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Résumé — Méthode de criblage basée sur les indices de sensibilité DGSM : application au simula-

teur de réservoir — Les simulateurs d’écoulements en milieux poreux sont utilisés pour effectuer

des prévisions de la production de gisements pétroliers. Les modèles de réservoir étudiés sont

caractérisés par un grand nombre de propriétés qui sont souvent très incertaines. Afin de

construire des modèles prédictifs il est donc nécessaire de réduire cette incertitude en se

focalisant sur les variables les plus influentes. Les méthodes d’analyse de sensibilité permettent

de résoudre ce problème, mais sont souvent très coûteuses en nombre de simulations. Afin de

réduire le nombre d’appels au simulateur des nouveaux indices, nommés DGSM (Derivative-

based Global Sensitivity Measures) basés sur la moyenne des dérivés partielles, ont été

introduits. Dans cet article, une version révisée des indices DGSM est proposée afin

d’améliorer leur efficacité et leur convergence dans le cas où très peu de simulations peuvent

être effectuées. L’efficacité de ces indices est montrée sur des cas test analytiques ainsi que sur

un modèle synthétique de réservoir.

Abstract — Screening Method Using the Derivative-based Global Sensitivity Indices with Applica-

tion to Reservoir Simulator — Reservoir simulator can involve a large number of uncertain input

parameters. Sensitivity analysis can help reservoir engineers focusing on the inputs whose uncertain-

ties have an impact on the model output, which allows reducing the complexity of the model. There

are several ways to define the sensitivity indices. A possible quantitative definition is the variance-

based sensitivity indices which can quantify the amount of output uncertainty due to the uncertainty

of inputs. However, the classical methods to estimate such sensitivity indices in a high-dimensional

problem can require a huge number of reservoir model evaluations. Recently, new sensitivity indices

based on averaging local derivatives of the model output over the input domain have been introduced.

These so-called Derivative-based Global Sensitivity Measures (DGSM) have been proposed to over-

come the problem of dimensionality and are linked to total effect indices, which are variance-based

sensitivity indices. In this work, we propose a screening method based on revised DGSM indices,

which increases the interpretability in some complex cases and has a lower computational cost, as

demonstrated by numerical test cases and by an application to a synthetic reservoir test model.
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INTRODUCTION

Reservoir simulators are complex computer codes that

model the physical laws governing the recovery process,

and which are mainly modeled by mathematical equa-

tions for the three-phases flow (oil, gas and water)

through porous media. These simulators involve a large

number of input parameters. The information gathered

on such inputs comes from direct measurements, which

are clearly very limited and are marred by considerable

uncertainty. Thus, it is important to detect influential

inputs, whose uncertainties have an impact on the model

output. Once identified, one can reduce the complexity

of the model by fixing the non-influential inputs at

default values (defined by experts) and focus the atten-

tion on the influential inputs.

Sensitivity Analysis (SA) is the study of how the var-

iation (uncertainty) in the output of the computer model

can be apportioned, qualitatively or quantitatively, to

different sources of variation in the input of the model.

Put in another way, it is a technique for systematically

changing parameters in a model to determine the effects

of such changes on the output. The local SA methods

refer to the study of the sensitivity at a fixed point in

the input domain, typically the simple derivative

oY=oxðiÞ of the output Y with respect to a given input

X ðiÞ taken at some fixed point x0 in the input domain.

The Global Sensitivity Analysis (GSA) methods [1-4]

refer to the sampling-based methods in which the model

is evaluated for combinations of values sampled from

the distribution (assumed known) of the inputs. Once

the sample is generated, several strategies (including sim-

ple input-output scatterplots) can be used to derive glo-

bal sensitivity measures for the factors.

The variance-based methods are non-linear with

respect to the input parameters, and are based on anal-

ysis of variance (ANOVA) decomposition, which is the

decomposition of the total variance V of output into

terms due to individual factors plus terms due to inter-

action among inputs. Most variance-based methods are

quantitative, and in this work, we will focus on this

class of methods, and more specifically on Sobol’s

indices.

One of the main issues with variance-based methods is

computational time. Indeed, a reservoir simulator is

often very costly in terms of computational time. Fur-

thermore, such variance-based methods generally

require several thousands simulations that are usually

not affordable in common applications. In order to per-

form SA with a limited number of runs, metamodel

methods can therefore be used. In the latter, the simula-

tor input/output relation is approximated using different

statistical regression techniques starting from an initial

set of carefully chosen training runs. Then, if a reason-

ably good approximation is obtained, the estimated

metamodel is used instead of the complex simulator to

compute the sensitivity indices. Metamodel methods

have known a quick development in the last decade

and different approaches have been suggested in many

different scientific disciplines [5-13]. However, despite

significant advances in the area, construction of a suffi-

ciently accurate approximation for high-dimensional

computer code using a relatively low number of model

evaluations is problematic.

Screening methods aim at reducing the input dimen-

sionality by identifying the non-influential inputs with

a low computational cost in terms of model evaluation.

The screening design proposed by Morris [14] is adapted

for high-dimensional expensive computer models. This

method is a One-factor-At-a-Time (OAT) technique that

varies one input parameter at a time and measures the

impact on the output. Indeed, the method is based on

calculating a sensitivity index called an elementary

effect, which provides a good compromise between accu-

racy and efficiency. However, although this method is

computationally cheaper than other SA methods, it

involves hundreds or thousands (depending on the num-

ber of inputs and the complexity of the model) of model

evaluations, which is still computationally intensive with

realistic reservoir simulators, for which each simulation

requires several hours or days.

Recently, Sobol and Kucherenko [15, 16] have pro-

posed new sensitivity indices based on averaging local

derivatives of the model output over the input domain.

It was shown that the so-called Derivative-based Global

Sensitivity Measures (DGSM) can be easily estimated

and much faster than the global sensitivity indices. In

addition, different methods exist to efficiently compute

the derivatives of reservoir simulators; in this case,

DGSM represent a valid alternative to the Morris

method for screening the input parameters.

In this work, we propose a revised derivative-based

sensitivity index that allows a better convergence of the

estimation and increases the interpretability in some

complex cases. We propose a screening method based

on the defined indices. We then employ the method to

perform a screening of a high-dimensional analytical test

case and of a synthetic reservoir model application.

1 GLOBAL SENSITIVITY ANALYSIS AND MORRIS DESIGN

First, let us consider a mathematical model for a reser-

voir simulator:

Y ¼ f ðXÞ ð1Þ
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where Y is a scalar output of the computer code,

X ¼ ðX ð1Þ; . . . ;X ðdÞÞ a unit d-dimensional input vector

(X 2 ½0; 1�d) which represents the uncertain parameters/

factors of the simulator and f : ½0; 1�d ! R is a function

that models the relationship between the input factors

and the output of the computer code.

1.1 Global Sensitivity Analysis

The main idea of Sobol’s approach [4] is to decompose

the response Y ¼ f ðXÞ into summands of different

dimensions via analysis of variance decomposition

(ANOVA) defined as:

f Xð Þ ¼ f0 þ
Xd
j¼1

fj X jð Þ
� �

þ
X
j<l

fjk X jð Þ;X lð Þ
� �

þ . . .

þ f1;...;d X 1ð Þ; . . . ;X dð Þ
� � ð2Þ

where f0 is a constant, fj’s are univariate functions repre-
senting the main effects, fjl’s are bivariate functions rep-
resenting the two-way interactions, and so on.

The integrals of every summand of this decomposition

over any of its own variables is assumed to be equal to

zero, i.e:

Z 1

0
fj1;...;jsðX ðj1Þ; . . . ;X ðjsÞÞdX ðjkÞ ¼ 0 ð3Þ

where 1 � j1 < . . . < js � d, s ¼ 1; . . . ; d and 1 � k � s.
It follows from this property that all the sum-

mands in Equation (2) are orthogonal, i.e., if

ði1; . . . ; isÞ 6¼ ðj1; . . . ; jlÞ, then:Z
Xd

fi1;...;is fj1;...;jl dX ¼ 0 ð4Þ

Using the orthogonality, Sobol [4] showed that such

decomposition of f ðXÞ is unique and that all the terms

in Equation (2) can be evaluated via multidimensional

integrals:

f0 ¼ EðY Þ ð5Þ

fjðX ðjÞÞ ¼ EðY jX ðjÞÞ � EðY Þ ð6Þ

fj;lðX ðjÞ;X ðlÞÞ ¼ EðY jX ðjÞ;X ðlÞÞ � fj � fl � EðY Þ ð7Þ

where EðY Þ and EðY jX ðjÞÞ are, respectively, the expecta-
tion and the conditional expectation of the output Y .
Analogous formulae can be obtained for the higher-

order terms. If all the input factors are mutually indepen-

dent, the ANOVA decomposition is valid for any

distribution function of the X ðiÞs and using this fact,

squaring and integrating (2) over ½0; 1�d , and by

Equation (4), we obtain:

V ¼
Xd
j¼1

V j þ
X

1�j<l�d

V jl þ . . .þ V 1;2;...;d ð8Þ

where V j ¼ V ½EðY jX ðjÞÞ� is the variance of the condi-

tional expectation that measures the main effect of X j

on Y and V jl ¼ V ½EðY jX ðjÞ;X ðlÞÞ� � V j � V l measures

the joint effect of the pair ðX ðjÞ;X ðlÞÞ on Y . The total var-
iance V of Y is defined to be:

V ¼ E Y 2
� �� f 20 ð9Þ

Variance-based sensitivity indices, also called Sobol

indices, are therefore defined by:

Sj1;...;js ¼
V j1;...;js

V
ð10Þ

where 1 � j1 < . . . < js � d and s ¼ 1; . . . ; d. Thus,

Sj ¼ V j=V is called the first-order sensitivity index (or

the main effect) for factor X ðjÞ, which measures the main

effect of X ðjÞ on the output Y , the second-order index

Sjl ¼ V jl=V , for j 6¼ l, is called the second-order sensitivity
index and expresses the sensitivity of the model to the

interaction between the variables X ðiÞ and X ðjÞ on Y , and
so on for higher-orders effects. The decomposition in

(8) has the useful property that all sensitivity indices

sum up to one:

Xp
j¼1

Sj þ
X

1�j<l�p

Sjl þ . . .þ S1;2;...;p ¼ 1 ð11Þ

The total sensitivity index (or total effect) of a given

factor is defined as the sum of all the sensitivity indices

involving the factor in question:

STi ¼
X
l#i

V l

V
¼ VTi

V
ð12Þ

where #i represents all the Sj1;...;js terms that include the

index i. The total effect index of an input X ðiÞ measures

the part of output variance explained by all the effects

in which it plays a role. Note, however, that the sum of

all STi is higher than one because interaction terms are

counted several times. It is also important to note that

total effect indices can be computed by a single multidi-

mensional integration and do not require computing all

high-order indices (Sobol [4]). Therefore, comparing the

total effect indices provides information about influen-

tial parameters. Indeed, one can suppose that the input

is non-influential if its total effect STi is less than 0:01.
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GSA enables the explaination of the variability of the

output response as a function of the input parameters

through the definition of total and partial sensitivity

indices. The computation of these indices involves the

computation of several multidimensional integrals that

are estimated by the Monte-Carlo method and thus

requires huge random samples. For this reason, GSA

techniques are prohibitive if used directly using the com-

puter code (fluid flow simulator, for example).

1.2 Morris's Screening Method

The screening method introduced byMorris [14] is based

on a OAT experimental design. The points of the Morris

design are sampled from a d-dimensional p-level grid, as
the range of each input X ðiÞ is divided into p equal levels.
The impact of varying one input at a time is evaluated by

the so-called elementary effect that, for i ¼ 1; . . . ; d, is
defined as:

dri ðXrÞ ¼ f ðXr
i Þ � f ðXrÞ
�

ð13Þ

where � is a multiple of 1=ðp� 1Þ with p the number of

levels, Xr is a randomly chosen point in ½0; 1�d such that

X ðiÞ þ� is still in ½0; 1� and:

Xr
i ¼ X ð1Þ; . . . ; X ði�1Þ;X ðiÞ þ�;X ðiþ1Þ; . . . ;X ðdÞ

The group of points composed of Xr and Xr
i s are called

trajectories. Thus, the Morris design is structured in R
random trajectories composed of Rðd þ 1Þ points.

The sensitivity measures proposed by Morris [14] are

defined as a statistics of the elementary effect. The first

one is the mean l̂i:

l̂i ¼ 1

R

XR
r¼1

dri ð14Þ

which is a measure of the ith input importance. The sec-

ond statistic is the standard deviation of the elementary

effect r̂i :

r̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R� 1

XR
r¼1

ðdri � l̂iÞ2
vuut ð15Þ

which is a measure of the non-linearity and the interac-

tions involved in the ith input. However, r̂i does not

allow one to distinguish between non-linearities and

interactions.

Noting that when the model is non-monotonic the ele-

mentary effects of opposite signs cancel each other,

Campolongo et al. [17] proposed the sensitivity measure

l̂�i , which is a revised version of l̂i:

l̂�i ¼
1

R

XR
r¼1

jdri j ð16Þ

To identify the non-influential inputs, the sensitivity

measures l̂�i and r̂i are simultaneously considered. Typ-

ically, for more interpretability, l̂�i and r̂i are displayed

on a 2D graph. An example is shown in Figure 1; we

can distinguish three groups of inputs. The inputs of

group 1, group 2 and group 3 will be respectively classi-

fied as non-influential, having linear effects, and having

non-linear and/or interaction effects.

2 DERIVATIVE-BASED SENSITIVITY ANALYSIS

2.1 Derivative-based Global Sensitivity Measures

First introduced by Sobol and Gresham [18] and then

studied in Kucherenko et al. [19], Sobol and Kucherenko

[15, 16] and Lamboni et al. [20], DGSM are a new sensi-

tivity indices based on averaging local derivatives of the

model output over the input domain.

Assume that of ðXÞ=oxðiÞ, for i ¼ 1; � � � ; d, are square-

differentiable. The DGSM indices are defined as:

mi ¼ E
of ðXÞ
oxðiÞ

� �2
" #

¼
Z

of ðXÞ
oxðiÞ

� �2

dx ð17Þ

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4

1 2

3

x10
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x5
x3

x4 x2
x1

x8

μ∗ (y)

σ 
(y

)

Figure 1

An example of a graph displaying the Morris sensitivity

measures l̂�i and r̂i.
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Thus, calculation of DGSM indices is based on the

evaluation of integrals, which is easily performed

using classical Monte-Carlo (MC), Quasi-Monte-Carlo

(QMC) or Latin Hypercube Sampling (LHS). The

empirical estimator of mi is given by:

m̂i ¼ 1

n

Xn
j¼1

of ðXjÞ
oxðiÞ

� �2

ð18Þ

It is important to note that the ability to calculate

derivatives efficiently is important for estimating DGSM

indices within an acceptable computational cost.

2.1.1 Link between DGSM and GSA

Recently, Sobol and Kucherenko [15] have established

the link between the DGSM index mi and the total effect

index STi for input variables following uniform and nor-

mal distributions. These results have been extended to

the standard log-concave distributions by Lamboni

et al. [20]. Here, we assume that X ðiÞ � U½ai; bi�, for

i ¼ 1; . . . ; d, the link between VTi and mi is defined by

the following inequality:

VTi �
ðbi � aiÞ2

p2
mi ¼ m�i ð19Þ

Thereby, the total effect indices have the following

upper bound:

STi �
m�i
V

¼ !i ð20Þ

whereV is the total variance of the model. If!i ’ 0, then
X ðiÞ can be considered as non-influential input, which

makes !i a good candidate for a screening procedure.

However, as has been shown in Sobol and Kucherenko

[15], for highly non-linear functions the ranking of

important inputs obtained with ! and total effect indices

may not be the same.

2.1.2 Link between DGSM and the Morris Method

Kucherenko et al. [19] have introduced two derivative-

based sensitivity indices that are very similar to the

Morris indices li and ri. These indices are defined, for

i ¼ 1; . . . ; d, as:

�Mi ¼
Z

of ðXÞ
oxðiÞ

dx ð21Þ

and

�R2
i ¼

Z
of ðXÞ
oxðiÞ

� �2

dx� �M 2
i ð22Þ

where �Mi is equivalent to li and �R2
i equivalent to r2i . In

addition, these indices are more accurate than Morris’s

indices, which cannot correctly consider effects with

characteristic dimensions less than �. Indeed, in (13)

the elementary effects dri are calculated as finite differ-

ences with the increment �, which has the same order

of magnitude as the uncertainty range of inputs, in con-

trast with the derivative-based indices �Mi and �R2
i , where

the elementary effects are substituted by the local

derivatives.

We can also note that the DGSM indices mi can be

defined as:

mi ¼
Z

of ðXÞ
oxðiÞ

� �2

dx ¼ �M 2
i þ �R2

i ð23Þ

2.2 Refining the DGSM Index !

In the previous section, we have shown that the sensitiv-

ity index ! is an upper bound of the total effect index.

However, for some complex models, ! can be much lar-

ger than the corresponding total effect index (Lamboni

et al. [20]). In this case, it is difficult to decide which

inputs are influential and which are not. In addition,

! estimation involves the variance of the model

output V . Empirical results (see next section) show that

estimation of V requires more model evaluation than

estimation of m.
We propose here a normalized version of ! that we

call !�, which is defined, for i ¼ 1; . . . ; d, as:

!�
i ¼

m�iPd
j¼1

m�j

ð24Þ

This index is a normalized upper bound of VTi .

Indeed, the link between !�
i and VTi is defined as:

VTiPd
j¼1

m�j

� !�
i ð25Þ

In addition, !� has the following useful properties:

0 � !�
i � 1 ð26Þ

and

Xd
i¼1

!�
i ¼ 1 ð27Þ

The drawback of !� is the loss of the link with the

total effect indices. Nevertheless, the use of !� offers a
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stronger measure to define the non-influential inputs, as

we will see in the next sections.

3 DGSM-BASED SCREENING METHOD

As shown in Section 2, estimating !� for each input

allows one to detect the influential inputs in the model.

Indeed, one can state that if !̂�
i � 0:01, the correspond-

ing input X ðiÞ can be defined as non-influential. However,

such a criterion may be too strong in the case of very

high-dimensional models (typically more than 100 input

parameters); the fact is that the sum of effects due to

inputs with small sensitivity indices may be significant

on the output model variance. Because of this, and by

using the property (27) of the !� measures, it is more

robust to state that the influential inputs are the set D
of d� inputs whose !�

i are the highest, and which respect

the following criterion:

X
i2D

!�
i � 0:98 ð28Þ

Given that the reservoir simulator evaluation may be

computationally demanding, it is important to use a

sequential strategy to build the design of points by reus-

ing at each step the already evaluated points. The use of

the so-called QMC Sobol sequence [21, 22] is an efficient

way to build a sequential design. Our choice is motivated

by two main properties of the QMC Sobol sequences.

First, this technique is based on the generation of deter-

ministic quasi-random sequences with a good space-

filling property of the unit hypercube; in other words,

the input domains are well covered for fairly small sets.

Second, the points of the Sobol sequence are indepen-

dent. That is, by enriching the design sequentially, one

keeps the space-filling properties of the Sobol

sequence.

Since a sequential method computes successive esti-

mation of the !�
i indices, a practical test is needed to

determine when to stop the iteration. In this work, we

propose to use the following error criterion:

errl ¼
1=10

P10
k¼1jj!�

ðlÞ � !�
ðl�kÞjj

jj!�
ðlÞjj

ð29Þ

where vectors !�
ðlÞ ¼ ð!�

1; . . . ;!
�
dÞ are the lth estimation

of !�
i indices and jj�jj is the Euclidean norm. Thus, we

define the stopping criterion as err � 0:05. Note that

the proposed stopping criterion was not chosen as a con-

vergence criterion for each of the indices, because this

might be very long. The criterion chosen is more global

and it is intended to detect as soon as possible influential

or not-influential parameters in order to perform the

screening. A schematic representation of the entire

screening method is shown in Figure 2. Note that one

can use the same stopping criterion (29) to estimate !i

indices.

4 NUMERICAL TESTS

In this section, two numerical test cases are used to dem-

onstrate the estimation performance of the DGSM index

!� and the accuracy of the proposed screening method

to detect the influential inputs. Adopting the QMC sam-

pling method, each input parameter X ðiÞ is uniformly dis-

tributed in ½0; 1�.

Initialization

Build an initial design X
using QMC

Run the reservoir simulator
at X and store the output
data and the gradient calculation

– For i = 1,···, d, compute ϒ∗
i 

For i = 1,···, d, compute ϒ∗
i  

– If stopping criterion is
reached go to the screening
step

Enrichment of the design

– While the stopping criterion
is not reached do:

– Add a new point to X

– Run the reservoir simulator
at the new point and
store the output data and
the gradient calculation

–

Screening

– Determine the influential
input set D, which has the
highest ϒ∗

i  and respects the
following criterion

–

–

∑
i∈D

ϒ∗
i ≈ 0.98  

Figure 2

Schematic representation of the screening method.
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4.1 The Test Case of Morris

The test function proposed by Morris [14] contains 20
input parameters and is defined as follows:

y ¼ b0 þ
X20
i¼1

biwi þ
X20
i<j

bi;jwiwj þ
X20
i<j<l

bi;j;lwiwjwl

þ
X20

i<j<l<s

bi;j;l;swiwjwlws

where wi ¼ 2	 ðX ðiÞ � 1=2Þ except for i = 3, 5, and 7,

where wi ¼ 2	 ð1:1X ðiÞ=ðX ðiÞ þ 1Þ � 1=2Þ. Coefficients

with relatively large values are:

bi ¼ 20 for i ¼ 1; � � � ; 10
bi;j ¼ �15 for i; j ¼ 1; � � � ; 6

bi;j;l ¼ �10 for i; j; l ¼ 1; � � � ; 5
bi;j;l;s ¼ 5 for i; j; l; s ¼ 1; � � � ; 4

8>>><
>>>:

the remaining bi and bi;j are independently generated

from a standard normal distribution. The remaining

bi;j;l and bi;j;l;s are set to zero.

Table 1 summarizes the results of !i and !�
i estima-

tion using 100 realizations of two sizes (n ¼ 50 and

n ¼ 500) built by the Latin hypercube design procedure

[23]. The goal here is to compare the robustness of the

estimators. It is clear that the !�
i estimators are more

robust than the !i estimator, which can be explained

by the fact that the estimation of the model variance

requires more model evaluations than estimation of

DGSM mi.
In Figure 3, one can see the results of computing !i

and !�
i sequentially with a QMC design ranging from

n ¼ 5 to n ¼ 256. In addition, the sample size when the

stopping criterion of the proposed screening method is

reached is represented by the red vertical line. Thereby,

we can notice that !�
i converge faster than !i. Indeed,

TABLE 1

Results of averaging, over 100 realizations, the estimated !i and !�
i sensitivity indices versus the sample size for the Morris function.

The estimated standard deviation is given in parentheses

!i
* (n = 50) !i (n = 50) !i

* (n = 500) !i (n = 500)

X(1) 0.158 (0.020) 0.322 (0.079) 0.158 (0.007) 0.310 (0.026)

X(2) 0.158 (0.019) 0.322 (0.073) 0.157 (0.007) 0.307 (0.021)

X(3) 0.084 (0.010) 0.169 (0.036) 0.085 (0.004) 0.167 (0.012)

X(4) 0.157 (0.019) 0.319 (0.077) 0.159 (0.006) 0.311 (0.025)

X(5) 0.086 (0.011) 0.174 (0.037) 0.085 (0.004) 0.166 (0.013)

X(6) 0.058 (0.008) 0.117 (0.024) 0.058 (0.003) 0.114 (0.009)

X(7) 0.047 (0.005) 0.095 (0.023) 0.046 (0.004) 0.091 (0.011)

X(8) 0.077 (0.012) 0.158 (0.043) 0.079 (0.010) 0.156 (0.024)

X(9) 0.081 (0.010) 0.166 (0.046) 0.079 (0.009) 0.154 (0.021)

X(10) 0.079 (0.011) 0.161 (0.041) 0.077 (0.007) 0.152 (0.020)

X(11) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(12) 0.002 (0.001) 0.003 (0.002) 0.001 (0.001) 0.003 (0.001)

X(13) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(14) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(15) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(16) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(17) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(18) 0.001 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(19) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(20) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)
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the stopping criterion is reached at n ¼ 43 for !�
i and at

n ¼ 67 for !i estimations. In Table 2, for the inputs

selected by the proposed screening method, the values

of the total effect indices (obtained by the so-called

extended FAST method [2] using a sample of size

N ¼ 3:5	 104) as well as the values of !i and !�
i (com-

puted at the stopping criterion sample sizes n ¼ 67 and

n ¼ 43) are reported. Note that the values of the indices

ST11 ; . . . ; ST20 are smaller than 0:005 and therefore, the

corresponding inputs are considered to be non-

influential.

It can be seen that for this test case both indices (!i

and !�
i ) are able to identify the influential inputs cor-

rectly at the stopping criterion (29). Furthermore, even

if at n ¼ 67 the !i indices are underestimated they are

almost for all inputs greater than but close to the total

effect indices. To conclude on this numerical test, we

can say that for the Morris function the developed
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Figure 3

Convergence of the !i and !�
i indices estimates versus the sample size for the Morris function. The red vertical line corresponds to the

sample size when the stopping criterion (29) is reached.
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screening method based on !�
i is efficient and not con-

suming in terms of model evaluations. However, esti-

mating !i indices provides more information since they

are very close as an upper bound to the total effect indi-

ces, but the drawback is the additional model evaluation

cost.

4.2 The G-Sobol Function

Consider the g-Sobol function, which is strongly non-

linear and is described by a non-monotonic relationship.

Because of its complexity and the availability of analyt-

ical sensitivity indices, this function is a well-known test

case in the studies of GSA. Let us define the g-Sobol

function for 200 input parameters as follows:

gSobol ðX ð1Þ; . . . ;X ð8ÞÞ ¼
Y8
k¼1

gkðX ðkÞÞ

with:

gkðX ðkÞÞ ¼ 4X ðkÞ � 2
		 		þ ak

1þ ak

where fa1; . . . ; a20g ¼ f0; 0:25; 0:5; 0:75; 1; 2; . . . ; 16g and
fa21; . . . ; a200g ¼ 99. The contribution of each input X ðkÞ

to the variability of themodel output is represented by the

weighting coefficient ak . The lower this coefficient ak , the
more significant the variable X ðkÞ.

The analytical values of Sobol’s indices are given by:

V j ¼ 1

3ð1þ ajÞ2

V ¼
Yd
k¼1

ðVk þ 1Þ � 1

Sj1;...;js ¼
1

V

Ys
k¼1

Vk

where 1 � j1 < . . . < js � d and s ¼ 1; . . . ; d. The analyt-
ical values of the total effect indices are shown in Table 3.

Figure 4 shows the sequential estimation of !�
i and !i

indices with a QMC design ranging from n ¼ 5 to

n ¼ 256. As for the previous test example, the estima-

tions of !�
i indices converge faster than those !i. In this

test case, the stopping criterion (29) is reached at n ¼ 41
for !�

i and n ¼ 59 for !i. The analytical values of the

total effect indices as well as the values of!i and !�
i (esti-

mated at the sample sizes n ¼ 59 and n ¼ 41) for the

inputs which are identified as influential by the screening

method are reported in Table 3. Note that the values of

the indices ST12 ; . . . ; ST200 are smaller than 0:007 and

therefore, the corresponding inputs are considered to

be non-influential. One can see that the information pro-

vided by the indices !1; � � � ;!4 is difficult to interpret.

Indeed, for the g-Sobol function the values of !is pro-

vide only qualitative information, because for some

inputs !i > 1, which is higher than the maximal value

for the total effect indices. These results may due to

the model non-linearity with respect to the inputs. On

the other hand, despite the non-linearity and non-

monotonicity of the model, the !�
i measures perform

very well in terms of quantitative interpretability.

TABLE 2

Estimated sensitivity indices for the Morris function

Input Total effect !i (n = 67) !i
* (n = 43)

X(1) 0.240 0.249 0.114

X(2) 0.241 0.244 0.164

X(3) 0.095 0.127 0.088

X(4) 0.245 0.252 0.137

X(5) 0.098 0.137 0.083

X(6) 0.082 0.081 0.048

X(7) 0.050 0.078 0.053

X(8) 0.105 0.133 0.091

X(9) 0.099 0.123 0.084

X(10) 0.106 0.173 0.118

TABLE 3

Analytical total effect indices and estimated DGSM indices for the

g-Sobol function

Input Total effect !i (n = 59) !i
* (n = 41)

X(1) 0.396 3.671 0.338

X(2) 0.279 3.111 0.266

X(3) 0.205 1.781 0.144

X(4) 0.156 1.383 0.088

X(5) 0.122 0.911 0.072

X(6) 0.057 0.397 0.031

X(7) 0.032 0.234 0.017

X(8) 0.021 0.169 0.011

X(9) 0.015 0.106 0.008

X(10) 0.011 0.078 0.005

X(11) 0.009 0.061 0.004
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The above two numerical tests show us that both

DGSM indices are adapted to identify the non-influential

inputs. Moreover, the property (27) of !�
i indices allows

one to use an automatic screening method regardless of

the complexity of the studied model.

5 RESERVOIR FORECASTING APPLICATION

In this section, the proposed screening method is applied

to a reservoir simulator. As the goal here is to apply the

method to a high-dimensional case, we chose to use hor-

izontal and vertical permeability as input parameters.

However, since the number of grid blocks in the consid-

ered reservoir simulation model is large, we applied the

most basic parametrization technique, which is zona-

tion, to reduce the dimension of the problem. This tech-

nique consists of dividing the reservoir into a relatively

small number of zones (subregions) and assuming that

each zone is homogeneous. In other words, one fixes

the permeability (horizontal or vertical) over all the grid

blocks of the considered zone.

5.1 Reservoir Model Description

The PUNQS case is a synthetic reservoir model taken

from a real field located in the North Sea. The PUNQS

test case, which is qualified as a small-size model, is fre-

quently used as a benchmark reservoir engineering

model for uncertainty analysis and for history-matching

studies [24].

The geological model contains 19	 28	 5 grid

blocks, 1 761 of which are active. The reservoir is sur-

rounded by a strong aquifer in the North and the West,

and is bounded to the East and South by a fault (Fig. 5).

A small gas cap is located in the center of the dome-

shaped structure. The geological model consists of five

independent layers, where the porosity distribution in

each layer was modeled by geostatistical simulation.

The layers 1, 3, 4 and 5 are assumed to be of good qual-

ity, while the layer 2 is of poorer quality. The field con-

tains six production wells located around the gas-oil

contact. Due to the strong aquifer, no injection wells

are required. For more detailed description of the

PUNQS model, see [25].
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Convergence of the !i and !�
i indices estimates versus the sample size for the g-Sobol function. The red vertical line corresponds to the

sample size when the stopping criterion (29) is reached.
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As input parameters, we considered the horizontal

and vertical permeability of 60 zones (12 for each layer).

Thus, we have a model of 180 inputs, which are supposed

to be independent and defined as follows:

– Z1; � � � ; Z60: horizontal permeability in X direction,

– Z61; � � � ; Z120: horizontal permeability in Y direction,

– Z121; � � � ; Z180: vertical permeability.

The values of the permeability in each zone are dis-

tributed uniformly over ½PZi � 0:2PZi;PZi þ 0:2PZi�,
where PZi is the arithmetic mean of the permeability val-

ues of the grid blocks which compose the ith zone.

The analyzed output is the production watercut data

(the proportion of water in the produced oil) after

20 years of production of the well 5, for which the per-

foration location correspond to the grid blocks

½17;11;3 : 4�, where the notation 3 : 4 means that there

is a perforation at layer 3 and at layer 4. The reservoir

test model was run using the PumaFlowTM [26] simu-

lator, which allows one to compute gradients using a

gradient simulator method [27, 28] with an additional

� 33% of the simulation time per each calculated gra-

dient.

5.2 Screening

For this reservoir model, we first performed a conver-

gence study of the DGSM indices. !i and !�
i are com-

puted sequentially with a QMC design ranging from

n ¼ 5 to n ¼ 200. From Figure 6, one can see that !�
i

indices converge much faster than !i indices. The stop-

ping criterion (29) was reached at n ¼ 18 for !�
i and at

n ¼ 42 for !�
i indices estimation.

The screening method identifies 13 zones as influen-

tial. The DGSM sensitivity measures of these 14 param-

eters are reported in Table 4. We can see that these zones

correspond to the region where the studied well is

located and the closest north region. This result demon-

strates the relevance of application of the developed

screening methodology to a reservoir simulator.

To corroborate these screening results, we built a

metamodel using a standard implementation of the

Gaussian Process method (GP). The GP code used here

is a commercial version implemented in the Cougar-

FlowTM software [29]. For more detail on the technical

aspect of the used GP, we refer to Section 3 of Busby

et al. [6]. The GP metamodel is built using the results

obtained in the QMC design of the size n ¼ 200. How-

ever, instead of using the full design of 180 inputs we just
selected the 13 inputs identified as influential by the

screening method. Thus, rather than building a meta-

model that approximates a reservoir model of 180 inputs
we built a metamodel f̂ which involves only the param-

eters that are supposed to be influential on the output.

To assess the prediction accuracy of the metamodel,

we performed an extra 100 random evaluations of the

PUNQS simulator (with 180 inputs) and compared the

simulator results with the metamodel ones. The measure

of the accuracy is given by the Q2 criterion defined by:

Q2 ¼ 1�
Pntest
i¼1

ðyi � f̂ ðxiÞÞ2

Pntest
i¼1

ðyi � �yÞ2
;with ntest ¼ 100 ð30Þ

where yi denotes the ith simulator evaluation on the test

set, �y is their empirical mean and f̂ ðxiÞ is the predicted

value at the design point xi ¼ ðxð1Þi ; . . . ; xð180Þi Þ. The

empirical Q2 criterion of the considered metamodel f̂
is equal to 0:94, which means that the metamodel

explains 94% of the output variance. Thus, the obtained

metamodel is sufficiently accurate to perform a global

sensitivity analysis. In the second column of Table 4,

the reported total effect indices were computed through

the metamodel f̂ and using the extended FAST method

[2]. From Table 4, one can say that the developed

screening method permits the detection of the
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Convergence of the !i and !�
i indices estimates versus the sample size for the production watercut output after 20 years of production

of the well 5. The red vertical line corresponds to the sample size when the stopping criterion (29) is reached.

TABLE 4

Estimated sensitivity indices for the production watercut output after 20 years of production of the well 5

Input Total effect !i (n = 42) !i
* (n = 18) Grid block position

Z58 0.625 0.528 0.542 [13:19;8:14;5]

Z118 0.133 0.158 0.176 [13:19;8:14;5]

Z117 0.066 0.059 0.051 [13:19;1:7;5]

Z10 0.058 0.055 0.058 [13:19;8:14;1]

Z34 0.035 0.045 0.047 [13:19;8:14;3]

Z93 0.022 0.022 0.022 [13:19;1:7;3]

Z94 0.014 0.019 0.021 [13:19;8:14;3]

Z46 0.021 0.018 0.021 [13:19;8:14;4]

Z70 0.014 0.013 0.015 [13:19;8:14;1]

Z105 0.005 0.012 0.012 [13:19;1:7;4]

Z69 0.009 0.005 0.004 [13:19;1:7;1]

Z106 0 0.004 0.004 [13:19;8:14;4]

Z166 0.009 0.004 0.004 [13:19;8:14;4]
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most important inputs. Concerning the input Z106, we
notice a difference between the metamodel and the

DGSM approach; it is not possible to conclude if this

difference is due to an error in the metamodel or in

the DGSM; however, the two approaches provide the

same conclusions that the parameter Z106 can be con-

sidered as not influential. We can notice that for this res-

ervoir model the values of !i and !�
i indices have the

same magnitude for all selected inputs at the stopping

criterion and the values of !i are smaller than the esti-

mated total effect, which is due to the underestimation

of !i indices at n ¼ 42.

CONCLUSIONS AND DISCUSSIONS

In this work, we presented a new sequential screening

method which is based on DGSM indices. We defined

a new DGSM index !�
i in order to have a stronger

quantitative measure to define the non-influential inputs.

We also used the QMC Sobol sequence sampling

method, which allows an intelligent sequential estima-

tion of the DGSM indices in order to reduce the number

of model evaluations. We empirically showed, by apply-

ing to two analytical models and a reservoir synthetic

test case, that the proposed screening method is efficient

in detecting the non-influential inputs for an acceptable

computational cost.

Computing DGSM indices requires model gradient

estimation. A classical way to compute the derivatives

is to use the finite-difference approximation method.

However, this method suffers from the fact that the

required number of model evaluations is equal to

nðd þ 1Þ, where d is the number of inputs and n the num-

ber of points where derivatives are estimated. Since a res-

ervoir simulator evaluation is generally time-consuming,

the finite-difference method is infeasible for models with

a high number of inputs (roughly more than 20).
Therefore, it is clear that the ability to calculate deriv-

atives efficiently is important for estimating DGSM indi-

ces within an acceptable computational cost. In the

framework of reservoir simulation, different methods

have been developed for more or less computationally

efficient gradient calculation. In this paper, we utilized a

reservoir simulator, which allows one to compute

gradients using the direct method, also called in reservoir

engineering the gradient simulator [27, 28]. This method

is based on the solution of the governing analytical finite

difference equations of flow, which automatically calcu-

late the gradients during the simulation with an addi-

tional � 33% of the simulation time per each calculated

gradient. Thus, the requirednumber ofmodel evaluations

to estimate DGSM indices is� nðd þ 1Þ=3. However, the

most efficient method to calculate the gradient of a func-

tional with respect to the reservoir simulator parameters

is the adjoint state method when this functional depends

on thosemodel parameters through state variables,which

are the solution of the differential equations that define

the problem. The advantage of this method compared

with the gradient simulator method is that it consists of

the computation of one unique extra linear system and

the computation of the gradient with respect to themodel

parameters is equivalent to one evaluation of the simula-

tor. In other words, it means that the computational cost

of gradient calculation is independent of the number of

model parameters. So, the required number of model

evaluations to estimate DGSM indices is equal to 2n.
For more details on the mathematical aspect of the

adjoint statemethod and its applications in reservoir sim-

ulation, we refer to [30-32].

In addition to further testing on reservoir models,

using a reservoir simulator which allows one to compute

gradients using the adjoint state method is a topic of

future work.
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