5.
As expected, the osmotic flux increases with the salt con-
centration. As observed for the permeability, the effect of
the surface charge density is more pronounced for smaller
salt concentrations. The evolution of KC

0 with c and σ
qualitatively follows that of the corresponding coefficient
on the channel scale gC0 given by Eq. (6), discussed in [40].
From the symmetry of the macroscopic transfer matrix,
these results also hold for the salt flux under a pressure
gradient, quantified by the coefficient KP

1 .

Fig. 6 reports the electro-osmotic coefficientKV
0 , which

quantifies the solvent flux under an electric potential gra-
dient. When σ = 0, this effect is absent; it increases with
|σ|. As gV0 on the channel scale [40], the macroscopic co-
efficient KV

0 decreases with increasing ionic strength as
a result of the screening of the surface charge. At large
surface charge densities, decreasing the salt concentra-
tion to very small values results in a slight decrease of
KV

0 . This contrasts with the case of a single channel,
given by Eq. (7), which plateaus in this limit (see also
Fig. 11 below). Such a decrease is also a consequence of
the balance between different types of local fluxes.

The coefficient KC
1 , reported on Fig. 7 quantifies the

flow of solute under a macroscopic concentration gradi-
ent. This coefficient is mainly controlled by the salt con-
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FIG. 6: (Color online) Macroscopic electro-osmotic coefficient
KV

0 (in nm−1) as a function of the salt concentration c in the
reservoirs in equilibrium with the charged porous material,
and of the surface charge density σ of the channels.
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FIG. 7: (Color online) Macroscopic coefficient KC
1 (in nm−4)

as a function of the salt concentration c in the reservoirs in
equilibrium with the charged porous material, and of the sur-
face charge density σ of the channels.

centration c. It captures both the effect of diffusion and
that of advection by the osmotic flow. For large surface
charge densities, the latter slightly increases the overall
solute flux, as does gC1 given by Eq. (8).

The effect of an electric field on the solute transport
is quantified by KV

1 , reported in Fig. 8. A noticeable
feature of this coefficient is the existence of two regions
corresponding to negative and positive values. This is
due to the different values of the diffusion coefficients
for sodium cations and chloride anions considered here
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FIG. 8: (Color online) Macroscopic coefficient KV
1 (in nm−4)

as a function of the salt concentration c in the reservoirs in
equilibrium with the charged porous material, and of the sur-
face charge density σ of the channels.

(D− > D+). Depending on their relative concentrations
in the porous medium, which depend both on the sur-
face charge density and on the salt concentration in the
reservoirs, the overall salt flux can be either in the direc-
tion of the electric field or in the opposite one. Note that
an improved description of the ionic transport inside the
channels could capture the effect of internal fields stem-
ming from the different ionic mobilities (Nernst-Hartley
theory). At large surface charge densities, decreasing the
salt concentration to very small values results in a slight
decrease of KV

1 , as observed for KV
0 . In the present case,

however, this decrease is already present at the channel
level, i.e. gV1 , given by Eq. (7).

Finally, Fig. 9 reports the macroscopic electrical con-
ductance KV

2 . It increases with the salt concentration
and with the surface charge density. The latter increase
is more pronounced for lower salt concentrations. Here
again, the variations of the macroscopic coefficient follow
that of the microscopic one, gV2 given by Eq. (10).

B. Influence of the diameter distribution

Overall, it appears that except for the permeability, the
macroscopic coefficients behave qualitatively as the mi-
croscopic ones for a single channel of diameter d = d̄, the
average diameter. The deviations, including the qualita-
tive difference for the permeability, arise from combined
effect of the couplings between the various types of fluxes
which must balance locally and of the heterogeneity of
the sample (we recall here that for a network with iden-
tical channels the macroscopic coefficients coincide with
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FIG. 9: (Color online) Macroscopic electrical conductance
KV

2 (in nm−4) as a function of the salt concentration c in
the reservoirs in equilibrium with the charged porous mate-
rial, and of the surface charge density σ of the channels.

the microscopic ones). Therefore, we now turn to the ef-
fect of the diameter distribution on the macroscopic co-
efficients. We focus here on the permeability KP

0 and on
the electro-osmotic coefficient KV

0 . The numerical study
in this section is performed for a surface charge density
σ = −0.05 enm−2.
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FIG. 10: (Color online) Macroscopic permeability, normalized
by the permeability for neutral channels (σ = 0), as a function
of the salt concentration c, for diameter Weibull distributions
with various means and standard deviations (d̄, δ). The sym-
bols correspond to δ = 6 nm (+) and δ = 12 nm (���). The
different colors indicate the mean diameter d̄: 18 nm (black),
24 nm (red), 30 nm (orange) and 36 nm (green).

As mentioned above, the permeability of the charged
network depends on the salt concentration in the reser-
voir, as a result of a balance between different types of
local fluxes. This contrasts with the case of neutral walls.
In Fig. 10 we illustrate the variations of the macroscopic
permeability for σ = −0.05 enm−2 with the salt concen-
tration c in the reservoirs, for different diameter distri-
butions. The decrease of the macroscopic permeability
due to local electrokinetic flows is more pronounced at
low salt concentration. In addition, in this regime this
decrease is larger for smaller average diameters d̄ and,
for a given d̄, for larger standard deviation δ, i.e. in the
presence of smaller channels, where electrokinetic effects
are more important.
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FIG. 11: (Color online) Macroscopic electro-osmotic coeffi-
cient as a function of the salt concentration. The solid lines
show the result for a single channel with diameter d = d̄, see
Eq. (7). The same symbols and colors as in Fig. 10 are used.

The effect of the diameter distribution on the macro-
scopic electro-osmotic coefficient KV

0 is illustrated in
Fig. 11. KV

0 decreases with increasing salt concentration
and decreasing average diameter, as for a single channel
of diameter d = d̄, also indicated on the figure. KV

0 also
decreases as the standard deviation δ of the distribution
increases, as a result of the presence of a larger number
of smaller channels, where electrokinetic effects (which
may mitigate the response to the impose macroscopic
gradient) are more pronounced. This is consistent with
the results of the previous section. Nevertheless, the be-
haviour of the electro-osmotic coefficient of the complex
networks is semi-quantitatively described by that for the
corresponding channel with the average diameter.
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C. Discussion

The present PNM approach thus allows to demonstrate
the combined effect of the coupling between different
types of fluxes and the heterogeneity of the sample. For
coefficients which already depend strongly on the sur-
face charge density and salt concentration on the channel
scale, the macroscopic coefficient exhibit the same depen-
dence on the sample scale. Some qualitative differences
may nevertheless arise for large surface charges and low
salt concentrations. The effects are more important for
coefficients whose dependence on the surface charge and
salt concentration is limited, or absent (permeability), on
the channel scale.

The overall effect of electrokinetic couplings, which are
more pronounced in smaller, more highly charged chan-
nels and at lower salt concentrations, is to reduce the
macroscopic transport coefficients, compared to the mi-
croscopic ones for an average channel. This is consistent
with Le Chatelier’s principle, as fluxes will locally gen-
erate coupled induced flows mitigating the effect of the
macroscopic gradient. This underlines the fact that the
coefficients of the homogenized transfer matrix K are not
simply the homogenized version of the coefficients of the
microscopic one, g. The upscaled, transport matrix re-
mains however symmetric, in agreement with Onsager’s
theory, as observed by Brunet and Ajdari from general
symmetry arguments [43] or using the mathematical tools
of homogenization theory [18–20].

Let us finally comment on the connection between the
present model and homogenization. As already men-
tioned in Sec. II, the pores enter in the present model
only via the pore variables P , C and V . The macroscopic
transfer matrix is then determined by ensuring the con-
servation of the various species (∇ · qα = 0) at the nodes
of the network. Therefore, the present algorithm could
also be seen as a discretization of the following continu-
ous problem :

∇ · (gγα(F )∇Fγ) = 0 (17)

with {α, γ} ∈ {0, 1, 2}, F0 = P (r), F1 = C(r), F2 = V (r)
and using Einstein’s notation for the implicit sum over
the index γ. The coupling matrix g(r) depends on the
value of the fields F (r) via the local Donnan equilib-
rium. The fluxes qα(r) are then analogous to the average
over the small scale model (which we took for simplicity
as an infinite cylindrical channel) in the homogenization
approach. More interestingly, we can make an analogy
between the pore variables and the equivalent bulk vari-
ables which were introduced as the natural variables for
upscaling in the homogenization approach of Moyne and
Murad [18, 19]. How far this analogy can be pushed re-
mains however to be determined.

V. CONCLUSION

We proposed a Pore Network Model for the descrip-
tion of the electrokinetic transport properties of charged
porous media. This PNM allows to consider the response
of heterogeneous samples to external pressure, salt con-
centration and electric potential gradients. In order to
illustrate the interest of this approach, we used sim-
ple expressions for the microscopic transport coefficients,
based on the Poisson-Nernst-Planck equations in cylin-
drical channels with fixed surface charge density. We
investigated numerically the effect of the surface charge
density, salt concentration and channel size distribution
on the macroscopic transport coefficients.

The symmetry of the transport matrix is preserved
by the present upscaling method, as required from On-
sager’s theory. The coefficients of this matrix qualita-
tively behave, in general, as their microscopic counter-
part for a channel with the average diameter. However,
the combined effects of electrokinetic couplings on the
local scale and of heterogeneity result into a decrease
of the overall transport coefficients, in accordance with
Le Chatelier’s principle. This decrease, as well as other
qualitative differences which may arise when the micro-
scopic coefficients depend weakly on the surface charge
and salt concentration, is more pronounced for large sur-
face charge densities and low salt concentrations, since
electrokinetic couplings are stronger in these cases, even
at the channel scale. In addition, for a given average
diameter, more heterogeneous samples result in stronger
effects, due to the presence of smaller pores, in which
electrokinetic effects are more pronounced. Overall, the
coupling between the complex pore structure of porous
media and electrokinetic effects underlines the limitations
of approaches based on idealized geometries (single slit
pore or cylindrical channel) parametrized directly from
the experimental macroscopic properties.

The PNM approach presented here is very flexible and
can be straightforwadly enhanced by improving the de-
scription of transport on the channel scale. For large sur-
face charges, the analytical expressions used here, which
are based on the linearization of the Poisson-Boltzmann
equation, are not accurate, but the solution of the non-
linear version can be obtained numerically, as done in [40]
in the case considered here or using various mesoscale
simulation strategies for electrokinetic effects [49, 50].
Osmotic effects could be introduced on the basis of de-
scriptions explicitely considering the radial concentration
profiles inside the channel [14, 51]. It is also well know
that the PNP model is not valid for too large salt con-
centrations and too small channels, where the discrete
nature of the ions and solvent becomes relevant. Such
limitations can be overcomed using improved liquid state
theories, e.g. the mean spherical approximation [52, 53]
or the Fundamental Measure Theory [54], or by treating
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the electrolyte as a confined mixture [55–57]. In prin-
ciple, for diameters in the nanometer range, it is even
possible to determine the channel transfer matrix using
molecular dynamics simulations, to capture e.g. the ef-
fect of slip at the solid-fluid interface [51, 58]. The in-
terest of molecular simulations for the simulation of elec-
trokinetic effects has recently been reviewed [59]. In the
particular case of clay minerals, which were used here as
a guide for numerical applications, such simulations have
demonstrated the importance of accounting for slip at
the surface to correctly describe the hydrodynamic and
electro-osmotic flows [60–62].

Other possible extensions of the proposed approach,
this time at the pore network level, include the assign-
ment of finite sizes to the pores, following e.g. the ap-
proach proposed in [46]. It remains however to determine
how to parametrize such an extended model, which in
addition introduces short-range spatial between the pore
and channel diameters. Similarly, a strong assumption
of the model introduced here is the neglect of the con-
tribution of the interfaces between channels and pores to
the overall electrokinetic transport. One way to improve
the description would be to determine their effect from
simulations including these interfaces explicitly, as done
using a mesoscopic model by Marconi et al. to derive ef-
fective one-dimensional transport equations [45], and to
introduce the results in modified conductance matrices
for the channels. The present model can now be used to
determine the properties of a given sample, if sufficient
experimental data is available for the parametrization of
the model, or to investigate the properties of generic ma-
terials, in particular percolation properties [37, 47, 63]
for the various types of fluxes.
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