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Résumé — Amélioration de la qualité d’un maillage hexa-dominant pour la simulation

de l’écoulement des hydrocarbures — On propose dans cet article une méthode pour régulariser

au mieux les éléments d’un maillage hexa-dominant ; cette régularisation permet l’amélioration

des calculs utilisés pour la simulation de l’écoulement des hydrocarbures dans des bassins. Ces

bassins contiennent des failles qui rendent la géométrie du modèle assez complexe.

La méthode d’optimisation est adaptée à une méthode de construction de maillages appelée

“Méthode des Grilles Contraintes” (CGM, Contrainded Grid Method). Les données sont sous

forme de surfaces modélisant les horizons et contenant des tags pour reconstruire les failles. Ces

surfaces failles sont considérées comme des contraintes pour pouvoir générer des discontinuités

dans le maillage hexa-dominant. Afin de rendre les éléments du maillage hexa-dominant

réguliers, on procède comme suit : on commence par régulariser les bords des horizons pour les

rendre alignés le mieux possible dans la direction des z, ce qui signifie que les noeuds de bord ont

approximativement les mêmes coordonnées xy. On résout ensuite une équation de Dirichlet

pour appliquer un Laplacien 2D sur les horizons dans la direction des coordonnées xy. Comme

les noeuds au bord ont approximativement les mêmes coordonnées xy, les transformations

obtenues grâce à l’équation de Dirichlet sont approximativement les mêmes et les positions en

(x, y) sont presque pareilles sur chaque horizon. On obtient ainsi un maillage vérifiant le critère

d’orthogonalité en xy et ayant des connections en z proche d’une verticale.

Abstract—Hex-Dominant Mesh Improving Quality to Tracking Hydrocarbons in Dynamic Basins

— The proposed method regularizes as far as possible some verticals of a hex-dominant basin mesh;

this regularization is used to optimize the numerical simulation of hydrocarbons flow in basins. The

studied basins contain faults and constitute complex geometries.

This mesh optimization is adapted for a new way to mesh basins called the “Constrained Grid

Method” (CGM). Data constitutes some horizon surfaces; the surfaces contain tags to

reconstruct the fault surfaces which represent in our case some constraints to generate a hex-

dominant mesh. To make a regular hex-dominant mesh, the following steps are applied: first, the

borders of horizon surfaces are extracted and optimized to get the connections between the

borders as vertical as possible; this means that the border nodes have approximately the same xy

directions. Next, a Dirichlet equation is solved to apply a Laplacian smoothing 2D on xy

directions for each horizon surface. And as the connected (x,y) between the borders are

approximately the same, as well as the implied the harmonic solutions, then the positions on (x,y)

are minimized.
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INTRODUCTION

The current oil production increases year after year and

the explored reservoirs are deeper. The exploration must

use more methods to estimate the deeper oil fields. One of

these methods is the reconstruction of basin evolution.

To study this evolution some mathematics models are

used to simulate the basins deformation and the flow of

hydrocarbons into its basins, more details are available

in references [12] and [13]. The current aim of work in this

context is to find a method that can give a good approx-

imation of the simulated hydrocarbons flow. The mesh

can be adapted to the method used to improve the solu-

tion. In this work, an optimization method is proposed

to improve the shape of the mesh elements. The optimal

mesh in this work is a mesh that verifies the 2D orthogo-

nal principle for the xy directions and contains connec-

tions as vertical as possible in the z direction.
Classical hexahedral meshing methodologies as

describe for example in [1] and [2] cannot be applied in

dynamic basin modeling. The optimization method

proposed in this paper complements an approach in

[3]. With this approach it is possible to obtain a

hybrid mesh(1) which can be identified with a structural

grid. As shown in this paper, the advantage on the

approach is the improving of the mesh to have lesser

non-hexahedral elements.

In the first part of this paper, a transformation to

improve the mesh in the xy direction called Laplacian

smoothing is described. This transformation is usually

used to deform a 3D object or to smoothen some noisy

surfaces. In this paper, the Laplacian smoothing is

applied to improve the xy direction quality. After this

optimization a relaxation method is proposed to align

the connections in each layer to verify the condition

for the z direction.

1 OPTIMIZATION FOR THE HEX-DOMINANT MESH

1.1 Constrained Grid Approach

The hydrocarbon flow simulation depends on the

mathematics, the finite volume scheme and the mesh

[14]. Indeed the mesh can be adapted to get more preci-

sions in the calculation. The most frequently occurring

type of mesh for the basins simulation is the hexahedral

mesh. The calculation is precise enough but we can not

create this kind of mesh for complex geometries (con-

taining a non-negligible number of faults) and the

deformation caused by the basin mechanics may easily

make some hexahedra convex. The second most impor-

tant type is the tetrahedral mesh which contains tetrahe-

dral elements only, all shapes can be covered with this

kind of mesh but the finite volume methods aren’t suf-

ficiently exact for geological purposes. In this work,

another type of mesh is used, the mesh must be precise

for the calculation and compatible with any basin

shape. So the basin is filling as well as hexahedra and

when it is difficult to put a hexahedron it is possible

to fill the area with tetrahedra. To have the conformity

in the mesh some pyramidal and prismatic elements are

used to connect the hexahedra and tetrahedra. This

kind of mesh are called hex-dominant mesh. To gener-

ate the hex-dominant mesh for the basin a new

approach in [3] can be applied. The advantage of this

approach is the minimization of non-hexahedral ele-

ments (tetrahedra, pyramids and prisms) and the com-

patibility with the geologic models. In our case, the

given data are usually horizons (limit surfaces between

the sedimentary layers) and fault surfaces (surface

modeling the fractures on the model). To generate the

hex-dominant mesh, the approach in [3] starts by the

creation of unfolded horizons. Here the unfolding seams

every fault in the horizon like in Figure 1 to be able to

extract the border and the fault paths (intersection

between the horizon and the faults). As we can see in

the same figure: with the horizon borders some 2D grids

are generated with Coons Method [4]. The grids are cre-

ated with the same number of nodes and hence it is possi-

ble to associate the nodes between the horizons. The

structured grid ijk can be imagined and we can try to

cut it, but the advantage of this approach in [3] is a step

called the matched node method. This method takes the

grid and the fault paths generated by the unfolding and

relocates every node into the nearest fault path. However

some rules must be followed to apply this step:

1. the deformed quads must be not degenerated;

2. if the local number of node connections is not suffi-

cient to relocate the node (great density of faults near

the node) a local refinement is applied for all the hori-

zon grids.

With this step it is possible to minimize the number of

non-hexahedral elements after having cut the ijk grid.

This improves the precision of the simulation result by

using the constructed hex-mesh.

In the approach cited on the previous paragraph,

the quality shape elements is not considered. The pro-

ceeding steps take place in the unfolded space. As con-

sequence, it is necessary to report the generated mesh

in the 3D space, by using a reverse transformation.

1 Mesh contains elements with different shapes, in this work only the

following element types are tolerated: hexahedra, tetrahedra, prisms

and pyramids.
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The quality of the 3D mesh thus depends on this trans-

formation,which is imposed to us.The aimof this paper is

to create an optimization method adapted for this

approach. This optimization is then called when the hori-

zons are reported in 3D and before having cut the 3D

structured mesh. The proposed optimization uses the

specificity ijk localization in the structured grid and let

the nodes move(2) to converge towards a mesh with opti-

mal angles. In this work, the optimal solution is a mesh

which verifies the orthogonal principle in xy directions

and the ij lines in zdirectionmust be as vertical as possible.

Therefore the following sections speak firstly about

the optimization in xy directions only and after the

optimization in z direction is explained to relate the two

parts.

1.2 Optimization Based on the Diffusivity Principle

1.2.1 Dirichlet Principle

Let S be a 2D domain and R be its boundary. Let us con-

sider a triangulation of S, denoted as the reference trian-

gulation. Assume that S is deformed from a rigid

displacement field associated to the boundary vertices

of the reference mesh resulting to a deformed reference

triangulation. The problem that we face is to modify

the position of internal vertices of the deformed refer-

ence triangulation in order to minimize the deformation

of the deformed reference mesh with respect to the initial

reference mesh. Let us denote by U :¼ ðu1ðx; yÞ; u2ðx; yÞÞ,
the displacement field associated to the vertices. The

minimization problem can be written as:

min jjruijjL2ðXÞ for i ¼ 1; 2

where X is the interior of S. It is expressed by:

min
ui2L2ðXÞ

ZZ
X
rui

truidxdy

� �
i ¼ 1; 2 ð1Þ

which is a particular case of Dirichlet principle minimi-

zing the energy:

DX;f ðuÞ ¼
ZZ

X
kruk2 � uf dxdy ð2Þ

where the source term f � 0, whichmeans that the solution

belongs to the space of harmonic functions. The Jacobian

of U is never null, therefore the displacement field is con-

formal. We obtain thus a Laplace problem with the dis-

placement field U jR as boundary conditions (Fig. 2).

3D horizon

Unfolded horizon

Extract fault paths Extract border

Repport faults
paths on the grid

Generate Coons grid

Mach faults

Figure 1

Constrained grid approach.

W ¶W¢ W¢

Figure 2

Laplacian smoothing principle.

2 The nodes are moved with respect to the original surface: the border

nodes circulate on the border and the other nodes are moved and pro-

jected on the original surface corresponding.
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In other terms, if the boundary R of S is deformed,

the internal vertices of the deformed reference triangu-

lation of S can be relocated in order to obtain a unique

valid triangulation with a uniform dispersion of verti-

ces. Furthermore, this principle can be applied to solve

a thermal diffusivity problem, thus this method has an

effect of diffusion for the element shape quality. The

next section, we recalls the algorithmic point of view

to solve the optimization problem (see [5] and [6] for

more details).

1.2.2 Algorithm to Solve the Optimization Procedure

Let D be the discrete operator DS\Rc;0. We assume

that U is a piecewise linear function over the reference

triangulation. If T ¼ ABC is a triangle of the reference

triangulation, we have:

DðUjT Þ ¼
ZZ

T
rUtrU dxdy

’ sTrUjT trUjT ¼ sTkUjTk2 ð3Þ

where sT is the area of T .
Let V be a point belonging into T . Point V can be writ-

ten as:

9a; b; cjV ¼ aAþ bBþ cC ð4Þ

As U is linear on T , we have:

UðV Þ ¼ auA þ buB þ cuC ð5Þ

where a, b and c are the barycentric coordinates of V
in T :

a ¼ kVB! ^VC
! k

kAB! ^AC
! k

; b ¼ kVC! ^VA
! k

kBC! ^BA
! k

; c ¼ kVA! ^VB
! k

kCA! ^CB
! k

ð6Þ

The gradient of each barycentric coordinate with

V ¼ ðx; yÞ is:

ra ¼ 1

2sT

yB � yC
xC � xB

� �
ð7Þ

rb ¼ 1

2sT

yC � yA
xA � xC

� �
ð8Þ

rc ¼ 1

2sT

yA � yB
xB � xA

� �
ð9Þ

and we obtain:

rUjT ¼ 1

2sT

� ðyB � yCÞuA þ ðyC � yAÞuB þ ðyA � yBÞuC
ðxC � xBÞuA þ ðxA � xCÞuB þ ðxB � xAÞuC

� �
ð10Þ

which yields:

DðUjT Þ ¼ 1

4sT
�
��

ðyB � yCÞuA þ ðyC � yAÞuB þ ðyA � yBÞuC
�2

þ
�
ðxC � xBÞuA þ ðxA � xCÞuB þ ðxB � xAÞuC

�2�
ð11Þ

This equation is obviously a quadratic form and

therefore there exist a double sequence aij
� �

i;j2f1::3g such
that we can write (11) as:

DðUjT Þ ¼
X
i

X
j

aij ui uj ð12Þ

where u1 ¼ uA, u2 ¼ uB and u3 ¼ uC
As the quadratic form is semi-definite positive and for

ui ¼ uj; 8i; j we have DðuiÞ ¼ 0, by applying a result in

[7], we obtain:

9�gij�jDðUjT Þ ¼
X
j

X
i<j

gij ui � uj
� �2

ð13Þ

We calculate now gA, gB and gC such that:

DðUjT Þ ¼ gAðuB � uCÞ2 þ gBðuC � uAÞ2 þ gCðuA � uBÞ2 ð14Þ

The derivative of Equation (11) with respect to uA is

given by:

oD
ouA

¼ ðyB � yCÞ
2sT

ðyB � yCÞuA þ ðyC � yAÞuB þ ðyA � yBÞuCð Þ

þ ðxC � xBÞ
2sT

ðxC � xBÞuA þ ðxA � xCÞuB þ ðxB � xAÞuCð Þ
ð15Þ

and that of equation (14) by:

oD
ouA

¼ �2gBðuC � uAÞ þ 2gCðuA � uBÞ ð16Þ

Let uA ¼ uB ¼ 0 in Equations (15) and (16) and by

comparing the two above Equations, we obtain:

gB ¼ 1

4sT
ðyC � yBÞðyA � yBÞ þ ðxC � xBÞðxA � xBÞð Þ

ð17Þ
Equation (17) can be simplified as:

gB ¼ CB
!

:AB
!

2kCB! ^AB
! k

ð18Þ
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By applying the same procedure for uC ¼ uB ¼ 0 and

uA ¼ uC ¼ 0, we obtain:

gA ¼ BA
!

:CA
!

2kBA! ^CA
! k

ð19Þ

gC ¼ AC
!

:BC
!

2kAC! ^BC
! k

ð20Þ

Now considering the whole triangulation, the weight

wij

� �
i;j21::N for each ðuj � uiÞ2, where N is the number of

nodes, must be determined. Let us consider two vertices

i and j, we denote by j $ i if ij is an oriented edge (see

Fig. 3 which illustrate this notation).

The weight wi;j is defined by:

wij ¼ gij þ gji if j $ i and i $ j

wij ¼ gji if i $ j

wij ¼ 0 else

8><
>: ð21Þ

where gij ¼ V iV k

!
:V jV k

!
2jjV iV k

! ^VjV k

! jj
and V i, V j and Vk are the vertices

of triangle containing the oriented edge ij. In [8], another

expression of the weight according to the 3D Laplacian

Beltrami operator can be found. The weight wij is also

used for surface flattening [9], surface deforming [10] or

2D transformations [15]. The approximation of the

weight by wij ¼ 1
Ni
, whereNi is the number of neighboring

nodes of i, is also used for surface morphing purpose [11].

Now we have DðUÞ ¼ P
j$i wijðuj � uiÞ2 and its mini-

mization yields to the following linear system:

X
j$i

wijðuj � uiÞ ¼ 0 ð22Þ

This system can be expressed as: LU ¼ b. To solve this

linear system, the Gauss-Seidel method is applied. The

deformation field at vertex i is thus the following:

ui ¼

P
j$i

wijujP
j$i

wij
ð23Þ

The following pseudo-code allows us to calculate L:

Determination of matrix L

L := initialisedAllCoefTo(0);
FOR f := 0 TO nomberOfFaces() - 1 DO

FOR iLoc := 0 TO 2 DO
globale(iLoc):=getVertexNum(iLoc,f);

END
FOR iLoc := 0 TO 2 DO

jLoc := (iLoc + 1) mod 3;
kLoc := 3 - iLoc - jLoc;
g(kLoc):=calculateCoefG(kLoc);
I:=max(globale(iLoc),globale(jLoc));
J:=min(globale(iLoc),globale(jLoc));
L(I,J) := L(I,J) + g(kLoc);
ProfileL:=calculateNewProfileOf(L);

END
END

The advantage of this computation is the explicit

dependence against data and the totally determination

of L after one loop over the elements. Notice that

for each triangle f , ðiLoc; jLocÞ belongs to the graph

fð0; 1Þ; ð1; 2Þ; ð2; 0Þg where triangle vertices are

locally referenced by 0; 1; 2. The expression

calculateCoefGðkLocÞ computes the component of L cor-

responding to edge ði; jÞ of triangle f which is added to

the global term ðI ; JÞ of L.

1.3 Optimize the 3D Mesh

As it is explained in the constrained grid approach sec-

tion the aim is to obtain a mesh that verifies the 2D

orthogonal principle on xy directions and the z direction
must be as vertical as possible. To have the verticals the

xy directions should be the same for each grid. The idea is

to have approximately the same xy directions for each

corresponding node on the borders (Fig. 4). When the

nodes on the border are corresponding it is possible to

obtain approximately the same solution with the Lapla-

cian smoothing transformation. Then the proposed solu-

tion aligns as nicely as possible the nodes on the borders

and afterwards aligns the interior nodes using the Lapla-

cian smoothing.

Interior segment A border segment

j

i

j

i
gji

gji

gij

Figure 3

Disposition of angles intervening on the calculation.
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Before adding the fault surfaces in the CGM, the mesh

contains only hexahedral elements. More specifically,

this mesh is a 3D grid with splitted nodes and it is possi-

ble to retrieve the ijk connections. These connections are
used to optimize the mesh on x, y and z directions for

each horizon.

To align the border nodes a relaxation algorithm is

used, so let ðPh;lÞh¼1:::Nh;l¼1:::Nl
(Fig. 5), where Nh and Nl

are respectively the number of horizons and the number

of path connections between the borders. The nodes on

the borders can be split and in this case the fault passes

the node and is considered as rigid. For the rest of the

nodes an average node Pl;iter
mean is calculated for every iter-

ation and for each path connection l. This average is cal-
culated as following:

oPl;iter
mean

���!
¼ 1

iter �Nh

Xiter
n¼1

XNh

h¼1

oPiter�1
h;k�1

���!
þ1=2 Piter�1

h;k�1P
iter�1
h;kþ1

��������!

In every iteration the nodes related to the path

connection l move toward Pl;iter
mean with a constant step q.

The iteration is then applied until the movement is

stabilized. However it is possible to use the Laplacian

smoothing to align the nodes as well as possible when

the transformation is approximately the same for all

the grids.

P h −1,k  +1
P h −1,k  +1

P h +1,k  −1 P h +1,k  −1P h +1,k  +1 P h +1,k  +1

P h −1,k  −1 P h −1,k  −1P h −1,k
P h −1,k

P h −1,k

P h +1,k P h +1,k

P h ,k  +1 P h ,k  +1

P h ,k  P h ,k  P h ,k  −1 P h ,k  −1

Figure 5

Illustration of hk connections (h ¼ i; j).

Border

Figure 4

Area of first optimization in z direction (blue area).

Figure 6

3D model.

0 π/2

-1 000 -500 0 500
500500

00

1 000

-1 000 -500 0 500 1 000

Figure 7

Optimized horizon on xy directions.

0 π/2

-1 000 -500 0 500
500500

00

1 000

-1 000 -500 0 500 1 000

Figure 8

Initial horizon on xy directions.
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2 RESULTS

2.1 Result for the 2D Optimization

In this section, an example is elaborated to compare the

2D grid before and after the optimization. It is important

to note that the transformation of the Laplacian smooth-

ing is defined for only boundary closed sets.

The example to solve is illustrated in Figure 6 and it

contains five faults and six components. In the color

scale, white is for the excellent elements, black for degen-

erated elements and the gray scale represents in between

values. The quality calculated here represents the mini-

mum of angles compared with p=2. The solution shown

in Figure 7 is the result of optimization with the

Laplacian smoothing. Then it may to see the improving

of elements with clearer color compared with Figure 8.

2.2 Result for the 3D Optimization

In this section, we continue the same basin example

solved in the Laplacian smoothing section, so this

example contains three layers and five faults and is

dynamic (at each time step, the mesh is deformed to take

into account the corresponding horizon). The top of

Figure 9 shows the example without optimization. It is

possible to compare with the bottom of the same figure

the mesh before and after optimization. For the second

example a simple case is tested. The case contains six lay-

ers and one fault as we can see on the non-optimized

mesh on the left the Figure 10. The comparison is shown

in Figure 10 and it is possible to see in the non-optimized

mesh a degenerated element at the last instant and near

the fault. In the optimized mesh illustrated by the right

of Figure 10, the degenerated element is optimized and

the elements are better aligned.

CONCLUSIONS

As mentioned in this paper the approach in [3] creates a

hex-dominant mesh with a lesser number of non-

hexahedral elements. So the optimization proposed here

is a method which complements this approach.

A relaxation method with fixed step is used to let the

border nodes free to move for each horizon and to have

almost verticals on the borders. This alignment con-

structs approximately the same border conditions for

the Laplacian smoothing transformation and is used to

have approximately the same results on xy directions.

The resulting mesh verifies the conditions to be optimal

in shape: 2D orthogonal condition for xy directions and
verticals between the horizons.

So it is possible to control with the relaxation method

the angles in a mesh. Indeed the interaction between

nodes for each iteration can be used to get the required

solution while imposing the angles. To improve the

relaxation method it is possible to use the optimization

with variable step and use a dichotomy process to have

a more exact optimization.
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