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Résumé — Revue des algorithmes de solveurs linéaires utilisés en simulation de réservoir, efficaces

sur les architectures matérielles modernes — Depuis quelques années, en calculs haute

performance les constructeurs ont recours de plus en plus à des architectures basées sur des

unités de calculs multicœurs éventuellement accélérées avec des cartes de type GPGPU

(General Purpose Processing on Graphics Processing Units). L’interêt de telles architectures

offrant un grand nombre d’unités de calcul pourrait être grand pour le domaine de la

simulation d’écoulements multiphasiques en milieu poreux, utilisée par exemple dans les

applications de type séquestration géologique du CO2 ou simulateur de récupération avancée

de pétrole dans des réservoirs. Il faut néanmoins vérifier si les algorithmes des logiciels actuels

sont adaptés pour être efficaces avec ces nouvelles technologies.

La résolution de grands systèmes linéaires creux constitue souvent la partie la plus coûteuse des

simulateurs d’écoulement en milieu poreux. En effet, ces systèmes sont souvent mal conditionnés

dû au caractère souvent très hétérogène et anisotrope des données géologiques. Les solveurs

linéaires constituent pour ces raisons un point crucial pour les performances de ces

simulateurs. Dans cet article, nous proposons un panorama des différents algorithmes de

solveurs linéaires et de préconditionneurs utilisés dans nos applications. Nous analysons leur

efficacité numérique et leur performance en fonction de différentes configurations matérielles.

Nous proposons une nouvelle approche, basée sur la programmation hybride, performante sur

des architectures hétérogènes à base de processeurs multicœurs ou d’accélérateurs de type

GPGPU. Cette approche est validée dans l’implémentation d’un BiCGStab préconditionné

avec des algorithmes de type ILU(0), BSSOR, préconditionneur polynomial ou CPR-AMG.

Des tests de performances ont alors été effectués sur differents cas d’études d’écoulement en

milieu poreux, utilisant des maillages de grande taille.

Abstract— Survey on Efficient Linear Solvers for Porous Media FlowModels on Recent Hardware

Architectures— In the past fewyears,HighPerformanceComputing(HPC)technologies led toGeneral

Purpose Processing onGraphics ProcessingUnits (GPGPU)andmany-core architectures. These emerg-

ing technologies offer massive processing units and are interesting for porous media flow simulators may

used forCO2 geological sequestration or EnhancedOil Recovery (EOR) simulation.However the crucial

point is “are current algorithms and software able to use these new technologies efficiently?”

The resolution of large sparse linear systems, almost ill-conditioned, constitutes the most CPU-

consuming part of such simulators. This paper proposes a survey on various solver and preconditioner
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algorithms, analyzes their efficiency and performance regarding these distinct architectures. Fur-

thermore it proposes a novel approach based on a hybrid programming model for both GPU and

many-core clusters. The proposed optimization techniques are validated through a Krylov subspace

solver; BiCGStab and some preconditioners like ILU0 on GPU, multi-core and many-core architec-

tures, on various large real study cases in EOR simulation.

INTRODUCTION

In basin modeling or reservoir simulations, multiphase

porous media flow models with highly heterogeneous

data and complex geometries, lead to solve complex

non-linear Partial Differential Equations (PDE) sys-

tems. These PDE are discretized with a cell-centered

finite volume scheme in space and a fully implicit scheme

in time, leading to a non-linear system which is solved

with an iterative Newton solver. At each Newton step,

the system is linearized, and the generated linear system

is solved with a Bi-Conjugated Gradient Stabilized

(BiCGStab) [1] or Generalized Minimal RESidual

(GMRES) [1] algorithm, well suited for large, sparse

and unstructured systems. This resolution phase consti-

tutes the most expensive part of the simulation, repre-

senting nearly 60% to 80% of the total simulation

time. The efficiency of the linear solvers is therefore a

key point of the simulator’s performance. As the cost

of these iterative algorithms depends directly on the

number of iterations required for convergence, the

choice of a robust parallel preconditioner and appropri-

ate solver options is important. Indeed these appropriate

options have a strong impact on the cumulative number

of iterations for the whole simulation.

Furthermore, to continue increasing the performance

of architecture following the Moore’s law; reducing the

energy consumption, hardware developers have to

design heterogeneous architectures based on multi-core

CPU enhanced with GPU accelerators. Indeed, the

multi-GPU architectures are economically more inter-

esting than the multi-core ones.

However, these architectures introduce new chal-

lenges in terms of algorithms and system software

design; algorithms need to be adapted or sometimes

completely rewritten according to the targeted architec-

ture. Moreover, the bottleneck of each algorithm can

vary for different hardware configurations. For instance,

with GPU accelerator (heterogeneous multi-GPU) the

main issue is to optimize the data transfer between the

host memory and the remote local memory of the

GPU while in the case of multi-core architecture, the

major problem is to manage the concurrent access of

the cores to the memory under the constraint of limited

memory bandwidth. The heterogeneous multi-GPU

architecture combines both constraints; low latency for

data transfer between the CPU and the accelerators

(GPU or many-core cards) and concurrent access of

the cores to the memory.

In this paper, we focus on different types of precondi-

tioners, on their implementation with different libraries

(Hypre, Petsc, PMTL4, IFPSolver, MGCSolver) and

we study their performance regarding different hardware

architectures. We show how the choice of appropriate

solver options and parallel preconditioners is tightly

coupled to the hardware configuration. In the first sec-

tion, we present some hardware and software consider-

ations in the context of GPUs. The second section is a

review of the main preconditioner algorithms commonly

used with Krylov solvers. The third section describes the

porting of preconditioned BiCGStab to GPU. Results

are gathered and analyzed in the forth section, while sec-

tion five concludes this work.

1 HARDWARE CONTEXT

In the exascale computing roadmap, using accelerators

(GPUs and many-core) is a key point. These kinds of

architectures offer a very high peak of floating-point

operations per second, a very high peak memory band-

width, for very interesting ratios of Flop per watt and

Flop per euro.

In the past twenty years, GPU have evolved from

fixed-function processors to massively parallel floating

point engines. Hence, the idea of General-Purpose Com-

putation on Graphic Processing Units (GPGPU)

emerged to take advantage of the processing power of

GPU for non-graphical tasks. General purpose pro-

gramming tools like BrookGPU [2], CUDA [3], or

OpenCL [4], ease GPU use for all programmers. How-

ever to fully benefit from the GPU, computational power

still requires that algorithms exhibit a high degree of par-

allelism and regular data structures. This stems from the

specific GPU hardware architecture: hundred basic com-

putation cores (also called Stream Processor; SP) handle

arithmetic and load/store operations without any flow

control. The latter is handled by an additional unit called

sequencer. This leads to a programming model called

Data Parallel [5, 6]. Such programming and execution

model is similar to those used in the 80’s and 90’s on

massively parallel supercomputers [5, 6]. Nvidia GPU
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provide a massively multithreaded execution model

where threads are identical instruction flows working

with different data.

Here, we focus on the two most widely available and

used Nvidia GPU architectures at the time of writing this

manuscript, namely: FERMI and Kepler. The FERMI

architecture provides 448 SP for C/M2070 and up to

512 SP for M2090 models, grouped into 14 SM (16 for

M2090) each containing 32 SP.With the Kepler architec-

ture, NVIDIA provides the SMX (Streaming Multipro-

cessor eXtreme) architecture. Each SMX contains 192

cores, each capable of completing a single-precision

floating-point multiple and adds (fused, to avoid truncat-

ing the intermediate result) in every clock cycle. In the

K20 product, 13 of these SMXunits are combined to give

a total of 2 496 cores, giving a peak performance of 3.52

TFlops in single or 1.17 TFlops in double precision.

On the software side, CUDA and OpenCL have emer-

ged as the leaders of general purposes software tools.

While CUDA only provides support for Nvidia GPU,

OpenCL is more generic and support Nvidia, AMD

GPU and also multi-core CPU. In this work, we use

the CUDA programming environment. Moreover, we

consider that the GPU and the CPU process disjoint

parts of the code. In this context, the GPU role is to

decrease the computation time by assisting the CPU

for the dedicated parts, even when taking into account

the data transfer penalty.

2 PRECONDITIONERS OVERVIEW

In multiphase porous media flow models, the discretiza-

tion and the linearization of the PDE lead to large linear

systems to compute the pressure or/and the temperature

which are elliptic/parabolic unknowns and the satura-

tions or/and the compositions which are hyperbolic

unknowns. These linear systems, often ill-conditioned

due to the heterogeneous and anisotropic geological

data, are classically solved with iterative Krylov sub-

spaces methods such as GMRES, CGS, BiCGStab.

Efficient preconditioners are necessary to improve the

linear systems’ condition numbers so that the used itera-

tive solvers can converge with a reasonable number of

iterations.

For a given sparse linear system, there is often no sin-

gle preconditioner which yields the best performance on

all computer architectures. The efficiency of precondi-

tioners depends numerically on the problem size, on

the heterogeneity, the discontinuities and the anisotro-

pies of the problem. But the efficiency of their implemen-

tation depends on the target hardware architecture.

Some algorithms may be numerically efficient and help

to reduce the number of iterations considerably, but they

may be difficult to parallelize and not efficient in terms of

flops on certain hardware configurations. Even more, to

have performance on hardware configurations like

GPGPU, it is preferable to have algorithms offering a

high degree of parallelism at a fine-grain level, while with

multi-core configuration, to avoid memory access con-

currency problems, it is preferable to have algorithms

offering a coarse-grain level degree of parallelism. There-

fore, the compromise between the numerical efficiency of

a preconditioner and the performance of its algorithm’s

implementation for each hardware configuration must

be studied. In this paper, we focus on BiCGStab linear

solver (used for both symmetric and non-symmetric sys-

tems) preconditioned by Neumann Polynomial, BSSOR,

ILU, AMG and CPR-AMG [7]. The strong and the

weak points of these preconditioners are discussed

below. In our study, we use the before-mentioned pre-

conditioners implemented in Hypre [8], PETSc [9],

PMTL4 [10], MGCSolver [11] and IFPSolver [12]

libraries described in Section 4.3.

2.1 Neumann Polynomial

The Neumann Polynomial preconditioner is the simplest

polynomial preconditioner. Let x be the largest eigen-

value of matrix A and PmðAÞ a polynomial of degree m
then M�1 ¼ PmðAÞ is defined as:

PmðAÞ ¼ xðI þ ðI � xAÞ þ ððI � xAÞ2 þ :::þ ðI � xAÞmÞ

This preconditioner – based on matrix-vector prod-

ucts – is very well parallelisable on every kind of hard-

ware configurations. Nevertheless, it is not numerically

robust because it does not reduce significantly the condi-

tion number of the matrix. For ill-conditioned systems

provided by reservoir simulations, it is often not efficient

enough numerically to ensure the Krylov solver conver-

gence. On multi-core architectures, this preconditioner is

usually not competitive with other preconditioners.

However, as its construction is not expensive and it

can be parallelized easily at a fine-grain level, the interest

to it has increased again few years ago because it is easy

to implement for GPGPU, its algorithm being well sui-

ted for the GPGPU’s data parallel programming model.

Thus, the fact that it requires many more iterations to

converge than most of other preconditioners is compen-

sated by the performance of efficient matrix-vector prod-

uct implementations.

The behaviour of this preconditioner and its handling

on the different architectures is discussed in the numeri-

cal experimentation Section 4.
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2.2 BSSOR Preconditioner

The Block Symmetric Successive Over-Relaxation

(BSSOR) preconditioner consists of applying one or sev-

eral iterations of the block Symmetric Successive Over

Relaxation (SSOR) method well described in [1].

Let us consider the linear system Ax ¼ b where A is a

matrix, x and b vectors. Be L, D, and U the lower, diag-

onal, and the upper parts of A respectively so that

A ¼ Lþ Dþ U . The backward Gauß-Seidel iteration

computes xBGS from xk by solving the upper triangular

system:

Lxk þ DxBGS þ UxBGS ¼ b

with a backward substitution algorithm.

The forward iteration calculates xFGS from xk by solv-

ing the lower triangular system:

LxFGS þ DxFGS þ Uxk ¼ b

with a forward substitution algorithm.

The symmetric version of the method applies succes-

sively the backward then the forward iteration as follows:

Lxk þ DxBGS þ UxBGS ¼ b

LxSGS þ DxSGS þ UxBGS ¼ b

The relaxation step consists in computing the iterate

k þ 1 as the weighted average of the iterate k and the

symmetric Gauß-Seidel solution xSGS with a relaxation

factor x: xkþ1 ¼ xxk þ ð1� xÞxSGS
Although backward or forward substitution algo-

rithms are sequential algorithms, the SSOR algorithm is

interesting in its block version because it can be parallel-

ized at a fine-grain level by the means of a block-coloring

renumbering procedure (graph-coloring approach).

This consists in introducing the dual graph of the matrix

and partitioning the vertices into independent blocks of

different colors.

Let GðAÞ be the dual graph of a matrix A ¼ ðai;jÞ. The
vertices of GðAÞ represent the rows (resp. columns) of A.
The edges ði; jÞ connecting the vertices i and j represent
the non-zero elements ai;j 6¼ 0 of A. The coloring algo-

rithms assign to each vertex a color that is different from

all its neighbours’ color. Thereby, the number of colors

is kept as small as possible by heuristics (finding a color-

ing with minimal colors is an NP-complete problem

[13]). We can easily notice then, that in the backward

or forward substitution algorithms, operations on rows

of the same color are completely independent as they

depend only on vector components of colors different

from the current color.

2.3 Incomplete LU Factorization: ILU

The Incomplete LU factorization preconditioners – well

described in [38] – are very common preconditioners in

reservoir or basin simulators. They apply an incomplete

LU factorization of the matrix A to compute a sparse

lower triangular matrix L and sparse upper triangular

one U such that A � LU . The factorization is incomplete

in the sense that the non-zero LU factors not belonging

to the original matrix pattern – the so called fill-in entries

– may be dropped. In the zero degree incomplete version,

ILU(0), all these entries are dropped. In the more accu-

rate but more expensive version ILU(k,s), they are

dropped regarding two parameters: a maximal fill-in

level factor k and a drop-in threshold s to filter small

entries [1, 37]. The preconditioning operation solves

LU :x ¼ y with a backward substitution followed by a

forward substitution [1].

This preconditioner, well known to be efficient for

standard cases (i.e. not ill-conditioned and moderate

problem size), is not naturally parallel, since its algo-

rithm is recursive. This algorithm can be parallelized at

coarse or fine-grain level with various graph renumber-

ing techniques. In this paper, we study three different

strategies of parallelization: the first one is a graph-

coloring approach allowing for a high level of parallel-

ism at fine-grain level, and two others for coarse-grain

parallelism, the block Jacobi approach and the domain

distribution technique, based on 1D, 2D or 3D partitions

generated via the libraries like Metis [14] or IFPParti-

tioner [15].

The graph coloring technique, generally used to

improve the level of parallelism at a fine-grain level, is

efficient in iterative solution methods for example in

the SPMD context. However, in the ILU(0) context, this

renumbering technique, modifying the shape of the ori-

ginal matrix graph, has an influence on the rate of

dropped fill-in entries during the incomplete factoriza-

tion. This well-known renumbering effect may decrease

the numerical efficiency of the preconditioner, as it

may increase the number of iterations to achieve conver-

gence compared to the factorization with the natural

ordering. This strategy is adopted in MCGSolver to take

advantage of GPU accelerators that require fine-grain

parallelism.

Several tests on different cases showed that the block

Jacobi ILU(0) preconditioner may suffer from numerical

unstability since the links between each domain are not

taken into account. To achieve a fully parallel version

of the ILU factorization, that takes into account all links

between adjacent domains while preserving the parallel

performance, the IFPSolver renumbers cells and groups

them in interior ones – those not connected to other
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sub-domains – and interface ones – connected to other

sub-domain – which are handled in a Schur renumbering

style. The interface cells have been sub-grouped into

three kinds of interface cells:

– the upstream cells, only connected to domains with a

higher rank than the current domain;

– the mixed cells, connected to both domains with rank

higher and lower than the current domain;

– the downstream cells, only connected to domains with

rank lower than the current domain.

This renumbering technique allowed us to improve

the degree of parallelism at coarse-grain level. The com-

putations on interior cells are independent and may be

executed in parallel. We obtained a second level of par-

allelism on interface cells, computing upstream cells then

downstream cells independently and optimizing the

communication needed to handle the dependencies

between sub domains. The whole mechanism of this

optimization, applied in IFPSolver, is discussed in detail

in [16].

2.4 Algebraic MultiGrid

Algebraic MultiGrid (AMG) [35, 37] is a robust precon-

ditioner for elliptic problems. It is appreciated for its

extensibility qualities with M-matrix systems: the num-

ber of iterations required to converge only depends min-

imally on the problem size and can be entirely size-

independent. This is an important feature for massive

parallel applications. However, its construction, much

more expensive than traditional ILU preconditioner

often suffers of scalability on large number of

processors.

The main idea of Algebraic MultiGrid is to remove

smooth error components on the coarser grid. This is

done by solving the residual equation on a coarse grid

and then interpolating the error correction onto the fin-

est grid. The coarsening scheme is the major and crucial

part of the AMG preconditioner for both the sequential

and the parallel version.

AMG is based on the coarsening heuristics. The tradi-

tional coarsening scheme proposed by Ruge and Stüben

(RS) [19], tends to work well for two spatial dimensions

(2D) problems. Several works, concerning coarsening

algorithms, are done in order to adapt them to 3D prob-

lems. The following coarsening algorithms, well-known

for three-dimensional (3D) problems, are implemented

for the parallel environment. The first one, Parallel Mod-

ified Independent Set (PMIS) algorithm [20], is a modifi-

cation of an existing parallel algorithm; CLJP. In this

algorithm, the coarse-grid result is independent of the

number of processors and the distribution of the points

across processors. The second one, the Hybrid Modified

Independent Set (HMIS) algorithm [20], is obtained by

combining the PMIS algorithm with a one-pass RS

scheme.

A depth study in [20] is done concerning the effect of

different coarsening schemes on the multi-core architec-

ture, using Hypre BoomerAMG. In our situation, PMIS

and HMIS Boomer AMG coarsening algorithms give

almost the same result for both total number of solver

iterations and total solver time.

2.5 CPR-AMG

The CPR-AMG is a two-stage preconditioner which is

introduced by Lacroix et al. [7]. This preconditioner,

based on the CPR(1) accelerations, extracts and solves

pressure subsystems. Then, residuals associated with

the computed solution are corrected by an additional

preconditioning step on the whole system.

CPR-AMG combines one V cycle of AMG (we can

use one of the BoomerAMG from the HYPRE library,

SAMG, or at some point PMTL4 AMG) preconditioner

on a pressure equation together with an ILU(0) or

BSSOR preconditioner on the full system.

A basic presentation of this two-stage preconditioner

could be defined as follows: let Ax ¼ b be the linear sys-

tem to solve, where A represents the full system with App;

pressure block coefficients, Ass; non-pressure block coef-

ficients (saturation block(2) or saturation and concentra-

tion block(3)) and Aps;Asp; the coupling coefficients:

A ¼ App Aps

Asp Ass

� �

x ¼ xp
xs

� �
and b ¼ bp

bs

� �

– apply ILU(0) (or BSSOR) on the full system;

ILU0ðAÞxð1Þ ¼ b
– compute the new residual; rp ¼ bp � Appx

ð1Þ
p � Apsx

ð1Þ
s

– apply AMG-Vcycle on the residual pressure equation;

AMGðAppÞxð2Þp ¼ rp
– correction of the pressure unknowns; xp ¼ xð1Þp þ xð2Þp

This preconditioner is the most expensive precondi-

tioner which permits to decrease the number of iterations

1 CPR intends to decompose the pressure part (elliptic unknowns) and

approximately solve it. The pressure solution is used to constraint the

residual on the full system, thus achieving a more robust and flexible

overall solution strategy.
2 In black-oil context.
3 In compositional context.
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to the convergence considerably. In contrast to the Neu-

mann Polynomial, CPR-AMG is expensive to build and

apply, but it offers a very fast solution. Thanks to CPR

accelerator and to AMG, large-scale and complex reser-

voir problems, in fully implicit formulation, are solved

efficiently.

3 BI-CGSTAB ACCELERATION WITH GPU
IMPLEMENTATION

This section examines the advantages and the difficulties

encountered by deploying GPU technology to perform

sparse linear algebra computations. We study first the

Sparse Matrix-Vector product (SpMV) which is the base

Kernel, common among all the preconditioners dis-

cussed before and two preconditioner based on SpMV:

ILU(0), BSSOR and Polynomial. We focus on SpMV

and preconditioners because they consume most of the

compute time in BiCGStab iterations. Thus, the effort

is most important in these components while the vector

operations are efficiently enough realized by Nvidia’s

CUBLAS library.

3.1 SpMV

Sparse Matrix Vector product (SpMV) on GPU has

been widely studied since introduction of General-

Purpose GPU (GPGPU) computation [21-23]. Although

SpMV exhibits simple and massive parallelism: in

y ¼ A:x each yi computation is independent from each

other whereas each yi is a dot product that also exhibits

parallelism; the before-mentioned investigations always

show the importance of choosing the right sparse format

for the right sparse structure due to the need of massively

fine-grain and regular parallelism for efficient GPU use.

Thus unstructured sparse formats like CSR or COO do

not suit well for GPU computation. Nvidia now pro-

vides in its CUDA toolkit SpMV for different sparse for-

mats and this should be considered as a reference.

Although Nvidia provides efficient SpMV for Ellpack

and Hybrid format (mix of Ellpack and COO), these

SpMV are still designed for generic purpose and do

not use linear specific systems that come from the reser-

voir simulator. To use these specifics, we propose an

SpMV that explores the sparse block structure of the

matrix A where each non-null element is a small 3� 3
or 2� 2 block, depending on the underlaying Black-oil

simulation. By using blocks, we reduce the indirection

cost in SpMV: within the sparse matrix A, a column

index represents 2 or 3 contiguous elements of x so that

the effort loading column indices is reduced by a factor

of 2 or 3 (Fig. 1). Furthermore, the data reuse is better

in block matrices and the access patterns are more regu-

lar. We also use a reordering of A that groups lines with

the same width (number of non-null blocks). Thus,

instead of computing y ¼ A:x, our SpMV computes

y ¼ P:A:P�1:x with the permutation matrix P.

3.2 Preconditioners

We develop an ILU(0), a BSSOR and a polynomial pre-

conditioner forGPU.These three preconditioners exhibit

different levels of parallelism: while the polynomial

Column indexes

Column
indexes

Sparse matrix

Block sparse matrix

Matrix values

Matrix values

X

Nvidia Ellpack SpMV: 1 column index / matrix coef.

IFPEN SpMV: 1 column index / 3 x 3 matrix coef.

Figure 1

SpMV GPU: using block structure.
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preconditioner exhibits a high level of parallelism because

it uses the same SpMV as in the Krylov iteration, ILU(0)

is based on triangular solve with the incomplete factors L
and U . The parallelism of the sparse triangular strongly

depends on matrix ordering and if we consider ‘‘natural’’

ordering coming from the reservoir simulator (i; j; k grid

traversal), the degree of parallelism in the triangular solve

is at most the size of the largest sparse row. Such parallel-

ism is insufficient for GPU use.

To go beyond this limitation, a well-known solution is

to reorder the matrix according to the node coloring of

the associated adjacency graph. Graph coloring consists

of assigning a color to each node such that no adjacent

nodehas the same colorwhile trying tominimize the num-

ber of colors, i.e. to maximize the number of nodes with

the same color. A simple greedy algorithm that tries to

minimize the number of colors locally does not necessar-

ily minimize the number of colors globally but provides

sufficient results in our context because this algorithm:

– gives two equally sized sets with the large majority of

nodes;

– gives additional sets with the remaining nodes while

the total number of sets is less than or equal to the

graph depth plus one.

However, a draw back is that the number of nodes in

additional sets can be very small compared to the first

two sets. Also, this greedy algorithm finds the classical

red black coloring with graphs coming from structured

2D or 3D simulations.

Once the graph is colored, we reorder the matrix by

grouping equations (nodes) of the same color. Figure 2

shows the matrix profile for this reordering: the matrix

has c diagonal blocks (Di) where c is the number of col-

ors and other sparse coefficients lie in upper Ui and

lower Li blocks.
With this structure, the triangular solution process

L:x ¼ y or D:x ¼ y is decomposed into series of diagonal

solver steps where the right hand side is built using the

solutions xi from the previous steps:

D1:x1 ¼ y1
D2:x2 ¼ y2 � L2:x1

D3:x3 ¼ y3 � L3:
x1
x2

� �

..

.

Dc:xc ¼ yc � Lc:

x1
:::

xc�1

2
64

3
75

Each solver step is fully parallel because every vector

component xi can be computed independently from

another. In practice, we use an SpMV for

zi ¼ Li:
x1
:::
xi�1

2
4

3
5 and a diagonal solve for Di:xi ¼ yi � zi.

Then the GPU computation of each xi is efficient if each
Di has a large number of rows.

The GPU version of Algebraic MultiGrid (AMG)

preconditioner is under study. Different works [24] and

implementations of this preconditioner are already avail-

able in different libraries like PETSc [25], NVAMG

(GPU implementation) [26] and Trilions [27] (many-core

implementation). The integration of these libraries in

our simulator is under study, in order to compare their

performance with that of the MCGSolver.

4 NUMERICAL EXPERIMENTATION

High-performance computing has always been used in

the petroleum industry for the simulation at fine scale

of large full-field reservoirs. The used parallel reservoir

simulator [28] in this paper is a thermal multi-purpose

simulator permitting steam injection. It is the new gener-

ation IFP Energies nouvelles research reservoir simula-

tor, based on Arcane [29]. In this paper, the strong and

the weak points of the before-mentioned preconditioners

are reviewed using this simulator.

4.1 Platform Description

The used platform – ener110(4) – is composed of 378

nodes. Each node contains 2 Sandy Bridge octo-cores

D1

L5

L4

L3

L2

U1

U4

U3

U2

D2

D5

D4

D3

Figure 2

Matrix reodering for GPU triangular solve.
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E7-2670 CPUs with a tact rate of 2.6 GHz. The 14 nodes

of ener110 have two K20 GPU cards based on the

Kepler architecture [30]. The nodes are interconnected

with QDR infiniband links (40 Gbit/s) and offer 110

Teraflops.

4.2 Study Case Description

The results presented in this paper were obtained on

three different variants of the Spe10 model, on the tenth

SPE comparative solution project model [31] and on a

real thermal test case. Spe10 is a incompressible water-

oil, black-oil, two-phase flow problem. It is built on a

Cartesian regular geometry with no top structure or

faults(5) and simulates a 3D waterflood in a geostatistical

model. In this model one water injection well at the cen-

ter of the reservoir and four production wells at the four

corners of reservoir are defined and specified with bot-

tom hole pressure.

– case 1: the original Spe10model containsmore thanone

million active cells (1 122 000 cells; 61� 221� 86), with

heterogenousporosityandpermeability simulatingonly

30 days;

– case 2: the original Spe10 model with a homogeneous

porosity of 0.2 and a permeability of 100 simulating

only 30 days;

– case 3: fine-scale geological model of Spe10 with

17 952 000 cells (241 � 881 � 86) that describes a

homogeneous porosity of 0.2 and a permeability of

100 simulating 2 000 days;

– case 4: a thermal model which contains 26 700 cells

(6 � 50 � 89), one producer well and one steam injec-

tor well (the steam injector is positioned above the

producer), with heterogenous porosity and permeabil-

ity simulating 800 days.

4.3 Solver Packages Overview

There exist various software packages for parallel com-

puters which offer different preconditioners. This section

presents a brief description of some of these libraries

used in this paper.

4.3.1 IFPSolvers-MCGSolver

IFPSolvers (IFPS) and MCGSolver (MCGS) are soft-

ware packages developed by IFPEN to provide linear

solver algorithms for its industrial simulators in reser-

voir simulation [12], basin simulation [32], or in engine

combustion simulation [33]. The provided algorithms

aim for efficiency on IFPEN customer hardware config-

urations like Windows 64 platform, Linux cluster with

multi-core nodes partially accelerated with GPGPU.

These packages provide some Krylov solvers (BiCG-

Stab, GMRES, CG), some parallel preconditioners like

ILU(0), CPR-AMG, BSSOR, PolyN (Neumann polyno-

mial preconditioner), some specific domain partitioner

and matrix graph renumbering algorithms. The pack-

ages are interfaced with external libraries like Hypre [8]

or SAMG [34].

4.3.2 PMTL4

TheParallelMatrixTemplateLibraryv4 (PMTL4) [10, 35]

provides linear algebra operations on distributed data

as a C++ template library. Available data types are

distributed vector and sparse and dense matrix types as

well as abstractions to conveniently handle distribution

and migration. On top of the usual matrix and vector

operations, PMTL4 contains a comprehensive set of

iterative Krylov subspace solvers including the before-

mentioned CGS, GMRES, and BiCGStab. Due to

the generic design of the library, all solvers could be

directly used from the sequential MTL4 version without

re-implementation. Parallelism is introduced here just by

re-compilation: if the vectors and matrices have distrib-

uted types then the overloading mechanism selects the

according parallel operations. The library establishes its

own domain-specific language embedded in C++ in order

to provide an intuitive, textbook-like interface. However,

this user-friendliness does not harm the performance.

To the contrary, advanced meta-programming techniques

not only avoid run-time overhead but even enable

new forms of performance tuning [36]. The future

development will include more specialized solutions for

applications like the one in this paper. At the same time,

those components will be designed in a flexible and com-

binable manner for reusing them productively in further

applications.

The current ILU implementation is a block version of

ILU(0), i.e. the preconditioner is independently applied

on the local unknowns of each subdomain ignoring all

entries on interior boundaries. PMTL4 will also provide

an interface to Euclid in the near future – the hooks

within Euclid are already prepared by David Hysom.

4.3.3 PETSc

The Portable, Extensible Toolkit for Scientific computa-

tion (PETSc) is a parallel open-source library (suite of

data structures and routines) which permits large-scale

application codes on parallel (and serial) architectures

to solve their PDE systems. PETSc uses the MPI

5 The reason for using a simple geometry is to provide maximum flex-

ibility in the selection of upscaled grids which is exploited in this paper.
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standard for all message-passing communication.

PETSc has an efficient implementation of Block Jacobi

with ILU (0,1 or 2) subdomain solves. In this paper,

we use PETSc version 3.1.

4.3.4 HYPRE

HYPRE is a library for solving large, sparse linear sys-

tems of equations on massively parallel computers.

HYPRE provides a high-performance parallel Algebraic

MultiGrid preconditioner: Boomer AMG, for both

structured and unstructured problems. It uses MPI for

all message-passing communication. In this paper, we

use version 2.0.

4.4 Detailed Results

In this section, we analyze the performance of different

preconditioners on the recent architectures: homogenous

many-core distributed architectures and heterogenous

hybrid ones. We compare our solutions proposed in

IFPSolver and MCGSolver with PMTL4 and the well-

known and widely used library PETSc. The performed

simulations, using all preconditioners of the presented

libraries, are performed without any accuracy loss.

Regardless of the chosen preconditioner, the simulation

performs for each test case the same number of time

steps and the same cumulative number of Newton steps.

The tables present for an entire simulation the total

cumulative number of solver iterations (Tab. 1-4) and

total simulation time (Tab. 5) or total solver time

(Tab. 6-8) for each used cores number.

4.4.1 Distributed Architecture

In the first step, we analyze the multi-core architecture

with large numbers of cores. We choose a large but

homogeneous model: case 3. The experimental results(6)

are shown in Tables 1 and 5. It can be seen that CPR-

AMG offers a robust solution obtained in less time,

using less cores. Figure 3 demonstrates that for this

homogenous model, Block-Jacobi technique, used in

PETSc and PMTL4, offers better scalability, since the

links between domains are not crucial and the bound-

aries communication are avoided. This characteristic

can be also seen in Tables 2 and 6.

For ill conditioned matrices – which is the case 1 and

the case 4 situation – the proposed ILU(0) by IFPSolver

and CPR-AMG offer a better solutions since the inner

boundaries are not ignored. The experimentation results

shown in Tables 3, 7, 9, 10 confirm that. We demonstrate

in Figure 3 and Figure 4 that CPR-AMG offers a fast

solution but it is not scalable.

4.4.2 Heterogenous Architecture

In this section, we analyze the performance gain

obtained thanks to GPU accelerators. Since GPU

TABLE 1

Case 3: cumulative number of solver iteration during whole simulation

using classical parallelization (MPI)

Cores number 128 256 512 1 024

IFPS CPR-AMG 3 925 3 936 4 673 3 297

IFPS ILU(0) 45 7936 469 786 547 684 456 077

PMTL4 ILU(0) 601 321 499 305 539 657 656 813

PETSC ILU(0) 635 181 645 551 609 245 ***

PETSC ILU(1) 387 824 414 799 402 307 ***

PETSC ILU(2) 333 447 338 046 338 905 ***

TABLE 2

Case 2: cumulative number of solver iteration during whole simulation

using classical parallelization (MPI)

Cores number 16 32 64 128

IFPS CPR-AMG 121 122 123 126

IFPS ILU(0) 6 236 6 995 7 029 7 747

PMTL4 ILU(0) 4 399 4 384 4 612 4 594

PETSc ILU(0) 4 653 4 764 5 023 5 047

PETSc ILU(1) 2 435 2 526 2 820 2 931

PETSc ILU(2) 2 134 2 319 2 629 2 725

TABLE 3

Case 1: cumulative number of solver iteration during whole simulation

using classical parallelization (MPI)

Cores number 16 32 64 128

IFPS CPR-AMG 1 298 1 259 1 181 1 428

IFPS ILU(0) 7 309 7 789 7 843 7 981

PMTL4 ILU(0) 7 540 8 307 8 282 8 632

PETSc ILU(0) 8 183 8 949 8 887 9 325

PETSc ILU(1) 5 433 6 589 6 372 7 112

PETSc ILU(2) 5 055 6 176 6 205 6 980

6 PETSc results are not coherent for 1 024 cores.
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TABLE 8

Case 1: performance results (total solver time) of hybrid parallelization

(PolyN 8 cores use threads instead of mpi)

Cores number 1c 8c(mpi) 1c/1GPU

IFPS CPR-AMG 1 038 280 ***

IFPS ILU(0) 2157 374 ***

PMTL4 ILU(0) 1 796 294 ***

PETSc ILU(0) 2 159 500 ***

PETSc ILU(1) 1 586 205 ***

PETSc ILU(2) 1 793 493 ***

MCGS color ILU

(0)

2 144 *** 297

MCGS BSSOR 8 495 *** 1 129

MCGS PolyN 2 786 1 035 367

TABLE 4

Case 1: cumulative number of solver iteration during whole simulation

using hybrid parallelization

Cores number 1c 8c(mpi) 1c/1GPU

IFPS CPR-AMG 1 685 1 235 ***

IFPS ILU(0) 7 749 7 192 ***

PMTL4 ILU(0) 6 892 7 463 ***

PETSc ILU(0) 7 749 8 088 ***

PETSc ILU(1) 4 520 2 410 ***

PETSc ILU(2) 3 809 4 641 ***

MCGS color ILU(0) 12 393 *** 12 662

MCGS BSSOR 22 362 *** 21 898

MCGS PolyN 12 301 12 160 12 309

TABLE 9

Case 4: cumulative number of solver iteration during whole simulation

using classical parallelization (MPI)

Cores number 1 4 8 16

IFPS CPR-AMG 20 898 22 759 24 413 25 052

IFPS ILU(0) 278 413 296 243 308 324 310 157

PMTL4 ILU(0) 155 643 205 361 217 348 239 380

PETSc ILU(0) 204 686 248 023 263 654 285 464

PETSc ILU(1) 133 978 229 705 258 613 283 661

PETSc ILU(2) 114 628 217 700 257 875 282 339

TABLE 6

Case 2: total solver time (s) using classical parallelization (MPI)

Cores number 16 32 64 128

IFPS CPR-AMG 84.6 38.2 21.6 21.3

IFPS ILU(0) 177.8 100.0 51.4 29.4

PMTL4 ILU(0) 167.8 86.2 48.6 26.6

PETSc ILU(0) 153.0 105.9 53.1 29.3

PETSc ILU(1) 103.2 59.8 38.4 23.9

PETSc ILU(2) 126.5 68.3 47.8 27.2

TABLE 7

Case 1: total solver time (s) using classical parallelization (MPI)

Cores number 16 32 64 128

IFPS CPR-AMG 151.6 79.7 41.9 49.4

IFPS ILU(0) 194.0 108.5 57.5 29.8

PMTL4 ILU(0) 223.4 117.8 63.5 36.3

PETSc ILU(0) 269.5 206.2 86.0 51.9

PETSc ILU(1) 233.4 138.0 87.4 51.4

PETSc ILU(2) 267.9 169.9 82.3 71.8

TABLE 5

Case 3: total simulation time (s) using classical parallelization (MPI)

Cores number 128 256 512 1 024

IFPS CPR-AMG 4 346 2 506 2 360 2 477

IFPS ILU(0) 31 354 17 637 12 124 7 025

PMTL4 ILU(0) 38 346 15 946 9 373 6 048

PETSC ILU(0) 44 584 25 134 1 0749 ***

PETSC ILU(1) 32 892 18 863 1 5447 ***

PETSC ILU(2) 37 081 19 528 9 811 ***
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preconditioner are based on SpMV, we first present syn-

thetic SpMV performaces on CPU and GPU. These

days, the cost of one CPU and one GPU is quite similar.

Therefore the following question makes sense: “is it

interesting, in term of performance, to have a GPU

accelerator instead of an additional CPU?”

SpMV performances

In Figure 5, we compare the performance of SpMV

developed at IFPEN and Nvidia’s cusparse SpMV for

CSR, BSR, Ellpack and Hybrid formats running on

Fermi C0270 and Kepler K20 boards against a CPU

SpMV running on one Xeon Sandy-Bridge processor

using between one and eight cores. The CPU SpMV

implementations are block-CSR algorithms developed

for the MCGSolver and the block-CSR from the Intel

MKL library. We use matrices ranging from 2:4� 104

to 2� 106 equations extracted from IFPEN reservoir

simulator. These results show the situations:

– where thematrix is small enough (Canta, 2:4� 104 eq.)
to fit into L3 or L2 processor caches. Then, the CPU

performance is with 4 and 8 threads and is better than

the best GPU version. Also, multi-core CPU SpMV

offers good scaling with speed-up of 3.2 and 6.1;

– where the matrices are too large to fit into CPU

caches. Then all GPU SpMV – except CSR – offer a

significant performance boost over CPUs, even with

4 and 8 cores. Acceleration compared to 8 cores varies

from 1.9 to 3 for the K20 GPU.

Also block CSR from either MKL or Cusparse does

not improve performance against CSR except for

Cusparse BSR when block size is 2 9 2 or 4 9 4 on

K20 but never competes with Cusparse Ellpack or

Hybrid format except for MSUR_9 matrix.

Reservoir simulator results

We present simulation results for Case 1 and Case 4

which show two different behaviours for GPU solver

acceleration.

For Case 1, performance results presented in Tables 8

and 4 highlight the obtained benefit by using the hybrid

CPU+GPU implementation of ILU(0) compared to

ILU(0) using 8 cores of a CPU. This table shows that

for the ill conditioned Spe10 system, the hybrid CPU

+GPU offers a better performance, even if the number

of solver iterations is more important, due to the graph-

coloring, than the traditional version implemented in

IFPSolver, PETSc and PMTL4. Note that CPU

+GPU solver times include all data setup and transfer

to/from GPU. For polynomial preconditioner, we have

TABLE 10

Case 4: total solver time (s) using classical parallelization (MPI)

Cores number 1 4 8 16

IFPS CPR-AMG 858.4 274.1 184.6 152.2

IFPS ILU(0) 1 489.3 363.3 225.7 129.1

PMTL4 ILU(0) 4 842.3 1 444.9 791.3 480.0

PETSc ILU(0) 3 348 945.7 574.9 531.1

PETSc ILU(1) 4 139.4 1 333.6 771.8 663.2

PETSc ILU(2) 6 053.8 2 028 1 171.9 755.1
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a convergence rate equivalent to GPU color ILU(0) but

with a higher algorithmic iteration cost: the polynomial

degree is 2 which means 2 SpMV per preconditioner call.

This cost is at least twice the cost of an ILU(0) solve;

anyway GPU polynomial preconditioner is competitive

against all one core CPU preconditioners and close to

some eight cores CPU preconditioners. On the other side

GPU BSSOR has higher iteration cost and also slower

convergence rate thus provides small improvement

against one core CPU preconditioner and no improve-

ment against eight cores one. It is also interesting to note

that CPU+GPU solver/preconditioner have an acceler-

ation factor close to 7.5 against their CPU counterpart.

TABLE 11

Case 4: performance results (total solver time) of hybrid parallelization

(PolyN 8 cores use threads instead of mpi)

Cores number 1c 8c(mpi) 1c/1GPU

IFPS CPR-AMG 858 185 ***

IFPS ILU(0) 1 489 226 ***

PMTL4 ILU(0) 4 842 791 ***

PETSc ILU(0) 3 348 575 ***

PETSc ILU(1) 4 139 772 ***

PETSc ILU(2) 6 054 1 172 ***

MCGS color ILU(0) 3 376 *** 738

MCGS BSSOR 6 685 *** 1 370

MCGS PolyN 4 207 878 788

TABLE 12

Case 4: cumulative number of solver iteration during whole simulation

using hybrid parallelization

Cores number 1c 8c(mpi) 1c/1GPU

IFPS CPR-AMG 20 898 24 413 ***

IFPS ILU(0) 278 413 308 324 ***

PMTL4 ILU(0) 155 643 217 348 ***

PETSc ILU(0) 204 686 263 654 ***

PETSc ILU(1) 133 978 258 613 ***

PETSc ILU(2) 114 628 257 875 ***

MCGS color ILU(0) 362 468 *** 361 221

MCGS BSSOR 383 595 *** 381 337

MCGS PolyN 387 253 388 092 384 983
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SpMV on a) C2070 and b) K20 compared to Intel Sandy-

Bridge XEON E5-2680@2.7 Ghz.
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For Case 4, as shown in Table 7 and 8, CPU+GPU

solvers offer an acceleration between 4.6 and 5.3 against

their one core CPU counterpart but do not compete with

best eight cores MPI solvers (IFPS CPR-AMG and

IFPS ILU(0)). This is due to the relatively small case size

(� 104 solver unknows) where the parallel CPU solvers

gain efficiency as data set fits in processor caches but also

to a worse numerical behaviour of GPU precondition-

ers. As an exemple for IFPS ILU(0)/ MCGS color ILU

(0), we see a 1.6 increase factor for number of iteration

in case1 while the same factor is 2.3 in Case 4. For

GPU polynomial and BSSOR preconditioner the

observed behaviour is close to the one for Case 1:

GPU polynomial is close to color ILU(0) and GPU

BSSOR provides no perfomance improvement.

CONCLUSION AND FUTURE WORKS

Thepurpose of our articlewas to evaluate the performance

of the linear solvers used in large parallel reservoir simula-

torsonnewhardware configurations.Wehave focusedour

study on two kinds of configurations: large memory dis-

tributed architectures with a large number of cores and

heterogeneous nodes with multi-core CPUs accelerated

with GPGPU cards. We evaluated the scalability of a

BiCGStab solver with different preconditioners of the

IFPS,PETScandPMTL4solverpackages,with some runs

on 128 up to 1 024 cores, on a 17 950 000 grid block study

test case. For this kind of architecture, CPR-AMG is the

most efficient preconditionermainly due to its extensibility

qualities even if its construction suffers of strong scalability

problems.Thepreconditionersof the ILU family,well par-

allelized bymeans of renumbering techniques, have a good

scalability behaviour although they numerically suffer of

lack of extensibility.

With heterogeneous multi-core nodes accelerated

with GPGPUs, we have tested new solvers and precon-

ditioners, which are based on SpMV, taking advantage

of GPGPU accelerators. These algorithms turn to be

competitive with respect to the best CPU ones using

one core and in some cases against eight cores even

with worse convergence rates. Also with good perfor-

mance of GPU SpMV, we expect that SPAI precondi-

tioners [38] will provide better convergence rates with

the same level of performance for solver iteration.

Our results demonstrate that using GPGPUs becomes

now a real alternative to multi-core nodes for solving

ill-conditioned linear systems with Krylov solvers in

reservoir simulation. Once we proved the efficiency of

the GPU implementation, the next step will be to com-

pare our solution with other libraries. Different

implementations are available in different libraries like

PETSc [25] and Trilions [27] (many-core implementation).

The integration of these libraries in our simulator is under

study.

To handle Petascale and later Exascale architectures,

we need to improve the scalability of the CPR-AMG

preconditioner beyond 1 024 cores up to at least

10 000 cores in order to have both weak and strong sca-

lability. Within nodes, the use of accelerators in hetero-

geneous architecture becomes a heavy trend, for energy

and economical raisons. Right now, the preconditioners

designed for GPGPU become competitive with respect

to the best CPU one. Nevertheless, to really take advan-

tage of the computation power offered by accelerators,

we need to design new algorithms which are numerically

more efficient to reduce the number of iterations, as for

preconditioners like CPR-AMG. As this last one is not

adapted for fine grain size parallelization, we plan to

consider other new multi-level methods, based on

domain decomposition algorithms which are promising

as they present both numerical robustness and are poten-

tially more easier to accelerate with GPGPU.
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