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Résumé — Modélisation des transferts fluides dans les bassins faillés — Cet article présente un

nouveau simulateur de bassin spécialement conçu pour mieux prendre en compte l’impact des

failles sur l’écoulement. Il simule les écoulements, les transferts thermiques et la génération des

hydrocarbures. Comparé aux simulateurs de bassins classiques, il utilise un concept innovant

de maillage évolutif suffisamment flexible pour suivre les déformations d’un bassin en contexte

tectonique complexe. Le maillage suit les sédiments et se déforme continument pour suivre la

sédimentation, la compaction et les déformations cinématiques. Bien qu’il soit organisé suivant

les couches stratigraphiques, le maillage est globalement non-structuré. Il peut contenir des

mailles de type varié telles que des hexaèdres, des tétraèdres, des pyramides, des prismes ou des

hexaèdres dégénérés. Les failles y sont représentées sous la forme de couple de surfaces de

bord interne, qui peuvent glisser l’une par rapport à l’autre. Le maillage est donc non

conforme à travers les failles. Différents modèles d’écoulement sont proposés pour simuler le

comportement des failles, allant des failles parfaitement imperméables aux failles conductrices.

Le calculateur est basé sur une discrétisation de type volumes finis centrés sur les mailles qui

est bien adaptée aux équations de conservation. Le potentiel de ce nouveau simulateur est

illustré sur un cas semi-synthétique.

Abstract — Modeling Fluid Flow in Faulted Basins — This paper presents a basin simulator

designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes

hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time) geometry obtained

by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a

structured mesh based on vertical pillars nor a multi-block structure associated to the fault network.

The mesh follows the sediments during the evolution of the basin. It deforms continuously with

respect to time to account for sedimentation, erosion, compaction and kinematic displacements.

The simulation domain is structured in layers, in order to handle properly the corresponding heter-

ogeneities and to follow the sedimentation processes (thickening of the layers). In each layer, the

mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid,

prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the

layered structure of the basin. Faults are handled as internal boundaries across which the mesh is

non-matching. Different models are proposed for fault behavior such as impervious fault, flow across

fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation,

which ensures conservation of physical quantities (mass of fluid, heat) at a discrete level and which

accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and

guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the

capabilities of this new simulator.
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NOMENCLATURE

CF,i,j Set of face-to-face contacts

CN,i,j Set of node-to-face contacts

F A face of the grid

g Intensity of gravity

~g Gravity vector

h Height of a 1D vertical segment

hs Solid height of a 1D vertical segment

k Time superscript or cell index in 1D

Km Permeability

MðtÞ The set of cells of the grid

NðtÞ The set of nodes of the grid

Ni A set of nodes

Ns The set of cells that have s as a node

Nd The set of cells that share at least one node

with face d
~n Normal to a surface

P Pressure

qs Deposition rate of sediment

qw Deposition rate of water

s A node of the grid

SðtÞ The set of faces of the grid

Si A surface, defined as a set of faces

StopðtÞ Sets of top boundary faces

SbottomðtÞ Sets of bottom boundary faces

t, T , Tk Time

Tkþ1=2 Transmissibility

~vs Solid velocity

~vw Water velocity

Vols Solid volume

z Vertical coordinate

d A face

CtopðtÞ Top boundaries of the domain

CbottomðtÞ Bottom boundaries of the domain

/ Porosity

jðtÞ A cell

xkðtÞ A 1D vertical cell

XðtÞ Domain at time t

lw Water viscosity

qs Solid density

qw Water density

r Effective stress

rl Lithostatic pressure

~r Lithostatic potential

INTRODUCTION

Thermogenic origin of hydrocarbons began to be under-

stood during the sixties. Shortly after, the first numerical

simulators of sedimentary basins and their petroleum

systems were proposed (Doligez, 1987). They were orig-

inally limited to vertical 1D models. They evolved into

2D models of vertical basin sections during the eighties

(Ungerer et al., 1990), and into full three-dimensional

models during the mid-nineties (Schneider et al., 2000).

All these simulators had in common to be limited to

basin architectures only controlled by erosion, sedimen-

tation, vertical compaction and vertical shear deforma-

tion resulting from basement deformation. In terms of

tectonic deformation, only vertical slip along vertical

faults could be taken into account through vertical shear

zones.

This hypothesis was too limitative for most sedimen-

tary basins having experienced a complex tectonic his-

tory, especially compressive tectonic settings, for two

reasons. First, as horizontal displacement was not

allowed, these models failed to account for the evolution

through time of the relative position of source rocks and

traps, because of relative horizontal displacement along

decollements, for instance. Secondly, in faulted environ-

ments, simulation of fault-controlled fluid flow was over-

simplified: the lateral connectivity of the deposits could

not be interrupted geometrically at fault contact because

of mesh constraints. So, faults were modeled as vertical

shear zones, along which one had to artificially adjust

rock permeability in order to account for enhanced fault

flow or flow barrier effect.

At the same time, fault control on fluid flow and on oil

migration began to be studied in detail (Knipe et al.,

1998), revealing a complex internal structure of the

faults. Associated to fault slip and especially in shaly

stratified environments, fault core can be progressively

filled with a shaly impervious material (named “fault

gouge”) which decreases across-fault flow efficiency,

whereas a damage zone on both compartment walls

can develop, thus enhancing along-fault flow. Simulta-

neously, petroleum system simulation was extended

from exploration purpose to overpressure prediction.

The latter requires accurate modeling of fault fluid flow,

as overpressure occurrence is at first order controlled by

architecture and permeability of poorly permeable

bodies and by faults which can either enhance fluid flow

or prevent for fluid escape.

Two approaches were proposed during the last decade

to simulate petroleum systems in these faulted contexts:

Ceres (Schneider et al., 2002), and Tecklink (Baur et al.,

2009). Both approaches are limited to vertical shear

deformation of each fault-delimited structural block,

the structural blocks being allowed to slip against each

other. Ceres is limited to 2D cross-sections and Tecklink

is based on a very coarse time-discretization named

“Paleo stepping” which affects computation accuracy.
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All these factors motivated the development of a new-

generation petroleum system simulator as well as a mod-

ified modeling workflow which take up the technical

challenges of structurally complex basins, in 2D and

3D, without limitations on deformation mode and time

discretization, and which benefit from the newest

advances of computer science and technology.

Structurally Complex Basins: An Updated Modeling
Workflow Involving Structural Restoration

The usual basin modeling and petroleum system simula-

tion workflow is made of the following components:

– geomodel construction and gridding in order to pro-

vide a discrete representation of the basin architecture

at Present;

– geomodel backstripping: it is an automatic backwards

procedure which aims at restoring the model architec-

ture at all times since the beginning of the basin sub-

sidence. Backstripping procedure iteratively modifies

the discretisation grid at Present in order to take into

account vertical expansion, creation or removal of

grid cells due to backwards unloading, erosion and

sedimentation. The basic hypothesis here is that only

basement subsidence, deposition, erosion and vertical

compaction controls this time-dependant architec-

ture. The backwards movement of any solid particle

in the basin is only vertical, from Present to deposi-

tion. Backstripping is an automatic procedure which

can be considered as a pre-processing of the forward

calculation. It can be easily re-run at each new

hypothesis on Present-day basin architecture, lithol-

ogy distribution and compaction parameters;

– forward simulation: it is the procedure which calcu-

lates the evolution through time of all relevant physi-

cal variables such as temperature, porosity, fluid

pressure and hydrocarbon saturation. Forward simu-

lation is based on the resolution of partial derivative

equations that model the physical processes of heat

transfer, mechanical equilibrium, hydrocarbon geo-

chemistry and fluid motion. The discretisation grid

is the time-dependant grid calculated by backstrip-

ping.

As soon as basin architecture is affected by tectonic

movement, the assumption that particle displacement is ver-

tical all along the basin history is no longer valid. The resto-

ration of past basin architecture can no longer be calculated

automaticallybybackstripping, and the restorationofbasin

past architecturemust be performedaccording anewproce-

dure named “structural restoration”.

Structural restoration provides a structural scenario.

The latter is a description of the basin architecture as a

function of geological time. It is delivered in the form

of a discrete number of deformation stages between

basin initiation and Present.

Different computer-based approaches are proposed

to the structural geologist to build this structural sce-

nario. Most of them are 2D and operate on vertical

cross-sections, as 2D-move (Gibbs, 1984), Locace and

Kine3D2-XS (Moretti and Larrère, 1989), Lithotect

(Geiser et al., 1988), Dynel (Maerten and Maerten,

2006), and Geosec (Kligfield et al., 1986). They provide

the user with tools to interactively apply a complex

deformation field to a given cross-section described as

a set of horizons and faults. This includes erosion and

deposition, compaction, and sliding movement along

faults. Although these applications were initially des-

igned for cross-section balancing, a whole scenario can

be built by sequentially applying deformation steps to

the cross-section of interest. First commercial releases

of 3D restoration tools like Kine3D-3 (Moretti et al.,

2006) and 3DMove were also recently made available

but are still in their infancy.

Running a forward petroleum system simulation on a

structural scenario requires that the time-dependant dis-

cretisation grid used by forward modeling fits to the

deformation scenario delivered by structural restoration.

With most restoration applications, the grid must be

built subsequent to restoration, according to the require-

ments of the forward simulator. In the case of Ceres

(Schneider, 2003) or in the case of the workflow pro-

posed in this paper which involves Kine3D-3 as a grid-

builder, the structural restoration operates on the same

grid as the forward simulator. The grid is built to fit

the architecture at Present and is subsequently deformed

by the restoration procedure. The time-dependant grid

obtained in this way is then used as an input of forward

simulation.

Creating the time-dependant mesh that best fits the

needs of forward petroleum system simulation remains

a technical challenge. “Paleo Stepping” approach pre-

sented by Baur et al. (2009) proposes to discretise tec-

tonic episodes in a set of successive static grids

representing successive deformation stages. At the

breakpoint between two stages, the physical values rele-

vant to forward simulation such as pressure and temper-

ature are instantaneously transferred from one grid to

the next one. According to this technique, the grid as well

as physical values are not continuous through time,

which may appear as a risky simplification of reality.

According to the technology described in this paper,

the forward simulator operates on a unique grid that

gradually deforms through time, by linear interpolation

between deformation stages. Such time-dependant grid

is provided by Kine3D-3 for 3D cases, or by the restora-

tion module of Ceres in 2D, as mentioned above.
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Considering other restoration tools, we need to create

the gradually deforming grid subsequently to restora-

tion. A new computer tool designed to build such a mesh

is currently under development, for 2D cross-sections.

After all, the basin modeling and petroleum system

simulation workflow presented in this paper to achieve

modeling of tectonically complex basins is made of the

following components:

– structural restoration, in order to restore the past

architecture of the basin in the form of a structural

scenario;

– gridding of the obtained structural scenario, if grid-

ding is not imbedded in the structural restoration;

– forward petroleum system simulation.

More information on structural restoration and grid

building is given in Section 3. Unlike backstripping,

structural restoration is a heavy task involving a lot of

interactivity. Consequently, it can not be easily re-run

at each new hypothesis on structural architecture, lithol-

ogy distribution or compaction parameters, during basin

model calibration procedure. Conventional calculators

have their own technique to overcome backstripping

inaccuracy introduced by the backstripping decompac-

tion model which slightly differs from their compaction

model. However, in our approach we had to design

our forward simulation in order to be even more flexible

regarding to past geometry inaccuracy. In this sense, we

propose the decoupling of porosity and geometry descri-

bed further.

In the following sections, we will mainly focus on the

technology of forward simulation. Section 1 describes

the constraints on time and space discretisation which

are required by our forward simulator and Section 2

focuses on forward simulation itself. Section 3 illustrates

this procedure with a semi-synthetic example.

1 NUMERICAL MODELING OF BASIN ARCHITECTURE
AND ITS EVOLUTION THROUGH TIME

To describe the evolution of a 3D sedimentary basin in

complex settings, we introduce an innovative evolving

grid concept able to follow the various geometrical and

topological changes supported by the basin through

time. Before going into the details, we recall some of

the characteristics of the grids introduced previously in

the context of basin modeling.

1.1 Time and Space Basin Discretisation Based on
Vertical Pillar Grids

First introduced for a vertical column, the principle of

forward basin simulation is to compute the thickness

of the different layers through time, starting with the

deposition of the deepest layer, assuming conservation

of rock volume and solving fluid flow equation coupled

with compaction.

In this process, the input geometrical data is the depo-

sitional rock thickness of each layer which is in fact

unknown, the only true geometrical input being the

geometry of the column at Present. Therefore, deposi-

tional rock thicknesses (or deposition rates) are first esti-

mated from present day layer thicknesses using a priori

porosity/depth curves. This estimation can also account

for non deposition and erosion events which can modify

the maximum depth reached during a layer history. This

is usually known as the “backstripping” process. For-

ward modeling of layers deposition coupled with fluid

flow then leads to layer thicknesses at Present which

may be different from the input present day geometry.

It can then be necessary to iterate the forward simulation

process to calibrate the rock deposition thicknesses in

order to satisfy present day geometry.

To describe the underlying space-time grid concept,

we introduce a decomposition of the time interval

½�T ; 0� into K subintervals, where –T stands for the time

where the first layer started to deposit and 0 for present

day:

�T ; 0½ � ¼
[

k¼1;K

�Tk�1;�Tk
� �

with T0 ¼ T ; TK ¼ 0

Each subinterval �Tk�1;�Tk
� �

corresponds to a

stratigraphic event namely the deposition of a layer, a

non deposition or an erosion period. The time sub-

intervals indexes give a natural indexation of the layers

as time can be related to depth through the deposition

time of a layer and therefore allows a simplemanagement

of the evolving grid: the grid is always composed ofK seg-

ments which possibly have a zero height. More precisely,

let us consider a given time t. We denote by K(t) the time

index such that t 2 �TKðtÞ�1;�TKðtÞ� �
(Fig. 1).

The grid representing the column ZbottomðtÞ; ZtopðtÞ
� �

at

time t expressed in the coordinate z (that is pointed

upward) can be written using the layer thicknesses that

we denote h:

ZbottomðtÞ; ZtopðtÞ
� � ¼ [

k¼1;K

zk�1ðtÞ; zkðtÞ½ �

with:

zkðtÞ ¼ ZtopðtÞ

zk�1 tð Þ ¼ zk tð Þ � hk tð Þ for k ¼ 1; . . . ; K

and hk(t)=0 for k = K(t) + 1, . . ., K (Fig. 2)
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If the time subinterval �Tk�1;�Tk
� �

corresponds to

an erosion or a hiatus, the associated grid cell has always

a zero thickness i.e. hkðtÞ ¼ 0 for t 2 �T ; 0½ �. Erosion can

also lead to additional zero thickness cells if layers are

fully eroded.

At time t, the grid is then entirely defined by the values

hkðtÞ for k ¼ 1; :::;KðtÞ.
Flow and temperature equations are solved on this

evolving grid that follows the sediment. To this end,

intermediate time-steps can be introduced within each

time subinterval where the grid definition deduced from

the layer thicknesses still holds. We can already notice

that this grid structure requires handling zero length

cells. In the framework of finite volume methods, it then

becomes necessary to manage an additional mesh con-

nectivity which gives, for a given cell, the upward neigh-

boring cell that has a non-zero height.

The 1D vertical approach has been extended to 2D or

3D basin where no horizontal displacement occurs, by

introducing vertical pillar grids for which the horizontal

section of the basin (in the (x, y) plane) is meshed using a

cartesian grid. The time interval ½�T ; 0� is still decom-

posed into a set of successive time subintervals. They

include all the stratigraphic events that have to be repre-

sented in the 3D model. Then, a 1D vertical grid (similar

to the one considered in 1D) is associated to each node

(i, j) of the horizontal cartesian grid. The nodes are

now indexed with (i, j, k) and are completely defined

by the layer heights of the column. As before, the grid

has a constant structure all over the time interval, layers

deposition or erosion being handled through zero height

edges. The backstripping process is applied to all the col-

umns and gives a first estimation of the depositional

height of each layer.

In the 3D space, this leads naturally to a 3D struc-

tured grid where each cell is defined by its four vertical

edges (Fig. 3, 4). However, zero height edges can lead

to cells which are geometrically degenerated hexahe-

drons, and that can even have a zero volume. To manage

these degenerated items, it is necessary to introduce an

additional connectivity in the vertical direction (Fig. 3).

This process, which is based on a tight relation

between time and space, is very efficient for settings

dominated by normal deposition and erosion. In com-

plex settings, where faulting leads to important lateral

movements, this approach is no more suitable. Indeed,

the evolution of the basin geometry can no longer be

managed through a grid whose horizontal structure is

fixed in time. Moreover backstripping is not valid any-

more. It is replaced with the structural restoration of

the basin, which gives the paleo-geometries at given ages.

Different approaches have been proposed to handle

Time axis

−T = −T  
0 −T 

K (t ) −1 −T 
K (t ) 0 = T  

K
t

−T 
1

Figure 1

Decomposition of the time interval into subintervals �T ; 0½ � ¼ S
k¼1;K

�Tk�1;�Tk
� �

.

z axis 

zK (t ) (t ) = z K (t )+1 (t  ) = ... = z

zk  (t )

zk (t )

z1 (t )

hk (t )

z0 (t )

zk–1 (t )

Figure 2

Grid of the column at time t.
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these complex geometric evolutions. Schneider (2003)

proposed an approach to manage 2D sections of a basin

whose geometry also evolves by salt or mud creeping and

displacement along faults. Still based on a time interval

discretised into stratigraphic events, this approach con-

sidered that the fault network decomposes the 2D sec-

tion into a set of blocks. The blocks are organized with

respect to each other through a bottom to top ordering

that defines how they are stacked one above the other

(Fig. 5). Each block can individually be described as a

standard model. It is discretised by a vertical pillar 2D

grid which can handle, during a stratigraphic event,

deposition, erosion, compaction, but also other continu-

ous deformations which are determined during the resto-

ration stage, as long as they keep the pillars of the grid

vertical (translation, vertical shear). Introducing a more

general decomposition of the time interval into “paleo

steps” instead of “event steps”, Baur et al. (2009)

describes an innovative technique designed to handle

3D basin in complex geological settings. The corre-

sponding simulator takes the complete geometry of the

basin at each paleo-step as an input, and directly jumps

 

k
k +1

k +2

(i, k ) 

(i +1, k) 

(i+1, k+1)

(i +1, k+2) (i, k +2) 

(i, k +1) k

k +1

k +2

cell (i + 1, k – 1)

cell (i + 1, k + 1)

(i, k–1)

k –1

i 
i +1

Figure 3

Schematic representation of a 2D vertical pillar grid with degenerated items. Vertical pillars are indexed with i while stratigraphic events

and layers are indexed with k. Here, stratigraphic event k+1 corresponds to a hiatus from vertical pillar i+1 up to the right boundary.

For any i’ > i, nodes (i’, k) and (i’, k+ 1), represented as black dots, have the same coordinates leading to zero area cells. For instance,

cell (i + 1, k) whose nodes are (i + 1, k), (i + 2, k), (i + 2, k + 1), (i + 1, k + 1), is squashed. This modifies the vertical connectivity:

upward neighboring cell of cell (i + 1, k � 1) is cell (i + 1, k + 1). Lateral connectivity is also modified but in a much weaker sense as

degenerated items only suppress lateral neighboring cells.

Figure 4

Example of a 3D vertical pillar grid (Schneider et al., 2000).
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from one paleo-geometry to the next one. At a given

step, the domain is described as a set of standard blocks

separated by faults in order to manage multiple-z value

for an individual layer. This decomposition can be differ-

ent from one paleo-step to the other since a block can be

split into sub-blocks due to fault activation. As the com-

plete geometry is an input data, porosity evolution is

decoupled from the geometry evolution.

1.2 A New Evolving Grid Concept

Going a step forward in considering complex settings, we

introduce a new 4D grid concept to describe the evolu-

tion of a sedimentary basin with a particular attention

to faults. Faults are geometrically described as disconti-

nuity surfaces along which sliding can occur. They can

have a major impact on fluid flow paths and therefore

on overpressure distribution. Indeed, due to displace-

ment along the fault surface, stratigraphically discon-

nected layers can become juxtaposed across a fault

creating a new flow path or on the contrary breaking

an existing one. As overpressure development is the

result of a transient process, these flow path modifica-

tions should be captured as continuously as possible.

Compared to the previous techniques presented

above, the new evolving grid concept has been designed

with two major motivations. First, it should be able to

follow the deformation of the basin in a continuous

way with respect to time as it is an important factor of

overpressure development. In particular, sliding along

a fault surface should lead to continuous modifications

of the flow paths which can be hardly obtained with an

approach where the geometry jumps from one configura-

tion to the other at paleo-steps. Second, it should be

more flexible concerning the fault network description

and the possible structural deformations. For instance,

the grid structure should not be too tightly linked to

the fault network configuration like in a multi-block

approach where the fault network must split the basin

into individual blocks.

As in the approach of (Baur et al., 2009), the evolving

grid concept relies on a workflow where input geometries

are given once for all by the restoration process. Since

restoration usually provides a quite rough geometry evo-

lution and compaction description, we propose a decou-

pling between the porosity evolution and the geometry

evolution. We use a formulation of the model which cer-

tainly remains an approximation but which tries to limit

the impact of the decoupling. Before describing the

details of the evolving grid, we present how porosity

and geometry are decoupled.

1.2.1 Decoupling Porosity and Geometry Evolutions

To understand the idea underlying the proposed

approach to decouple porosity and geometry evolution,

we consider the case of a 1D basin mentioned previously

that furthermore undergoes only deposition and com-

paction processes. Since this decoupling mainly involves

fluid flow and compaction, we omit thermal transfer and

temperature dependencies.

In the following, dependency of the variables with

respect to the z coordinate or to time is not specified

unless it is necessary for understanding.

0

4 000

8 000

12 000

16 000

20 000

20 000 40 000 60 000 80 000 100 000 120 000 140 000

Figure 5

Example of a 2D multi-block grid used in Ceres (Vilasi et al., 2009). The vertical lines are the vertical pillars of the different blocks.
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Fluid flow coupled with compaction is governed by

the following set of equations:

– mass conservation of solid:

o
ot

�
qsð1� /Þ

�
þ @

oz
ðqsð1� /Þ~vsÞ ¼ qsqs ð1Þ

qs stands for the rate of sediment deposited at the top

of column, / the porosity,~vs the solid velocity, qs the
solid density;

– mass conservation of fluid:

o
ot

qw/ð Þ þ o
oz

qw/~vwð Þ ¼ qwqw ð2Þ

qw stands for the rate of water deposited at the top of

the basin which is expressed as a function of the depo-

sition porosity: qw ¼ qs/0=ð1� /0Þ, qw the water den-

sity,~vw the water velocity;

– Darcy’s law:

~uw ¼ /ð~vw �~vsÞ ¼ �Km

lw
ð o
oz

P � qw~gÞ ð3Þ

where lw is the water viscosity, Km the permeability, P
the pressure,~g the gravity;

– sedimentary load:

� o
oz

rl ¼ qsð1� /Þ þ qw/ð Þg ð4Þ

where rl is the weight of the above sedimentary col-

umn or lithostatic pressure;

– compaction law:

/ ¼ F/ðrÞ ð5Þ

where porosity / is expressed as a function of effective

stress r ¼ rl � P through a lithology dependent law.

These equations are completed with constitutive laws

(permeability as a function of porosity, fluid density and

viscosity as a function of pressure) and appropriate

boundary conditions:

– on the top boundary which is assumed here to be

under the sea level, the pressure and sedimentary load

are equal to the weight of the above water column:

P ¼ rl ¼ Ptop

– on the bottom boundary, there is a no fluid flow con-

dition:

~uw �~n ¼ 0

To highlight the coupling between the different equa-

tions and their link with the geometry, we reformulate

the equations using the overpressure oP and lithostatic

potential ~r unknowns defined as ~r ¼ rl � Ph and

oP ¼ P � Ph, where the hydrostatic pressure Ph satisfies

the following equation:

� o
oz

Ph ¼ qwg ð6Þ

and the boundary condition Ph ¼ Ptop on the top bound-

ary.

For the sake of simplicity, we assume here that water

density and viscosity are constant but the principle

remains valid with varying densities and viscosities. We

first rewrite Equations (3) to (5).

Subtracting (6) from (4) gives:

� o
oz

ð~rÞ ¼ qs � qwð Þg ð7Þ

Furthermore, Darcy’s law (3) simplifies to:

~uw ¼ �Km

lw

o
oz

oP ð8Þ

Finally, noticing that the effective stress satisfies

r ¼ ~r� oP, the compaction law (5) writes:

/ ¼ F/ð~r� oPÞ ð9Þ

The boundary conditions at the top of the sedimen-

tary column formulated with the unknowns oP and

lithostatic ~r are written as follows: oP ¼ 0 and ~r ¼ 0.
To reformulate the mass conservation equations, we

first discretise them in space following a cell centered

finite volume method (time discretisation is not discussed

here, as it is not mandatory for the understanding of the

approach). We consider a 1D Lagrangian mesh, in which

each individual node moves with the velocity ~vs, where
discrete unknowns in cell xk are denoted with the sub-

script k. Considering as main unknowns oPk , ~rk , /k

and hk for k ¼ 1; . . . ;KðtÞ, the set of discretised equa-

tions is then (details of the derivation are presented in

Appendix):

d

dt
hsk ¼ qs;k k ¼ 1; . . . ;KðtÞ ð10Þ

d

dt

/k

1� /k
hsk

� �
þ uw;k � uw;k�1 ¼ qw;k k ¼ 1; . . . ;KðtÞ

ð11Þ

~rk�1 � ~rk ¼ ðqs � qwÞgðhsk�1 þ hskÞ=2
k ¼ 1; . . . ;KðtÞ � 1

ð12Þ
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~rKðtÞ ¼ ðqs � qwÞhsKðtÞg=2 ð13Þ

/k ¼ F/ð~rk � oPkÞ
k ¼ 1; . . . ;KðtÞ ð14Þ

with the additional discretised Darcy’s law:

uw;k ¼ 1
lw
T ðkþ1Þ=2ðoPk � oPkþ1Þ

k ¼ 1; . . . ;KðtÞ � 1

uw;KðtÞ ¼ 1
lw
T ðKðtÞþ1Þ=2oPKðtÞ

uw;0 ¼ 0

ð15Þ

In this formulation where the rate of deposited sedi-

ment is assumed to be an input data, we notice that

the unknown heights hk only appear in Darcy’s law dis-

cretisation (15) through the transmissibility. This leads

us to propose an approach where on one hand, solid

thickness becomes an unknown, which is independent

of the real thickness by relaxing the constraint

“hsk ¼ hkð1� /kÞ”, and, on the other hand, the real

thickness is an input data (obtained by the backstripping

stage for instance). This process is then integrated in an

outer “solid content loop” that aims at calibrating the

rates of deposited sediments to satisfy the relation

hsk;t¼0 � ð1� /k;t¼0Þ ¼ hk;t¼0 at present time. We do so

to account for the fact that thicknesses at Present are

in fact the only true geometrical input data. This outer

“solid content loop” can be schematically defined by

the following iterative procedure (exponent i refers to

iteration i):

– initialization:

� estimate the sedimentation rates q0s;k and the geom-

etry evolution h0kðtÞ (with a backstripping stage for

instance);

� define a correction factor of the sedimentation

rates: e0k ¼ 1;
– iterate over i:

� qis;k ¼ qi�1
s;k � ei�1

k ;

� solve Equations (10-15) to compute hsik , oP
i
k , r

i
k and

/i
k along time;

� compute eik ¼ hk;t¼0

hsik;t¼0�ð1�/i
k;t¼0Þ

;

Until eik ¼ 1.
At convergence of the iterations, solid and real thick-

nesses satisfy the constraint:

hsk;t¼0 � ð1� /k;t¼0Þ ¼ hk;t¼0

and the computed unknowns satisfy the solid and water

mass balances. The only “non-consistent” equation is

the discretised Darcy’s law where the transmissibility is

expressed through the estimated real thickness at a given

time. This can be further corrected using the modified

approximation:

2

Ti
kþ1=2

¼ hsikð1� /i
kÞ

Ki
m;k

þ hsikþ1ð1� /i
kþ1Þ

Ki
m;kþ1

which can be seen as the transmissibility computed with

an approximate geometry but for a corrected vertical

permeability:

Kcim;k ¼ Ki
m;k

hk
hsik � ð1� /i

kÞ

For a vertical column and with the permeability cor-

rection, this iterative loop is similar to the geometrical

loop usually performed in classical contexts to match

the present day geometry although it keeps the real

thickness as an input data. This formulation can more-

over be extended to a multi-dimensional approach keep-

ing an input geometry evolution (obtained by the

backstripping stage for instance) and replacing solid

and real thicknesses by solid and real volume of each cell.

Although less accurate than the standard approach with

a true multi-dimensional unknown geometry, this pro-

cess somehow preserves some of the essential features

of the physics of fluid flow in a compacting porous med-

ium. We will follow this approach for complex settings

since it allows accounting for compaction even though

the evolution of the input geometry is an input data.

1.2.2 A 4D Grid

The new evolving grid concept is based on a deformable

mesh that follows the input basin evolution through time

provided by restoration. This evolution includes strati-

graphic modifications, cell deformations and sliding

along faults. The basin is represented by a fully unstruc-

tured mesh that does not rely on any preferred direction

and that can therefore follow deformations that do not

preserve the vertical direction. In the grid, faults are han-

dled as pairs of internal boundaries that can slide one

with respect to the other through time. Moreover the

evolution of the grid is described as a succession of incre-

mental modifications. This give much more flexibility

than an approach where changes can only affect node

coordinates of a global grid whose structure includes

all the layers at any time. To define precisely the evolving

grid, we again introduce a decomposition of the time

interval into subintervals:

�T ; 0½ � ¼
[
l¼1;L

�Tl�1;�Tl
� �

with T0 ¼ T ; TL ¼ 0
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where L, the number of subintervals, needs only to be

larger than K the number of stratigraphic intervals.

Each subinterval can then include one or both of the

following events:

– one stratigraphic event (deposition, erosion),

– one structural deformation event.

It must be emphasized that a deformation event, seen

from the geological point of view, can be further decom-

posed into smaller time intervals if the corresponding

deformation or displacement is very non linear. To

remain consistent with stratigraphic evolutions, a depo-

sition or erosion event can then also correspond to sev-

eral successive time events.

In the following sections, we first give the characteris-

tics of the grid at a given time. Then, we specify how the

grid can evolve through time and we finally end with a

focus on connectivity across fault surfaces.

1.2.2.1 Grid at a Given Time

At a given time, the grid is fully unstructured and

described as a set of cells that are of one of the following

types: hexahedra, pyramid, prism, tetrahedra, degener-

ated hexahedra (Fig. 6).

A cell is given as a list of nodes and a type which

implicitly define its faces. A face can have two neighbor-

ing cells (i.e. the two cells that contain the nodes of the

given face) and it is then a topologically internal face.

It can alternatively have only one neighboring cell and

it is then a topologically boundary face.

In the unstructured grid, a layer corresponds to a set

of cells which means that a horizon corresponds to a

set of faces.

A fault is handled as two internal boundaries, one for

each side of the fault (Fig. 7). An internal boundary is

understood as a set of faces that are topologically

boundary faces but that are not geometrically located

at the boundary of the domain. The two boundaries

are geometrically close to each other but are not glued

to one another via the structure of the mesh. The mesh

is non-matching across the fault as the nodes from one

side of the fault do not belong to the other side of the

fault. Connectivity across a fault is said to be a geomet-

rical property, that is to say that it results from geomet-

rical computations that use nodes coordinates

(Sect. 1.2.2.3). It is different from intrinsic connectivity

between cells that share a face, which is a topological

property that does not depend on the nodes coordinates.

This definition of faults gives a lot of flexibility in the

fault network definition. For instance, a fault surface

does not need to be extended to the boundary of the

domain; a particular fault face can belong to several fault

surfaces allowing for crossing faults. Moreover, there is

not any concept of block ordering.

1.2.2.2 Evolution of the Grid

Starting with an empty grid, grid evolution is defined by

successive incremental modifications defined for each

time subinterval �Tl�1;�Tl
� �

that can include:

– addition of cells, which corresponds to the deposition

of a layer. Each new cell is defined by its type and

nodes and by the coordinates of the new nodes at time

of deposition;

– deletion, modification (cut) of cells, that correspond

to an erosion. The deleted cells are given as a set of

cells while cells that change of type or of geometry

due to erosion have to be redefined;

– displacements of nodes given through their coordi-

nates at the end of the time subinterval, that describe:

� cell thickness increase during deposition,

� compaction, structural deformation,

� sliding along the fault surfaces.

The two first types of modification are called topolog-

ical evolutions of the grid as they modify its connectivity.

On the other hand, the last one is called a geometrical

Figure 6

The different types of cells. Top, from left to right, hexahe-

dra, pyramid, prism and tetrahedra. Bottom, degenerated

hexaedra.

yz
x

a) b) c)

Figure 7

An example of a basin cut by a normal fault. a) Basin grid,

b) footwall surface, c) hanging wall surface.

538 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



evolution. In that framework, sliding along fault sur-

faces corresponds to geometrical evolution. Although

many types of cells can be used, we can notice that hexa-

hedra or prism type cells are better suited to follow layer

thickening associated to deposition.

Given these incremental modifications, the grid is

computed for any time t in the considered subinterval

�Tl�1;�Tl
� �

(Fig. 8):

– the topological modifications are taken into account

instantaneously, right at the beginning of the subinter-

val i.e. at �Tl�1;

– the geometrical changes are taken into account in a

continuous way using linear interpolation with respect

to time between the coordinates of the nodes at time

�Tl�1 and time �Tl.

This last point could appear as not enough accurate

when large displacements or deformations are consid-

ered. To overcome this drawback, additional time subin-

tervals can be added that give intermediate input

geometries.

1.2.2.3 Connectivity Across Faults

To simulate mass and heat transfer on the considered

grid, intrinsic connectivity is not sufficient as it does

not contain any information on how the two sides of a

fault are glued together. This information is for instance

necessary to measure how a layer is juxtaposed to other

layers across a fault surface. As already mentioned, the

grid is topologically non-matching across a fault, there

can even be gaps and overlaps due to the decomposition

of the fault surface into elementary faces but also due to

approximations on how node coordinates change during

an event (linear interpolation) resulting in an approxi-

mate sliding of the two fault surfaces. At a given time,

standard geometrical property (cell volumes, face area,

etc.) computation needs therefore to be complemented

with a specific computation of connectivity across faults,

which is performed knowing the values of the nodes

coordinates. The first additional connectivity is called

“node-to-face” contact and gives information on how a

node of one surface projects itself on the other surface.

The second one called “face-to-face” contact gives pairs

of faces (one from each surface of the fault) that are geo-

metrically in contact across a fault.

To precise the actual content of the fault contacts, let

us consider a particular fault defined as the pair of two

sets of faces S1 and S2 (Fig. 9a for a schematic represen-

tation in 2D). We also introduce N 1 and N2 the sets of

corresponding nodes.

The node-to-face contact (Fig. 9c) of Si on Sj
ði ¼ 1; 2; j ¼ 1; 2; i 6¼ jÞ computes the following set of

node, face pairs:

CN ;i;j ¼ ðni;FjÞni 2 Ni;Fj 2 Sj;
�

the projection of ni on Sj is inFjg ð16Þ

a) b) c)

d) e) f)

g) h) i)

x
yz

x
yz

x
yz

x
yz

x
yz

x
yz

x
yzx

yz
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Figure 8

Evolution through time of the simple basin considered in

Figure 7. From a) to d): grid after the deposition of respec-

tively one, two, three and four layers. From e) to i): snap-

shots of the grid during the last event when deposition of

the fifth layer is simultaneous to sliding along the fault.

Surface S1

Surface S 2

n 2 

F1 

F2 

F1 

a)

b)

c)

d)

Figure 9

Schematic illustrations of contacts across the surfaces of a

fault in a 2D section. a) Sketch of a 2D section composed of

3 layers cut by one fault; b) the fault is defined as the pair of

surfaces S1 and S2 (blocks have been artificially shifted for

the sake of clarity); c) node-to-face contact of node n2 of

surface S2 and face F1 of surface S1; d) face-to-face contact

between faces F1 of S1 and F2 on S2.
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The face-to-face contact (Fig. 9d) computes the fol-

lowing set of face, face pairs:

CF;i;j ¼ CF;j;i ¼ ðFi;FjÞ=Fi 2 Si;Fj 2 Sj;Fi \ Fj 6¼ ;� 	
ð17Þ

It also gives the contact area between the faces of each

pair.

Although this face-to-face contact is written using for-

mal geometric intersection of faces, it must be under-

stood in a weaker sense as fault surfaces are not as

simple as in the schematic illustration shown in Figure 9.

We use a projection of both surfaces on a common mean

surface to compute the desired intersections. Detailed

description of the algorithms used to effectively compute

these contact properties is out of the scope of this

paper.

Intersecting faults can also be taken into account;

actually a face located near the intersection can appear

in pair of contact faces belonging to several faults.

2 FLUID FLOW MODEL

We consider here only one-phase fluid flow (water). A

more rigorous model of the considered physical problem

would rely on a true poromechanical formulation

accounting for 3D compaction, large deformations and

displacements with frictional contact on fault surfaces,

and complex non linear constitutive laws relating stress

and strain. Although recent progress has been made

towards this objective (Guilmin, 2012), such an

approach remains elusive for real case studies. Regard-

ing the lack of control one has at geological time scales,

more approximate models with manageable complexity

can meet our needs. We present here a model whose

objective is to allow the study of the impact of faults

on fluid flow. Its main ingredients are on one hand, a

given input evolving geometry associated to a particular

formulation of the equations as discussed in the previous

section and on the other hand, a particular interface fault

model able to simulate the different fault behaviors.

Before putting a special emphasis on faults, we

describe the equations used to model fluid flow. Heat

transfer and hydrocarbon generation are also taken into

account but not described here.

2.1 Governing Equations

As for standard settings, we assume that the effective

stress only depends on the weight of the above sedimen-

tary column. Moreover, we assume that water table is at

the surface of sediments (the porous volume is fully

saturated with water). The considered equations are then

mass conservation of solid phase, mass conservation of

the fluid phase, vertical equilibrium for the weight of sed-

iment, Darcy’s law and a porosity effective/stress rela-

tionship. To these equations, we add constitutive laws

for the fluid and the petrophysical properties and appro-

priate boundary conditions. In the following, we won’t

detail the different constitutive laws that are considered

since they are parameters of the model. In order to avoid

unnecessarily complicated notations, we will even often

assume constant properties.

In this section, we limit the derivation of the fluid flow

model to a basin which is not cut by faults and that has

therefore “standard” external boundaries. We denote by

XðtÞ the domain representing the basin at a given time t
and assume that we can define its “top boundary” CtopðtÞ
such that:

X tð Þ � ðx; y; zÞ=z � ztop; x; y; ztop

 � 2 Ctop tð Þ� 	

its “bottom boundary” CbottomðtÞ that corresponds to the

base of the sediment and its “lateral boundaries” ClatðtÞ.
Usual boundary conditions give the pressure and sedi-

ment weight on the top boundary, while no flux bound-

ary conditions are set on the other boundaries (more

general conditions could however be considered on the

lateral boundary).

We introduce the following notations for the evolving

mesh defined in Section 1.2.2:

– GðtÞ the grid at time t: MðtÞ is the set of cells, NðtÞ the
set of nodes and SðtÞ the set of faces;

– StopðtÞ, SbottomðtÞ the sets of boundary faces that corre-

spond respectively to CtopðtÞ; CbottomðtÞ and ClatðtÞ;
NtopðtÞ the set of boundary nodes corresponding to

CtopðtÞ;
– jðtÞ a cell;

– d a face (the time dependence is omitted here);

– djðtÞ the boundary of jðtÞ which is a union of faces;

– N d the set of cells that share at least one node with d
(Fig. 10);

– s a node, Ns the set of cells that have s as a node, J s the
set neighboring nodes including s itself (Fig. 10).
Following the approach described in Section 1.2.1, the

equations are formulated using porosity, overpressure

oP and lithostatic ~r potential unknowns. Since Finite

Volume methods are well suited for conservation equa-

tions and capture efficiently the heterogeneities, we use

a cell centered finite volume method to discretise the

mass conservation equations associated to Darcy’s law

and define porosity and overpressure unknowns in each

cell. To decouple porosity evolution from the geometry

evolution, we consider an additional unknown, namely

the solid volume of each cell. The corresponding
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unknowns defined for each cell are then oPj, /j and

Volsj.
For the sake of clarity, we consider here that the water

has a constant density and a constant viscosity although

density and viscosity variations could be accounted for.

The mass conservation equations are first discretised in

space by integration over each cell jðtÞ 2 MðtÞ that is

assumed to follow the sediments:

– discrete mass conservation of solid:

d

dt
Volsj ¼ qs;j ð18Þ

– discrete mass conservation of fluid:

d

dt

/j

1� /j
Volsj

� �
þ
Z
jðtÞ

div ~uw ¼ qw;j ð19Þ

where the water filtration velocity ~uw is given by

Darcy’s law:

~uw ¼ /ð~vw �~vsÞ ¼ �Km

lw
~r oPð Þ

Km is the permeability which at least depends on

porosity via a constitutive law. For the sake of sim-

plicity, the term ~rPh � qw~g which is equal to zero if

the basin is underwater, is not written down in

Darcy’s law although it could be taken into account.

Following the Finite Volume principle, the second

term of the left hand side is modified using Green’s

theorem:

d

dt

/j

1� /j
Volsj

� �
þ

X
d2djðtÞ

Ij;dFw;d ¼ qw;j ð20Þ

where Fw;d 	
R
d~uw �~nd, ~nd is the normal to face d,

Ij;d ¼ 1 if ~nd is oriented outward with respect to jðtÞ
and Ij;d ¼ �1 otherwise.

Permeability is discretised constant in each cell; its

cell value usually depends algebraically on the cell

unknowns. To approximate the flux over each

edge, we use a two-point or a multipoint flux

approximation (Aavatsmark et al., 1998) that has

been especially designed for approximating Darcy’s

flux on general grids with discontinuous permeabil-

ity tensor. It leads to an expression of the form:

Fw;d ¼
X
L2Nd

Td;LoPL ð21Þ

where Td;L depends on cell permeabilities and

geometries.

Given overpressure or no flux boundary conditions

are classically handled in this approximation and not

detailed here.

– sedimentary load

As for vertical compaction, the lithostatic potential is

assumed to satisfy the “vertical” equation:

� o
oz

ð~rÞ ¼ ðqs � qwÞð1� /Þg ð22Þ

with a boundary condition that gives ~r ¼ 0 on CtopðtÞ,
and porosity is assumed to satisfy a porosity/effective

stress relationship:

/ ¼ F/ð~r� oPÞ ð23Þ

In 1D, or on vertical pillar grids, Equation (22) is eas-

ily discretised defining cell centered unknowns as in (11).

In a fully unstructured grid, the cell centers are no more

vertically aligned and a multi-D discretisation scheme is

necessary. A natural extension of what is done for 1D

vertical grid would be to still consider the discrete litho-

static potential unknowns located at cell centers. Yet, a

consistent approximation of �o=oz ð~rÞ would then link

unknowns from different neighboring cells. Since this

would require working with a connectivity which is not

directly stored in the grid structure, we prefer to consider

discrete unknowns located at the nodes. For tetrahedral

meshes, (Mello et al., 2009) proposed an approach based

on the computation of the intersection of the mesh cells

with the vertical lines issued from the nodes. Equation

(22) could alternatively be discretised using a finite ele-

ment approximation with appropriate stabilization due

to the fact that the differential operator is of first order

(Mello et al., 2001). However, to avoid defining shape

functions for the degenerated hexahedral items which

are non standard, we choose a discretisation scheme spe-

cific to this operator, somehow more geometric and

designed to be exact for linear function.

δ
s

Figure 10

Schematic illustration of the grid connectivity in 2D.

a) A face (edge in 2D) d and its set of neighboring cells

Nd; b) a node s and its set of neighboring cells Ns.
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We denote by ~rs the approximation of ~r at node s.
Equation (22) is first discretised for each node and in

each cell using its neighboring nodes which gives:

� o
oz

ð~rÞ
� �

j;s

¼
X

s02Jj;s0
aj;s;s0~rs0

where Jj;s denotes the set of neighboring nodes of s in the

cell j. The coefficients aj;s;s0 are such that this approxi-

mation is exact for linear function. This approximation

gives then a residual of (22) for each node of each cell

that writes:

Rj;s ¼ Volj
X

s02Jj;s0
aj;s;s0~rs0 � ðqs � qwÞgVolsj

To get an equation for each node, these residuals are

condensed on nodes using weights aj;s that introduce

some “top to bottom” upwinding coherent with the dif-

ferential operator: X
j

aj;sRj;s ¼ 0

For each cell, we define the set of “bottom” nodes Pj

that is to say nodes for which the coefficient aj;s;s is posi-
tive. Then, we simply take aj;s ¼ 1= PKj j if s belongs

to Pj, aj;s ¼ 0 otherwise, which in particular ensures

that the diagonal coefficients of the associated linear sys-

tem is positive. This leads to the following form of the

discretised equation for the lithostatic unknown, for

each node s 2 NðtÞ=NtopðtÞ:X
s02Js

bs;s0~rs0 �
X
j2Ns

aj;s qs � qwð ÞgVolsj ¼ 0 ð24Þ

Boundary conditions give directly the value of ~rs for
nodes that belong to NtopðtÞ.

Equation (23) is discretised in each cell:

/j ¼ F/ð~rj � oPjÞ ð25Þ

where the lithostatic potential at the cell center is an

average of the nodes values:

~rj ¼ P
s2Nj

cj;s~rs

The discretised compaction law writes then:

/j ¼ F/ð
X
s2Nj

cj;s~rs � oPjÞ ð26Þ

2.2 Fault Models

In the considered geometric representation of a basin,

faults are handled as two surfaces that can move past

each other. Regarding fluid flow, the grid concept

introduced in Section 1.2.2 captures the juxtaposition

of distinct stratigraphic layers across a fault and its

changes through time in a relatively continuous way.

This is an important issue as it is often considered that

this provides the basic plumbing of the system. However,

a fault is not only a geometric discontinuity but rather a

volumetric zone of variable thickness and with rock

properties that result from the tectonic history of the

basin. Fault zone thicknesses remain small compared

to basin scale but their properties namely permeabilities

can be very different from the surrounding host rocks

and can evolve significantly over time. A fault zone can

therefore act as a barrier or on the opposite as a conduit

to fluid flow, becoming therefore a major feature of the

plumbing system. In standard basin model, fault zones

are represented by cells adjacent to fault surfaces to

which the corresponding fault properties are assigned.

In order not to overestimate the fault zone thickness,

local grid refinement should be used in the vicinity of

the fault surface. Already difficult in normal setting, this

approach is impractical in complex settings since it

would require too much meshing effort. We therefore

follow an approach compatible with the surface repre-

sentation of faults in which the main features mentioned

above can be taken into account. As for the presentation

of the flowmodel, our aim here is not to discuss the mod-

els that can be used to compute the fault zone properties,

using shale gouge ratio for instance (Manzocchi et al.,

1999), but to propose a fault flow model in which these

properties can be included as parameters.

For the derivation of the discretised set of equations in

the presence of faults, we assume that the domain is cut by

one single fault although the approach applies to more

general fault network. Let us consider a particular fault

defined by the boundary surface C12ðtÞ which corre-

sponds in the mesh to two sets of faces S1ðtÞ and S2ðtÞ
and the two sets of nodes N 1ðtÞ and N 2ðtÞ. Going back

to the set of equations derived in the previous section,

the fault impacts the sedimentary load equation for nodes

that belong to the fault surfaces and the mass balance

equation for the cells that are adjacent to the fault faces.

In the next sections, we first consider the impact of

faults on the sedimentary load computation. Then, we

describe the proposed hierarchy of fault flow models

starting with the simplest one, which consists in specific

boundary conditions applied at fault walls, and ending

with the most complex one which considers flow along

and across fault zones.

2.2.1 Sedimentary Load

For the computation of the lithostatic potential, we

assume that the geometric surface representation of the
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fault is accurate enough and therefore that the lithostatic

potential is continuous across the fault.

On the discrete point of view, the fault introduces

additional ~r unknowns for the nodes of N1ðtÞ and

N2ðtÞ. We distinguish among these nodes the “bottom”

ones (subsets Ni;bottomðtÞ; i ¼ 1; 2) for which discretisa-

tion of (22) gives an equation of the form (24). A node

is a bottom one if the vertical ray issued from itself

towards the top cut one of its neighboring cell. For the

other nodes of N1ðtÞ and N2ðtÞ, we discretise the continu-
ity condition using the node-to-face contact presented in

Section 1.2.2.3.

Let us for instance consider a node s of:

N2;topðtÞ ¼ N2ðtÞ=N 2;bottomðtÞ

and d the face of S1ðtÞ such that the projection s1 of s on
S1ðtÞ belongs to d. The continuity condition at node s
gives: ~rs ¼ ~rðs1Þ where the value of ~rðs1Þ is obtained

through linear (or bilinear if the face d is a quadrangle)

interpolation of the values of ~r at the nodes of d
(Fig. 11).

For each node of Ni;topðtÞ, i ¼ 1; 2, this procedure

gives an equation which can be written:

~rs ¼
X
s02d

cd;s0~rs0 with ðs; dÞ 2 CN ;i;j ð27Þ

where ðs; dÞ 2 CN ;i;j is defined by (16).

We can notice that this approach does not make any

assumption such as “bottom to top” ordering of the fault

surfaces.

2.2.2 Fault as Flow Boundary Conditions

The simplest fault flow model considers that fault sur-

faces are boundaries where specific flow boundary condi-

tions can be defined. For instance, a fault acting as a

perfect barrier can be modeled imposing a no flow con-

dition on the fault surfaces:

~uw �~n ¼ 0 on C12ðtÞ ð28Þ

On the opposite, a fault which acts as a very perme-

able conduit and which is connected to the surface of

the sedimentary stack, can be modeled with a given over-

pressure boundary condition:

oP ¼ 0 on C12ðtÞ ð29Þ

These boundary conditions are discretised as standard

boundary conditions.

2.2.3 Fault as a Membrane

Another approach for the fault flow model is to assume

that a fault acts as a membrane which can retard or

impede flow across its surface. In its simplest form, this

model assumes that the fault acts only as a juxtaposition

surface. In the continuous fluid mass conservation equa-

tion, the fault is then an interface across which overpres-

sure and fluid mass flux are continuous. In the discrete

model, these continuity conditions are taken into

account when approximating the fluxes across faces that

belong to S1ðtÞ and S2ðtÞ, and can be simply seen as the

standard flux approximation across non-matching

meshes.

In the present work, we consider only a two-point flux

approximation for these fluxes. Although more accurate

finite volume scheme can be considered, it captures per-

meable flow paths across the fault interface.

Let us consider a face d1 that belongs to S1ðtÞ for

instance and whose adjacent cell (as defined in the con-

nectivity of the grid) is j1. We denote by �d1;2 the set

of faces belonging to S2ðtÞ that are in contact with d1
as defined in Section 1.2.2.3:

�d1;2 ¼ d2 2 S2ðtÞ=ðd1; d2Þ 2 CF;1;2

� 	 ð30Þ

where CF;1;2 is defined in (17).

The flux across d1 is decomposed into a sum of fluxes

between j1 and cells adjacent to the faces of �d1;2.

Z
d1

u
!
w � n! 	 Fw;d1 ¼

X
d224d1;2

Fd1;d2 ð31Þ

Fd1;d2 is then given by the two point flux approxima-

tion between cells j1 and j2:

Fd1;d2 ¼ Tj1;j2ðoP2 � oP1Þ ð32Þ

where the transmissibility Tj1;j2 is proportional to the

contact area between the two faces (introduced in

Sect. 1.2.2.3) and to the harmonic average of the cells

permeabilities.

S1 S2
σ∼ 

s σ∼ 
s=

Figure 11

Schematic fault of Figure 9, interface condition for the

lithostatic potential.
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A similar decomposition is performed for fluxes

across faces of S2ðtÞ. The symmetry of the face-to-face

contact and the flux continuity condition associated to

the perfect membrane fault model leads to:

Fd1;d2
¼ �Fd2;d1

This flux approximation is the standard flux approxi-

mation used in reservoir simulator for computing flux

across fault surfaces (Manzocchi et al., 1999). The impor-

tant feature here lies in the set�d1;2which evolves through

time and is therefore computed for each time. Following

further the approach used in reservoir simulation, we can

account for specific fault zone properties in the transmis-

sibility computation. Indeed, fault properties are discre-

tised on the fault surfaces by assigning a fault thickness

and a fault permeability to each fault face that belongs

to S1ðtÞor S2ðtÞ. The transmissibility between the two cells

j1 and j2 is then computed as if these two cells were sep-

arated by two fictitious fault cells (Fig. 12). This approach

which requires fault properties defined on the fault faces is

consistent with sliding along the fault surface since each

surface moves past the other one keeping its properties

description. Although out of the scope of this paper, we

can point out that these fault properties (permeability

and thickness) can be the result of specific models, which

account for the neighboring cells properties and for the

history of the fault movements.

2.2.4 Conductive Fault

This fault model intends to account not only for flow

across the fault zone but also for flow along the fault

zone (i.e. parallel to the fault surface) without introduc-

ing a specific volumetric grid. The approach is based on a

double interface fault model which has been described in

details in (Tunc et al., 2012). Its principle is to reduce the

3D flow model in the fault zone to two interface models,

one for each side of the fault, where the fault thickness

becomes a parameter. Investigated for a domain whose

grid does not match across the fault but which does

not evolve through time in (Tunc et al., 2012), the

method finds an additional interest here as it is naturally

designed to cope with fault surfaces that move one past

the other through time.

The underlying idea can be schematically understood

by introducing a fictitious volumetric mesh of the fault

zone obtained by assigning a thickness to each fault face,

as shown in Figure 13.

In the fault zone, we assume that fluid flow is gov-

erned by mass conservation of fluid coupled with

Darcy’s Law. We moreover assume that compaction is

negligible which leads to a stationary diffusion equation

for the overpressure unknown. Since the formal writing

of the continuous “double interface” model is rather

technical, especially for non planar fault surfaces, we

step directly into the discretisation stage. Indeed, once

discretised with a cell centered finite volume scheme

(Tunc et al., 2012), the “double-interface” model leads

to additional overpressure unknowns and mass balance

equations in each fault face.

Each fault face d of SiðtÞ, i ¼ 1; 2, is characterized by:

– a thickness df ;d,
– a “along the fault” permeability Kfl;d,

– a “across the fault” permeability Kfa;d.

Let us denote oPd the overpressure unknown associated

to the face d. The corresponding equation is the mass

balance equation in face d which writes:

b)

a)

κ1

κ2

Figure 12

Fault as a membrane: a) sketch of the flux between two cells

that are in contact across a fault; b) fictitious fault cells used

to compute the corresponding transmissibility.

fault 

Fictitious fault cells

Along fault flow

Fault-matrix flow
Across fault flow

a)

b)

c)

Figure 13

Fault as a zone; a) sketch of a fault grid; b) zoom on the

fault zone and corresponding fictitious cells as introduced

in the double interface fault model; c) illustration of the dif-

ferent fluxes that appear in mass balance equation for the

fictitious fault cells.
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Gd � Fd;i þ
X

c edge of d

Fd;c ¼ 0 ð33Þ

where:

– Fd;i is the matrix/fault flux, i.e. the flux going out of

the neighboring cell ji into the fault;

– Gd is the across fault flux, i.e. the flux going out of face

d into neighboring faces of the other side of the fault;

– Fd;c is the along fault flux, i.e. the flux going out of

face d across the edge c into the neighboring fault face.

As for the fluxes on internal faces, we can use a two-

point or a multi-point flux approximation (Tunc et al.,

2012). For the sake of simplicity, we present here only

the two-point flux approximation for which we give the

main idea rather than explaining the details of the trans-

missibility computations:

– matrix/fault flux approximation:

Fd;i ¼ Tji;dðoPji � oPdÞ ð34Þ

where Tji;d is the fault-matrix transmissibility which

depends on the permeability in ji, the coordinates of
ji nodes, the “across fault’’ permeability of d: Kfa;d

and the half fault thickness ð1=2Þdf ;d. To ensure con-

servation, this flux approximation is also used in the

flux balance for cell ji;
– along fault flux approximation:

Fd;c ¼ T d;dcðoPd � oPdcÞ ð35Þ

where dc is the neighboring face of d in SiðtÞ across the
edge c; Td;dc is the “along fault” transmissibility which

depends on the “along fault” permeabilities, the fault

thicknesses of faces d and dc. It accounts for non pla-

nar fault surfaces introducing suitable normal vectors.

Although not detailed here, the along fault flux

approximation considers also the boundary condi-

tions at the boundaries of the fault surfaces;

– across fault flux approximation: the flux between the

fault surface SiðtÞ and the other fault surface SjðtÞ is
decomposed into a sum of fluxes between the face d
and the faces of SjðtÞ which are in contact. As in pre-

vious section (30), we define the set �d;j of faces that

are in contact with d. The across fault flux then writes:

Gd ¼
P

dj2�d;j

Gd;dj

Gd;dj ¼ Td;djðoPdj � oPdÞ
ð36Þ

where T d;dj is the “across fault” transmissibility which

depends on the “across fault” permeabilities, the half

fault thicknesses of the two faces and the contact area

between them.

This model is particularly well adapted to fault move-

ments since the fictitious fault cells follow the fault sur-

faces through time. As for the across fault flow model,

the fault properties can be the results of appropriatemod-

els. It is moreover possible to distinguish a damage and a

gouge zone within the fault zone, where the gouge zone

properties are accounted for when computing the across

fault flux permeability in a way similar to what is done

for the “fault as a membrane model” (Sect. 2.2.3)

2.3 Solution of the Discrete Equations

We recall that this formulation is inserted in the approach

of Section 1.2.1 where the evolution of the grid through

time is a given input. An iteration of the “geometrical

loop” corresponds to the computation of the main dis-

crete unknowns on the time interval �T ; 0½ �, which are

obtained as the solution of the governing equations com-

pleted with initial conditions and further discretised in

time. We use a linearly implicit Euler time discretisation

that is not detailed here. In the sequel, we give an outline

of how the discrete equations are solved at each time step.

For each time step tnþ1 ¼ tn þ�t (the superscript n and
nþ 1 represent the time level), the gridMnþ1 ¼ Mðtnþ1Þ at
time tnþ1 is updated as explained in Section 1.2.2.2. Then

time discretisation of the governing equations leads to a

system of algebraic equations for the unknowns at time

tnþ1 that are the solid volume, the porosity and the over-

pressure of each cell (and eventually the overpressure of

each fault face) and the lithostatic potential of each node.

The proposed formulation induces a sequential resolu-

tion that includes the following stages:

– solid mass balance Equation (18) gives directly the

solid volume Volsnþ1
j knowing Volsnj and the input

solid deposition rate, for each cell j 2 Mnþ1;

– once the solid volumes are computed, the lithostatic

potential of the nodes are computed solving an alge-

braic linear system that gathers Equations (24, 27)

and the boundary conditions;

– once the lithostatic potential are computed, we com-

pute cell porosities, cell overpressures and eventually

face overpressures (if the “conductive fault” model is

chosen) that are solution of Equations (20), and fault

equations that depend on the chosen fault behavior.

Equation (32) allows to eliminate the porosity

unknowns which gives finally a linear system in the

overpressure unknowns.

The simulator which implements the computation of

the unknowns through time has been developed around

Arcane Platform (Grospellier and Lelandais, 2009) and

is parallelized using mesh partitioning in order to handle

large grids (of the order of one million cells). A specific
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practitioner has been designed for evolving grids but its

description is out the scope of this paper.

3 ILLUSTRATION ON A SEMI-SYNTHETIC EXAMPLE

This part illustrates the results obtained on a semi-

synthetic example based on an analogue experiment. It

focuses on the impact of fault behavior for fluid flow.

This experiment is inspired by geological structures with

crustal extension, which cause the plate to split apart and

center blocks to drop down relative to the flanking

blocks. This feature is the illustration of a rift valley such

as the East African rift where still active Arabian and

African plates are splitting (Mougenot et al., 1986) or

the subsurface structures of the North Sea area domi-

nated by grabens formed during the Triassic and Jurassic

periods (Glennie, 1998).

3.1 Analogue Experiment Description

Analogue experiment aims at reproducing real geological

case at laboratory time and space scales (Ramberg, 1981).

In this example, a medical scanner performing computer-

ised X-ray tomography is used (Colletta et al., 1991). The

principal advantage of this technique is to produce a real

time 4Devolution.They are nounknownon the geometry

through time. The model studied is built with an alterna-

tion of sand and pounce powder on a silicone basement in

a 25 9 70 cm box (Fig. 14). These materials simulate the

rheology of geological formation. Total thickness at

deposition is 4 cm. The number of layers is 6. Sedimenta-

tion rate is 4 cm/h. The deformation is applied in only

one-direction. At the end of the experiment, the model

has a total length of 32 cm, so an extension of 28%. Nor-

mal faults delimit completely the downthrown blocks.

Fault dipping is less than 45 degrees.

3.2 Geomodel Building and Gridding

First step is the interpretation of the scanned data and

the building of the 3D surfacic model. Horizons and

faults are picked on the 3D final scanned block imported

into a geomodeler (Fig. 15). Around 30 faults were

picked, but only 8 were selected. Only faults with signif-

icant throws were selected. Faults in X or Y are not con-

sidered, because the restoration prototype cannot handle

them at the stage of the publication. The fault network

description is simplified to allow the realization of the

whole basin workflow that means the coupling between

an evolving geometry and fluid flow through geological

time steps. Figure 15a illustrates the interpretation and

simplification done on the data.

a)

b)

c)

70 cm

25 cm

Direction of extension

Direction of extension

Location of the
cross section

89 cm

4 cm

0

At the end of deposition, no extension

d) At the end of the experiment, with a 28% of extension

After an extension of 10.1%

Figure 14

a) Picture of the top view of the box for the experiment, its

schematic representation and location of the cross-section

for b) to d). b) Cross-section at the end of deposition of

the materials. The cross-section is extracted from the

scanned data block. c) Cross-section in the block

number 4 after an extension of 10.1%. d) Cross-section in

the final 3D scanned block, block number 9. The extension

is equal to 28%.

Direction
of extension

Unit 6 Unit 5 Unit 2

Unit 4 Unit 3 Unit 1

Unit 6
Unit 5 Unit 2

Unit 4 Unit 3 Unit 1

a)

b)

c)

89 cm
25 cm

4 cm

x
y

z

Sand
Pounce
powder

Figure 15

a) View of a cross-section in the 3D final scanned data block

and its simplified interpretation. Themodel is compartment-

ed into 6 blocks. b) 3D image of the surfacicmodel including

the top and base horizons and picked faults. c) 3D meshed

grid with the location of the different units.
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The model is gridded with an unstructured mesh

based mainly on hexahedra. The grid is based on

6 720 cells at the last step of deformation (Fig. 15c).

The created mesh conforms to faults and compart-

mentalizes the model into units which follows the

geometry evolution due to deformation or fault activa-

tion. Each unit could be delimited by faults or not.

The model is not divided into separated meshed blocks

but is represented by an unique 4D grid. Each layer is

representative of an homogeneous media made of

either sand or shale. The mesh follows the stratigraphic

deposition.

A quality control in thickness preservation was car-

ried out by comparing the interpreted and built model

with the scannered data block. Some parts were re-built

and re-meshed. Thickness variations through time is

checked and preserved as much as possible.

3.3 Structural Restoration

The next step is the building of the kinematics or the dif-

ferent stages of deformation to explain the geometry at

present day. This step is solved with a volumetric

restoration approach (Durand-Riard et al., 2013;

Moretti et al., 2006; Maerten et al., 2001). It is a sequen-

tial approach describing the deformation of the model

for each stratigraphic layer. At each time step, the target

geometry is the top horizon of the structure. Each top

surface is restored at its respective depth observed on

past scanned steps. Each restoration step corresponds

to a paleomodel built at deposition time step. At each

time step, the restored layer is removed. Faults are sur-

faces along which sliding occurs. Some boundary condi-

tions are defined on the model, for example, the left

border is fixed during the restoration scenario to ensure

coherency of the unfolding in the direction of extension

and limit the number of degrees of freedom. The 9 suc-

cessive steps of restoration are presented in Figure 16,

they have been obtained with Kine3D-3 (Moretti et al.,

2006).

The result of this step is a time-dependant unstruc-

tured grid suitable as input for the forward simulation.

This 4D grid reproduces properly the different steps of

deformation of the model and the sliding along the

faults. In Figure 16, pillars preserve the main direction

of the dipping surfaces. The mesh is non-matching along

the faults and stratigraphic discontinuities across the

faults are modeled.

89 cm

25 cm

4 cm

a)

b)

c)

d)

e)

f)

g)

h)
x

y

z

Figure 16

8 incremental volumetric restoration steps. Color represents the layer number or the stratigraphic event. a) Initial structural model; b) to

h) successive snapshots during the model evolution. Hexahedra mesh nearly everywhere for a better coupling with the fluid flow sim-

ulator. The topmost horizon is restored to a flat datum. Sliding along the faults is done without any gap or overlap.
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Porosity reduction due to compaction processes is not

taken into account in this semi-synthetic example,

because the rheology of materials is not varying in this

experiment. There is no correction needed for calibrating

the change in porosity due to geometry evolution and

sediment rates

3.4 Forward Simulation and Impact of Faults on Fluid
Flow

For the last part of the workflow, which corresponds to

the coupling between the deformed geometry through

time provided by the volumetric restoration and the fluid

flow simulation, particular attention is paid to the

impact of faults on fluid flow paths and therefore on

overpressure distribution.

In this part, each coordinate of the grid has been mul-

tiplied by a factor of 200 000 in the z-direction, 50 000 in

the x-direction, and 100 000 in the y-direction to produce

an example with more realistic dimensions (Fig. 13a).

The lithofacies distribution is such as sand is given a res-

ervoir lithological properties and pounce powder some

seal properties. Intrinsic permeability follows a

Kozeny-Carman’s law. Permeability contrasts between

sand and pounce powder is 104.

To illustrate the fault hydrodynamics, two different

scenarios are considered.

In the first one, faults are considered as membranes.

Geology adjacent to fault surfaces is the main driving

factor for existing fluid flow distribution. The fault prop-

erty emphasizes the barrier or conduit behavior across its

surface. In the second one, faults are considered as con-

ductive faults. Fluid migration is across the fault zone

but also along the dip direction of fault surfaces. In both

scenarios, no temporal property for fault permeability is

given. Geometric and lithological properties for faults

are summarized in Figure 17 and Table 1.

Figure 18 illustrates the fault behavior of a mem-

brane. Faults 2, 3, 4 act as a barrier and other fault sur-

faces as a conduit. For all fault surfaces, stratigraphic

contacts across the fault surfaces are similar, with an

alternation of sand and shale. In Figure 18b, the fault

2 breaks an existing pathway for fluid flow and no fluid

crosses the fault zone. At the opposite in Figure 18c,

fluid velocity is high, and fault 6 impedes fluid flow.

89 km

24 km

x

y
z

7 800 m
Fault 1

Fault 4

Fault 6 Fault 8

Fault 7
Fault 5

Fault 2

Fault 3

Figure 17

3D model for the location of fault surfaces from 1 to 8.

TABLE 1

Properties of the fault model for both scenarii. Faults 2, 3 and 4 are impermeable

Thickness of the gouge and

damaged zones

Intrinsic permeability K for each face of the fault surface

For faults numbered 1, 5, 6, 7, 8 For faults numbered 2, 3, 4

Scenario 1: fault as a membrane 10 m K = 10�2 mD K = 0 mD

Scenario 2: conductive fault 10 m K = 10�2 mD K = 0 mD
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Figure 19 compares the fluid flow direction and veloc-

ity in function of the parameterization of the faults.

Fluid moves essentially by lithologic contrasts in the

units. Due to faults 2, 3 and 4 which are impermeable,

fluid is migrating along fault 2 and the drainage is impor-

tant in the space between faults 2 and 3. Fluid velocity

and rate are more important in Figure 19a compared

to Figure 19b everywhere. The plumbing system is less

active across the faults in Figure 19b, but very active

along the dip direction of fault surfaces as illustrated in

Figure 19c. In the scenario 2, fluid velocity is more

important in the zone along the faults than across the

fault zones (Fig. 19c). This behavior is due to the fault

permeability which is of the same order of magnitude

as the permeability of the sandy layer and is emphasized

by the open boundary condition at the top of the faults.

The scenario 2 is able to capture across and along fluid

movement within the volumetric fault zone.

Figures 20 and 21 demonstrate the impact of the fault

model on overpressure distribution through time. The

fault parameterization affects fluid flow patterns and is

a controlling factor for pressure calibration. In Figure 20,

overpressure increases continuously through time to

reach 10 MPa in the deepest part of the model. At the

opposite, in the scenario 2, overpressure is less important

and reaches 5 MPa in the deepest part of the model. The

overpressure is mainly concentrated in the shaly layers.

Figure 21 shows the overpressure evolution through time

in two specific cells, for the two scenarios. We can see

that overpressure evolution depends heavily on the jux-

tapositions that occur across the fault, although the con-

ductive property of the fault for scenario 2 tends to

smooth this behavior.

3.5 Conclusion on this Example

With this analog experiment, the workflow based

on the new developed simulator has been evaluated.

This example is a demonstration of the complexity in

a)

b) c)

x

y
z

Figure 18

a) 3Dmodel with the location of the areas which illustrates both behaviors of the fault surfaces. Arrows represent fluid flow. The length of

the arrow represents the fluid flow velocity. Zoom of fluid flow across the fault zone when the fault acts as a barrier b) and a conduit c).
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combining structural modeling, fault analysis and

petroleum system analysis. This example illustrates

the potentiality of the model to allow for different

fault parameterizations that cover a large range of

behaviors, going from a perfect barrier to a conduit,

using a single evolving grid.

a)

b)

c)

a)

Cell velocity magnitude

b)

c)

1 10

0.1067 5 677.1

100 1 000

1 10

0.1 5 677.1

100 1 000

Face fault velocity magnitude

x
y

z

xy

z

Figure 19

Top view of the 3D model. Left: arrows represent fluid flow. Right: colours represent the fluid velocity magnitude in m/Ma. a) Model

from scenario 1; b) model from scenario 2; c) fault surfaces with fluid flow across and along the fault zones.

Step 1/8

Step 3/8

Step 6/8

Scenario 1 Scenario 2

Overpressure in Mpa

4

8

12
16

a) b)

Figure 20

3Dmodel in overpressure at different time steps. The number of time step is related to Figure 3. a)Model from scenario 1; b) model from

scenario 2.
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CONCLUSIONS

In this paper, we have described the basis of a new for-

ward basin simulator designed to better take faults into

accounts. We have introduced an innovative 4D grid

concept which is a real step forward compared to previ-

ous approaches. It is indeed flexible enough to follow

continuously basin deformation in complex settings

including displacement along fault surfaces. Besides,

the simulator contains a hierarchy of fault flow models.

The most complex one is the conductive fault model. It

allows accounting for fluid flow along the fault zone cou-

pled with relative displacement of the fault walls,

although the fault is only represented as interfaces in

the 3D grid. Results on a semi-synthetic test case illus-

trate the capabilities of the new simulator. Although

not shown here, the simulator accounts for thermal

transfer and hydrocarbon generation and it is currently

being extended to hydrocarbon migration.
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Figure 21

a) The two cells, close to fault 7, for which pressure evolution is plotted through time. The bottom one is a shaly cell which the upper one

is a sandy cell. b) Overpressure evolution for the two selected cells, the blue curves correspond to scenario 1 while the red dashed curve

correspond to scenario 2.
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Appendix: 1D Space Discretization of Fluid Flow Coupled with Compaction

We consider the set of Equations (1), that we discretize in space. Following the finite volume principle, unknowns are

approximated at cell centers and the mass conservation equations are integrated over each cell xkðtÞ ¼ zk�1ðtÞ; zkðtÞ
� �

,

k ¼ 1; :::;KðtÞ. The center of cell xkðtÞ is the point of coordinate zk�1=2ðtÞ. Discrete unknowns in cell xk are denoted

with the subscript k:

– discrete mass conservation of solid: assuming constant solid density, Equation (1) leads to:

d
dt
R
xkðtÞ 1� /ð Þ ¼ R

xkðtÞ qs k ¼ 1; :::;KðtÞ
d
dt hsk ¼ qs;k

with the solid height hsk of cell xk satisfying:

hsk ¼ hkð1� /kÞ
– discrete mass conservation of fluid: assuming constant water density, Equation (2) leads to:

d
dt
R
xkðtÞ /ð Þ þ R

xkðtÞ div / ~vw �~vsð Þð Þ ¼ R
xkðtÞ qw k ¼ 1; :::;KðtÞ

d
dt

/k
1�/k

hsk
� �

þ uwðzk ; tÞ � uwðzk�1; tÞ ¼ qw;k

– discrete sedimentary load equation: integrating (7) between zk�1=2ðtÞ and zkþ1=2ðtÞ, k ¼ 1; :::;KðtÞ � 1, gives:

~rk � ~rkþ1 ¼ ðqs � qwÞ ð1� /kÞhk þ ð1� /kþ1Þhkþ1


 �
g=2

~rk � ~rkþ1 ¼ qs � qwð Þ hsk þ hskþ1ð Þg=2
k ¼ 1; . . . ;K tð Þ � 1

Similarly, integrating (7) between zK tð Þ�1=2ðtÞ and zK tð ÞðtÞ, and taking into account the boundary condition, gives:

~rKðtÞ ¼ ðqs � qwÞhsKðtÞg=2

– discrete compaction law: compaction law (9) is written for each cell:

/k ¼ F/ð~rk � oPkÞ k ¼ 1; :::;KðtÞ

– discrete Darcy’s law: Darcy’s law (8) is discretised using a standard two-point scheme which gives an approxima-

tion uw;k of uwðzk ; tÞ:

uw;k ¼ 1
lw
Tkþ1=2 oPk � oPkþ1ð Þ k ¼ 1; :::;K tð Þ � 1

uw;K tð Þ ¼ 1
lw
TKðtÞþ1=2oPKðtÞ

uw;0 ¼ 0

where the transmissibility Tkþ1=2 is given by:

2

Tkþ1=2
¼ hk

Km;k
þ hkþ1

Km;kþ1

in which Km;k in the permeability in cell xk , expressed as a function of the cell unknowns (usually at least porosity).
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