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Résumé — Analyse de sensibilité et optimisation sous incertitudes de procédés EOR de type

surfactant-polymère — La récupération améliorée des hydrocarbures, basée sur l’injection

d’agents chimiques, est actuellement une solution considérée comme une des plus prometteuses

pour améliorer la récupération de champs matures. Pour des procédés basés sur une injection

de polymères et de surfactants, plusieurs paramètres doivent être pris en compte pour pouvoir

estimer le retour sur investissement : concentrations des espèces chimiques injectées, tailles des

bouchons, saturation en huile résiduelle, taux d’adsorption des agents sur la roche, etc. Parmi

ces paramètres, certains sont des paramètres de contrôle et d’autres des paramètres incertains.

Pour des opérateurs, déterminer les valeurs optimales des paramètres de contrôle tout en

tenant compte des incertitudes liées aux paramètres incertains n’est pas une tâche facile dans la

pratique. Cet article propose une méthodologie comme support à la résolution de ce type de

problème. À partir d’un modèle synthétique de réservoir où une injection de surfactant et de

polymère est effectuée, quelques paramètres de contrôle et incertains sont retenus comme

pouvant potentiellement influencer la production. Certains sont des entrées fonctionnelles du

simulateur de réservoir définies sous forme tabulée, de façon à offrir plus de flexibilité à

l’utilisateur. Puisqu’une modification point par point de ces tables engendrerait un nombre de

paramètres trop élevé, une paramétrisation spécifique est proposée pour ce type de données.

Nous présentons ensuite une méthodologie basée sur une modélisation par surface de réponse

pour pouvoir estimer la production d’huile calculée par le simulateur de réservoir à partir des

paramètres retenus, et identifier parmi eux les paramètres les plus influents. Cette modélisation

par surface de réponse est basée sur une décomposition de type Karhunen-Loève de la réponse

en temps du simulateur et sur une approximation des composantes de cette décomposition par

processus Gaussien. Cette technique nous permet d’accélérer de manière substantielle les temps

de calcul au moment de la construction des surfaces de réponse. Une fois que les surfaces sont

suffisamment prédictives, celles-ci sont utilisées pour optimiser les paramètres de contrôle en

tenant compte à la fois des incertitudes et de contraintes économiques. Aucune simulation de

réservoir supplémentaire n’est réalisée dans cette dernière étape.

Abstract — Sensitivity Analysis and Optimization of Surfactant-Polymer Flooding under

Uncertainties — Chemical flooding is currently one of the most promising solution to increase the

recovery of mature reservoirs. In Surfactant-Polymer (SP) processes, several parameters should

be taken into account to estimate the return on investments: concentrations of the injected chemical

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4, pp. 603-617
Copyright � 2014, IFP Energies nouvelles
DOI: 10.2516/ogst/2013166

http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/


species, slug sizes, initiation times, residual oil saturation, adsorption rates of the chemical species on

the rock, etc. Some parameters are design parameters whereas other ones are uncertain. For oper-

ators, defining the optimal values of the first ones while considering the uncertainties related to the

second ones, is not an easy task in practice. This work proposes a methodology to help handle this

problem. Starting from a synthetic reservoir test case where an SP process is set up, we select design

and uncertain parameters which may impact the production. In the reservoir simulator, for the sake

of flexibility, some of them are tabulated functions, which enables the user to input any data coming

from any system. However, point-wise modifications of these curves would soar the number of

parameters. Therefore, a particular parameterization is introduced. We then propose a methodology

based on Response-Surface Modeling (RSM) to first approximate the oil production computed by a

reservoir simulator for different values of our parameters and identify the most influential ones. This

RSM is based on a Karhunen-Loève decomposition of the time response of the reservoir simulator

and on an approximation of the components of this decomposition by a Gaussian process. This tech-

nique allows us to obtain substantial savings of computation times when building the response sur-

faces. Once a good predictability is achieved, the surfaces are used to optimize the design of the

SP process, taking economic parameters and uncertainties on the data into account without addi-

tional reservoir simulations.

INTRODUCTION

Enhanced Oil Recovery (EOR), especially chemical

EOR, is currently one of the most active sector of

research in the oil industry. Different techniques based

on chemicals injections such as polymers, surfactants

with or without alkalines can in some cases help increase

significantly the recovery rate of mature reservoirs,

where classical production techniques like water injec-

tion are no more effective.

In this domain, numerical modeling can be used at dif-

ferent stages. At the beginning of an EOR project,

screening models based on simplified assumptions [1]

or comprehensive reservoir models [2] can be used to

appraise if one of the previous techniques may be appro-

priate for a given reservoir. Such models can then be

employed to probe different injection scenarii and to

optimize them in order to maximize the production or

the project rentability.

Specifically, the key features of chemical EOR are

mainly three-fold:

– lower the interfacial tension in order to mobilize the

residual oil by means of surfactant,

– limit the surfactant consumption/adsorption by

means of alkali and/or dedicated surfactants,

– improve the mobility ratio/sweep efficiency by means

of polymer.

Like for other classical production techniques used in

the oil industry, the optimization of chemical processes is

not easy in practice because of a large number of uncer-

tain parameters. These parameters can be related to rock

properties (porosity, absolute or relative permeabilities,

etc.), in-situ fluid properties (water salinity, viscosities,

densities, etc.), economic conditions (capital expenditure,

facility costs, oil price, etc.), operating conditions (maxi-

mum injection rate, limiting bottom-hole pressure, etc.).

Moreover, when injecting polymers, surfactants or alka-

lines, the adsorptionof these chemical species on the rock,

the Capillary Desaturation Curve (CDC) or the varia-

tions of the oil-water interfacial tension with respect to

salinity and surfactant concentration, for instance, are

poorly known at the reservoir scale.

Despite these uncertainties, which usually come from

a lack of data, measurements accuracy or scaling from

core to field scale, operators have to determine the most

appropriate design paramaters (type of chemicals, con-

centrations, initiation times, slug sizes, etc.) for a given

EOR process and a given reservoir. Optimization work-

flows based on Response Surface Modeling (RSM) can

help choose an optimal design. Different methodologies

have already been proposed in previous works [3-6] for

EOR processes based on P, SP or ASP injections of

polymer and/or surfactants with or without alkalines

(A stands for alkaline, S for surfactant and P for

polymer). These workflows consist of three main steps.

First, an experimental design (Box-Behnken, three-level

D-optimal experimental designs, etc.) is defined to sam-

ple the values of the uncertain and design parameters.

From the simulation results of the experimental design,

a quadratic Response Surface (RS) is built to approxi-

mate the production results of a reservoir simulator with

respect to the input parameters. At last, the RS are used

to find the optimal values of the design parameters mak-

ing the uncertain ones vary. The use of such surfaces

enables to reduce the computational cost since reservoir

simulations are no more performed at the final step.

More complex than quadratic RS, kriging or Gaussian

process models, were used in other reservoir contexts [7]
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or in other applications [8]. Reference [7], for instance,

uses Gaussian processes to approximate key outputs of

numerical models from a fixed number of simulations.

Adaptive design strategies have also been proposed

instead of fixed designs to improve Gaussian process

approximations for given responses [9].

In this work, a RSM technique is used to perform the

sensitivity analysis of a synthetic but realistic reservoir

model where slugs of polymer and surfactant are

injected. The parameters adopted for this analysis are

the concentrations of chemicals, their adsorption rates

on the rock, the CDC and, more generally, the relative

permeability curves. At this stage, a particular parame-

terization is introduced in order to perform the sensitiv-

ity analysis with respect to these properties. Indeed,

pointwise modifications would require too many

parameters and make the RSM methodology useless.

On that occasion, a new way of approximating the pro-

duction curves by response surfaces is proposed.

Instead of computing response surfaces for each time

of well production data, a Karhunen-Loève decomposi-

tion is applied on the curve and response surfaces are

used to approximate the coefficients of this decomposi-

tion. In our case, this leads to a significant reduction of

the computation time. Let us note that this methodol-

ogy combining Principal Component Analysis (PCA)

and Gaussian process modelling of PCA coefficients

has been recently proposed by [10] and applied in order

to perform the sensitivity analysis of an atmospheric

dispersion model.

In a second part, the response surfaces obtained in the

previous step are used to optimize the concentrations to

be injected by taking economic constraints and uncer-

tainties into account.

In the following of this paper, we introduce our base

model in Section 1. The definition and the construction

of the response surfaces are described in Section 2 and

the results obtained in our example are also presented

in this section. In Section 3, we detail our methodology

to perform optimization under uncertainties and intro-

duce an economic model to illustrate how an optimal

design based on RSM can be obtained. Concluding

remarks and future works are summarized at the end.

1 BASE MODEL

1.1 Description

To illustrate our methodology, we consider, throughout

this work, a synthetic two-dimensional reservoir model.

Its dimensions are 505m� 505m� 10m and it is discret-

ized into 101� 101� 1 gridblocks of constant sizes

equal to 5m� 5m� 10m. The reservoir top depth is

constant with ztop ¼ 2 095m.

The distributions of porosities and permeabilities are

depicted in Figures 1 and 2. The permeability map is a

log-normal realization ranging from 1.7 to 5 710mDwith

amean of 265mD. The porosities vary from 1.7 to 13.5%

with an average value of 7.6%. Figure 1 also displays the

locations of the wells which are placed according to a

direct five-spot pattern with one injector in the middle

of the reservoir and four producers in the corners.
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Permeability (mD) distribution.
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A dead-oil model is used to represent the fluid proper-

ties. Oil and water viscosities are equal to 2 and 0.43 cP

and oil and water densities are equal to 0:824 g=cm3 and

1 g=cm3 (in-situ conditions).

Initially, the water saturation is equal to the residual

water saturation Swi ¼ 0:2 everywhere. Oil is produced

by means of three injection sequences over a 2 000-days

production period:

– a water flooding up to day 506 (� 0.4 pore volume

(PV));

– a slug of surfactant and polymer is injected from day

506 to day 886 (� 0.3 PV);

– a second slug containing only polymer is injected from

day 886 to day 2 000 (� 0.86 PV).

A constant injection rate of 150m3=d is imposed at

reservoir conditions and, for each producer, a maximum

production rate of 37:5m3=d is fixed at reservoir condi-

tions along with a minimum bottom-hole pressure of

15 bar.

We decide to stop the water flooding at day 506

because, at that time, the water-cut at well P4 reaches

90% (see Fig. 9), whereas the field water-cut is 50%.

All simulations were performed using the reservoir

simulator PumaFlowTM. For the case considered in this

work, one single simulation runs in a few minutes. But

the simulation times become much longer when working

with real data defined on larger grids with several hun-

dreds of thousands of grid blocks. For these cases, the

simulation times can take a few hours.

In the following, we briefly describe how the

surfactant-polymer injection is modeled within

PumaFlowTM in order to introduce our uncertain and

design parameters afterwards. For more details about

this model, the reader can refer to [11, 12].

In chemical EOR, surfactants are usually injected

along with water to reduce the interfacial tension

between oil and water. Polymers can also be injected at

the same time or afterwards. They intend to increase

the water viscosity and thus to reduce the mobility ratio

to improve the sweep efficiency of the water front. Poly-

mer and surfactant also contribute to reduce the residual

oil saturation Sor after water flooding.
In our example, the mobility reduction Rm due to the

polymer is defined as a function depending on the poly-

mer concentration Cpol and the oil-water interfacial ten-

sion row as a function of the surfactant concentration

Csurf . Both functions are represented in Figures 3 and 4.

The reduction of residual oil saturation Sor is mod-

elled by means of a Capillary Desaturation Curve

(CDC) describing the decrease of the residual oil satura-

tion with respect to the capillary number Nc, defined as

the ratio of the viscous driving force over the interfacial

tension:

Nc ¼ Rmlw j~uwj jj
row

In this definition, lw is the water viscosity without poly-

mer, Rm is the reduction of the water mobility induced by

the polymer, j~uwj jj is the norm of the water phase velocity

and row is the oil-water interfacial tension. In our specific

case, we assume that the polymer only modifies the water

visocity and does not alter the relative permeabilities;

therefore Rm only increases the water viscosity.

We assume that the CDC can be represented using the

following relation:

SorðNcÞ
Sor;w

¼ 1

2
1� Sor;c

Sor;w

� �
erfc a ln

Nc

Nc0

� �
þ Sor;c
Sor;w

ð1Þ
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Mobility reduction as a function of polymer concentration.
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where erfcðxÞ ¼ 2ffiffi
p

p
Rþ1
x e�y2 dy is the complementary

error function, Sor;w the residual oil saturation after

water flooding without polymer and surfactant and

Sor;c the residual oil saturation after chemical flooding.

Note that other CDC parameterizations have already

been proposed and the reader can refer to [13] for other

examples. The CDC in our initial model is represented in

Figure 5, where Sor;w ¼ 0:32, Sor;c ¼ 0, a ¼ 0:875 and

Nc0 ¼ 5� 10�3. Here, we assume that the irreducible

water saturation Swi remains constant during

surfactant-polymer flooding.

Another consequence of the reduction of the oil-

water interfacial tension by surfactants is the modifica-

tion of the relative permeability curves. At very low

interfacial tension values, oil and water phases should

be miscible and their relative permeabilities tend to

be cross-shaped. To mimic this effect, we model the

relative permeabilities by means of Corey power laws

and make vary the Corey exponents for two different

capillary number values Nc1 and Nc2. Specifically, for

Nc < Nc1, a Corey exponent nC;w ¼ 2 is used for the

water phase and a Corey exponent nC;o ¼ 3 is used

for the oil phase. For Nc > Nc2, nC;w ¼ nC;o ¼ 1. In

our example, as illustrated in Figure 5, Nc1 and Nc2

are automatically computed in a preprocessing step

before the reservoir simulation, according to the loca-

tions of the two levels Sor;w and Sor;c in the CDC curve.

For Nc1 � Nc � Nc2, the reservoir simulator deduces

the shape of the oil and water relative permeability

curves in each gridblock by interpolating the curves

of these two sets according to the local value of Nc.

We also assume that the maximum water relative per-

meability krw;max depends on Nc taking:

krw;maxðNcÞ
krw;max;w

¼ 1

2

krw;max;c

krw;max;w
� 1

� �
1þ erf a ln

Nc

Nc0

� �� �
þ 1

ð2Þ
where erfðxÞ ¼ 1� erfcðxÞ is the error function, krw;max;w

the maximum water relative permeability during a sim-

ple water flooding and krw;max;c the maximum water rel-

ative permeability during chemical flooding.

Polymers and surfactants may be partly adsorbed on

the rock, which tends to reduce their efficiency in prac-

tice. In our case, the polymer adsorption rate Apol;max is

taken constant and equal to 50 lg=g. The surfactant

adsorption rate Asurf is modelled as a function of the sur-

factant concentration using a Langmuir isotherm given

by:

Asurf Csurf ;m

� � ¼ Asurf ;max
Asurf ;LCsurf ;m

1þ Asurf ;LCsurf ;m
ð3Þ

with Asurf ;max the maximum adsorption rate, Asurf ;L the

Langmuir coefficient, and Csurf ;m the mass concentration

of surfactant. In the initial model, we choose

Asurf ;max ¼ 500 g and Asurf ;L ¼ 0:1m3=kg.

1.2 First Numerical Results

Figures 6-9 show the oil- and water-cut obtained with

our initial model at the four producing wells. The starts

of the second and third injection sequences, where first a

slug of surfactant and polymer and then a slug of poly-

mer are injected, are also displayed in the figures.
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Initial model oil- and water-cut at producer P1.
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Because of a high permeability area linking the injector

and the fourth producer, the water breakthrough first

occurs at this well. The effect of the first slug of surfac-

tant and polymer noticeably appears for the wells P3

and P4 where it manages to reduce the rise of the water

rate. But the injected concentrations are clearly not suf-

ficient here. Figure 10 shows the recovery obtained with

the initial model with and without the injection of chem-

icals. The overall volume of oil in place being equal to

154 126m3, the recovery factor obtained after day

2 000 is 56.2% using only water and rises by 0.8% with

chemicals.

In the next section, we make the concentrations vary

along with some potentially uncertain parameters in

order to observe the variability of the production. A

response surface is then built in order to find out the

most influential parameters.

2 SENSITIVITY ANALYSIS

Starting from our base model, we now assume that some

parameters are uncertain or need to be optimized. These

parameters are:

– the maximum polymer and surfactant adsorption

rates Apol;max and Asurf ;max (see Eq. 3);

– the coefficient a which drives Sor and krw;max curva-

tures (see Eq. 1, 2);
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Initial model oil- and water-cut at producer P2.
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608 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



– the capillary number Nc0 where Sor and krw;max reach

their mean values;

– the water and oil phases Corey exponents nC;w;c and
nC;o;c for Nc � Nc2;

– the injected surfactant and polymer concentrations

Csurf and Cpol;sp during the second injection sequence;

– the injected polymer concentration Cpol;p in the third

and last slug.

Table 1 gives the range of variations of these parame-

ters along with their value in the base model.

In practice, Apol;max, Asurf ;max, a, Nc0, nC;w;c and nC;o;c are
difficult to quantify whereas Csurf , Cpol;sp and Cpol;p are

design parameters to optimize in order to obtain the

most profitable production scheme. When working on

real field cases, this list of parameters is far from being

exhaustive. For example, slug sizes and initiation times

are design parameters which are also often taken into

account to optimize a process [6]. Here, we restrict our

list of uncertain and design parameters to Table 1. In

fact, the instrinsic limitation of Gaussian process regres-

sion with standard kernels lies in the number of param-

eters it can handle. Recent developments on kernels

based on an analysis of variance (ANOVA) decomposi-

tion and component selection have been proposed [14]

and may be a way to extend our list of parameters.

2.1 Variance-Based Sensitivity Analysis and Gaussian
Process Approximation

Sensitivity analysis aims at identifying which inputs most

influence the output of a given model. Several measures

have been proposed in the literature, ranging from

derivative-based indicators to norms of conditional

probability density functions. Here, we focus on

variance-based sensitivity indices, which evaluate the

impact of the inputs on the variance of the model output.

More precisely, let us assume that the inputs X are mod-

elled as random variables with a given probability distri-

bution and denote Y the model output which, by

propagation, is also a random variable. The variance-

based sensitivity indices, or Sobol indices [15], are

defined by:

Si ¼ VarðEðY jX i ¼ xiÞÞ
VarðY Þ

Sij ¼ VarðEðY jX i ¼ xi;X j ¼ xjÞÞ
VarðY Þ

Sijk ¼ . . .

Si (also called primary effect of X i) is the first order Sobol

index which measures the part of the output variance due

to X i only. For i 6¼ j, Sij measures the part of the output

variance due to the interaction between X i and X j. The

indices of higher orders Sijk are defined in the same

way. Sobol indices are included in the interval ½0; 1�
and their sum is equal to one when all input variables

are independent. A parameter X i or the interaction

between two parameters X i and X j are all the more influ-

ential on the output variance that their Sobol indice

is close to one. The total sensitivity index STi can

also be used to measure the overall sensitivity of the

response with respect to a parameter X i. This index is

defined by:

STi ¼
X
k#i

Sk

where k#i denotes all terms where index i appears. Dif-

ferent techniques (FAST, quasi Monte-Carlo, etc. [16])

exist to estimate the first and total indices. However,

all these estimation methods usually require several

thousands of calls to the model: when it is expensive,

the Sobol indices can not be estimated directly. In prac-

tice, a standard way to perform this task is to build an

approximation of the model output with a limited num-

ber of model evaluations, and to use this cheap approx-

imation in all sensitivity calculations. In the literature,

such an approximation is called a proxy, a response-

surface model, an emulator, or a meta-model.

Among all proxy models, a popular method is the

Gaussian process regression, also referred to as kriging

[17]. Let us denote by yðxÞ any scalar output of the reser-
voir simulator (e.g. for a given well, the cumulative oil at

a given time). In this setting, yðxÞ is considered to be a

realization of the Gaussian process:

Y ðxÞ ¼ hðxÞ þ ZðxÞ

TABLE 1

List of uncertain and design parameters

Unit Min Max Base model

Apol;max lg=g 0 100 50

Asurf ;max lg=g 0 1 000 500

a - 0.25 1.5 0.875

Nc0 - 10�5 0.01 5� 10�3

nC;w;c - 1 3 2

nC;o;c - 1 3 2

Csurf ppm 0 10 000 5 000

Cpol;sp ppm 0 2 000 1 000

Cpol;p ppm 0 2 000 1 000

F. Douarche et al. / Sensitivity Analysis and Optimization of Surfactant-Polymer Flooding under Uncertainties 609



where:

– h stands for the mean of Y which is often modelled as:

hðxÞ ¼
Xk
j¼0

bjhjðxÞ

hj being given functions;

– ZðxÞ is a stationary Gaussian process with zero mean

and covariance function covðZðx1Þ; Zðx2ÞÞ. In practice,

the covariance function is specified with a parametric

form. For example the power-exponential covariance

function is given by:

cov Z x1
� �

; Z x2
� �� � ¼ r2 exp �

Xd
i¼1

x1i � x2i
		 		

ki

� �pi
" #

In the previous equation, x1, x2 denote two different val-

ues of the vector of parameters x, d is the dimension of x
(number of parameters), r the variance and

ðpiÞi¼1;...;d; ðkiÞi¼1;...;d are called hyper-parameters which

need to be estimated. Assume now that we run the model

for several values of the inputs ðx iÞi¼1;...;n and denote by

SA ¼ ðY ðx iÞ ¼ yðx iÞÞi¼1;...;n the learning sample. One can

show that the best linear predictor of the output at a new

point x� given SA is equal to the conditional mean

EðY ðx�ÞjSAÞ and that the predictor variance is

VarðY ðx�ÞjSAÞ, which are given by:

E Y x�ð Þ=SAð Þ ¼ hðx�ÞTbþ rðx�ÞTR�1ðy� HbÞ;

Var Y=SAð Þ ¼ r2
1 �ðrðx�ÞT ; hðx�ÞT Þ

� R H

H 0

� ��1 r x�ð Þ
h x�ð Þ

� �
0
B@

1
CA ð4Þ

with:

hðx�Þ ¼
h1ðx�Þ

..

.

hkðx�Þ

0
BB@

1
CCA H ¼

h1ðx1Þ . . . hkðx1Þ
..
. . .

. ..
.

h1ðxnÞ . . . hkðxnÞ

0
BB@

1
CCA

rðx�Þ ¼
Rðx�; x1Þ

..

.

Rðx�; xnÞ

0
BB@

1
CCA R ¼

Rðx1; x1Þ . . . Rðx1; xnÞ
..
. . .

. ..
.

Rðxn; x1Þ . . . Rðxn; xnÞ

0
BB@

1
CCA

y ¼
yðx1Þ
..
.

yðxnÞ

0
BB@

1
CCA

For more details, the reader can refer to [17]. Esti-

mates of b and r2 are given by:

b̂ ¼ ðHTR�1HÞ�1HTR�1y; r̂2 ¼ 1

n
ðy� H b̂ÞTR�1ðy� H b̂Þ

and the hyper-parameters ðpiÞi¼1;...;d; ðkiÞi¼1;...;d are

obtained by maximizing the logarithm of the likehood

function:

lðr̂; b̂; k; pÞ ¼ � 1

2

n lnð2pÞ þ n ln r̂2 þ ln det R

þ 1
r̂2 ðy� H b̂ÞTR�1ðy� H b̂Þ

 !
ð5Þ

At the end, the value of the response surface for the input

parameters x� is given by RSðx�Þ ¼ EðY ðx�ÞjSAÞ and the

conditional variance error can be used as the error of this

predictor.

Practically, the experimental design is obtained with

an optimal Latin Hypercube technique with maximum

property [18, 19]. It is well known that this type of

space-filling design is suited for exploration but not for

hyperparameter estimation of the Gaussian process

model. Recent attempts aim at combining space-filling

designs and designs dedicated to hyperparameter estima-

tion. But no satisfying solution exists so far and this

point is beyond the scope of this paper.

The overall predictability of the response surface is

usually measured by the so-called Q2 coefficient. If an

independent test sample ðxj; yjÞj¼1;...;ntest
is available, the

Q2 coefficient can be estimated by:

Q2
test ¼ 1�

Pntest
j¼1

RSðx jÞ � y jð Þ2

Pntest
j¼1

y j � 1
ntest

Pntest
i¼1

y i
� �2 ð6Þ

where RS denotes the response surface built using the

current training sample. Alternatively, another estima-

tion method consists in using a cross-validation tech-

nique (cv):

Q2
cv ¼ 1�

Pn
j¼1

RS�jðx jÞ � y j
� �2

Pn
j¼1

yj � 1
n

Pn
i¼1

y i
� �2

where RS�j is the response surface built from the current

training sample deprived of the point ðx j; y jÞ. If the pre-
dictability is too low with the initial training sample, it is

possible to adopt a sequential strategy: additional points

are simulated in regions where the predictor is not accu-

rate until the overall Q2 is large enough. Generally, a Q2

over 0:9 ensures a quite good quality of the response

surface.
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Coming back to our problem, we want to estimate the

sensitivity indices of the recovery at several times with

respect to some parameters. This means that we need

to build one different proxy for each time ti with

i ¼ 1; . . . ;m, where an output yðti; xÞ is computed by

the reservoir simulator. However, the computation time

related to these calculations increases with the size of the

sampling n (see Eq. 4) and also with m since an optimiza-

tion of the hyper-parameters is performed at each time.

To reduce drastically the computation times related to

m, one solution is to characterize the time response yðt; xÞ
by its most relevant components using a Karhunen-

Loève (KL) decomposition [20]. In this type of

decomposition, theoutput yðt; xÞ is expanded in the follow-
ing way:

yðt; xÞ ¼
X1
k¼1

akðxÞ/kðtÞ

where the /k basic functions are orthonormal and sorted

in descending order according to the explained variance

of the output. In practice, this decomposition is com-

puted with a standard PCA algorithm.

In our approach, we apply the RS not to each yðti; xÞ
but to each component akðxÞ of the decomposition. In

practice, only a few components are needed for an accu-

rate reconstruction, meaning that we only have to build a

small number of proxy models (e.g. k ¼ 1; :::; 10). The
results presented in what follows were obtained using

this approach.

2.2 Application

In this section, our RSM methodology is applied to the

oil recovery of our five-spot case. A classical LHS

composed of 400 simulations was performed. Figure 11

shows the recovery factors computed during this experi-

mental design.

A KL decomposition where only the first two compo-

nents were kept, was then carried out. In our case, these

two components are sufficient to explain more than 99%
of the variance of the reponses of the initial LHS. This

number of components should be compared to the num-

ber of time steps which here amounts to 202. A speed up

of 101 is thus obtained and, because of the size of our

LHS, the construction time of the RS based on the KL

decomposition turns out to be much faster than with

the classical approach. For both approaches, attempts

were made to use smaller LHS with 90 and 100 simula-

tions. Unfortunately, the quality of the responses was

not satisfactory, which compelled us to increase the

LHS significantly. Note that an adaptive experimental

design was not used here but that it could help reduce

that dimension. For more details on that topic, the

reader can refer to [9].

To validate our response surfaces, 192 confirmation

runs were used on the whole: two LHS of 90 and 100

simulations, the case of a pure water flooding and

another case known to give a good recovery. The Q2
test

coefficients obtained with these runs are given in

Figure 12. During the first water flooding up to day

506, the response does not vary and Q2
test is set to 1 by

convention. When the injection of the first slug starts,

this value decreases suddenly because of the low value
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Recovery factors computed during the experimental

design.
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Q2
test coefficients (in blue) and variance (in red) of the

responses obtained from 192 confirmation runs.
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of the variance but it is not problematic because the

simulator response does not change a lot in that part

(see definition of Q2
test given by Eq. 6). From

day 1 000, all Q2
test coefficients are greater than 0.9.

Figures 13 and 14 show the productions estimated by

the response surface and the reservoir simulator for

two confirmation runs. Note that Q2
test values equal to

0:9157 and 0:9090 were obtained for the two compo-

nents a1 and a2 of the KL decomposition. Associated

cross plots of the 192 confirmation runs are given in

Figures 15 and 16.

The primary and total effects of each parameter

were computed from day 1 000 using RBD-FAST

technique [21]. Their evolution is shown in Figures

17 and 18. Globally, the three concentrations, the

maximum polymer adsorption and the capillary num-

ber Nc0 have the most important primary effects.

When considering the total effects, we notice that this

hierarchy is still the same. But values which sometimes

exceed the primary effects by 0:1 suggest that interac-

tions between parameters also have an influence on

the responses. The calculations of the secondary effects

revealed that the parameters with the highest primary

effects interact with each other and that Asurf ;max, a,
nC;w;c, nC;o;c are not influent at all in our case. Table 2

shows the highest interactions of order 2. Practically,

the computation of the Sobol indices can give hints

to reduce the number of uncertain parameters before

performing an history-matching or an optimization

(see Sect. 3).
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Comparison of the 25th confirmation run of the first LHS
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Comparison of the 35th confirmation run of the first LHS

(90 points) with the response surface.
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As an illustration, the shape of the response surface at

the final time is given in Figures 19 and 20. In the first

one, each plot gives the variation of the surface with

respect to one parameter setting the other ones to their

mean values. The second figure shows the variations of

the surface with respect to both Apol;max and Csurf keeping

the other parameters constant.

3 OPTIMIZATION UNDER UNCERTAINTIES

In this last part, we illustrate how to optimize our SP

process using the RSM achieved in the previous

section.

Starting from the total production obtained with a

pure water flooding, we estimate thanks to the RS the

additional production we can obtain with our SP pro-

cess. This difference of production is then used by a sim-

plified economic model to compute the Net Present

Value (NPV). The parameters of this model are given

in Table 3. Here, two scenarios with an oil price equal

to 10 $=bbl and 100 $=bbl are considered. For both sce-

narios, we compute the distribution of the NPV and

the distributions of the optimal concentrations Csurf ,

Cpol;sp, Cpol;p taking the uncertainties related to Apol;max,

Asurf ;max, a, Nc0, nC;w;c, nC;o;c into account.

The results are shown in Figures 21-28. They were

obtained by taking a random sample of 500 values of

the uncertain parameters and by maximizing the NPV

for each value of the sampling. Note that for these opti-

mizations:

– the uncertain parameters as well as Csurf , Cpol;sp, Cpol;p

were constrained to the ranges given in Table 1;

– uniform laws were used for the uncertain parameters;

– a BFGS algorithm was used to compute the optimal

concentrations for each sample of the uncertain

parameters.

For an oil price equal to 10 $=bbl, the SP process pro-

posed in our example is obviously not profitable. It

becomes much more cost-effective in the second sce-

nario. In that case, the RSM suggests to inject the max-

imum polymer concentration and a intermediate value

around 4 000 ppm for the surfactant.

CONCLUSIONS

In this work, a methodology was proposed to perform

the sensitivity analysis and the optimization under
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uncertainties of various parameters related to SP pro-

cesses. The list of the parameters considered in this paper

is far from being exhaustive and also depends on the sim-

ulator chosen for a field study. However we saw, through

our example, how suitable parameterizations can allow a

reservoir engineer to carry out a sensitivity analysis and

an optimization with functional inputs like relative per-

meabilities. On the other hand, we proposed a methodol-

ogy of RSM which consists in a KL decomposition of

the simulator time response and in an approximation

of the components of this decomposition by a Gaussian
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Figure 19

Variations of the response surface at the final time with respect to each parameter.

TABLE 2

Highest interactions between parameters

Apol;max Nc0 Csurf Cpol;sp Cpol;p

Apol;max x x

Nc0 x x

Csurf x x

Cpol;sp

Cpol;p
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Variations of the response surface at the final time with

respect to Apol;max and Csurf .

614 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



process. Compared to more classical approaches which

aim at modeling several different times of the response

independently, this approach can reduce the computa-

tion times when trying to approximate the whole reser-

voir output.

TABLE 3

Parameters of the economic model

Value Unit

Oil price 10 or 100 $=bbl

Polymer cost 2.5 $=kg

Surfactant cost 4 $=kg

Discount rate 0.12 -
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Figure 21

Distribution of the NPV (106 $) with an oil price equal to

10 $=bbl.
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Distribution of Csurf (ppm) with an oil price equal to

10 $=bbl.
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Distribution of Cpol;sp (ppm) with an oil price equal to

10 $=bbl.
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Distribution of Cpol;p (ppm) with an oil price equal to

10 $=bbl.
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Distribution of the NPV (106 $) with an oil price equal to

100 $=bbl.
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We also showed that a good predictability of the

response surface could be achieved. But our example

revealed that the simulator response (here the cumula-

tive oil production) with respect to the chosen uncertain

and design parameters can be quite complex and that the

number of simulations required to obtain a good pre-

dictability was high compared to the number of param-

eters. As a following of this work, adaptive strategies

could be investigated to reduce the size of the experimen-

tal design. Finally, we saw how to make use of the com-

puted response surfaces to optimize control parameters

like polymer and surfactant concentrations. Beyond

the conceptual nature of our test case, it would be inter-

esting to extend the set of parameters (e.g. chemical

flooding initiation time, salinity-dependent surfactant

adsorption and/or interfacial tension) and to apply

this workflow to real data and to other numerical

models.
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