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Abstract 

 
The paper presents a new damage model for predicting stiffness loss due to creep loading and cyclic 

fatigue. The model, developed within a continuum damage mechanics framework, is based on the 

idea of a time-dependent damage spectrum, some elements of which occur rapidly and others 

slowly. The use of this spectrum allows a single damage kinematic to model creep and fatigue 

damage and to take into account the effect of stress amplitude, R ratio, and frequency. The 

evolution equations are based on similar equation than the one describing the viscoelasticity model 

and are relatively easy to implement. The new model is compared to the experimental results on 

carbon fiber/epoxy tubes. Quasi-static, creep and fatigue tests are performed on filament-wound 

tubular specimens to characterize the elastic, viscoelastic and plastic behavior of the composite 
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material. Varying amounts of damage are observed and discussed depending on stress level and R 

ratio. The experimental work aims to develop and validate the damage model for predicting 

stiffness loss due to creep loading and cyclic fatigue.  

Keywords: Fatigue; Creep; Damage mechanics; Modeling 
 

1.  Introduction 

Composite materials are increasingly being considered for utilization in the petroleum industry [1-

3]. Among the possibilities currently being studied is the use of composite materials for the 

production riser on top-tensioned offshore oil platforms. Currently, production risers are made out 

of steel; however, as the demand for oil pushes offshore operations into greater depths, the weight 

of steel risers will become problematic and economically costly. Salama [4] has shown that at 

depths of 2000 m, the cost of a composite riser becomes comparable to that of a steel riser, and 

beyond depths of 3000 m composite risers would be considerably cheaper.  

Implementing composite materials for this sort of application is not without difficulties, however. 

Risers are installed for the life of the platform, which can be 20 years or longer. They are subjected 

to thermomechanical fatigue loads due to waves and tides, constant elevated internal pressures for 

production, external pressure due to the sea and gradient of temperature mostly between the inner 

and the external diameter. A good understanding of the behaviour of tubular composite structures 

subjected to creep and fatigue loading is essential. 

The fatigue of composite materials has received a considerable amount of attention over the past 

decades. Experimentally, the effects of R ratio and frequency have been documented, and the 

overall damage mechanisms are fairly well understood [5-12]. However, modeling these 

phenomena remains difficult. A review of existing fatigue models by Degriek and Van Paepegem 

[7] details the various approaches currently available as well as the difficulties associated with 

taking into account the experimentally-observed phenomenon.    
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Some of the difficulty comes from the inability of most existing models to take into account creep-

fatigue interaction [7]. Recent works have been devoted to fatigue and creep [11], but the coupling 

of both phenomena and resulting damage are still an issue. From a practical standpoint this is 

problematic as some structures experience mixed fatigue-creep loadings requiring different 

modeling approaches. From a theoretical standpoint, a fatigue damage model should be as accurate 

for a frequency of 1 Hz as it is at 0.001 Hz, that is to say, as it approaches a creep test. Otherwise, 

the ability to predict the material response at other frequencies is called into question.  

Some approach propose a damaged ply model using an equivalent undamaged ply with an apparent 

compliance, which is determined as a function of time dependent transverse crack density [13]. 

One possible approach for addressing these issues is the introduction of a time-dependent damage 

driving force. A time-independent damage driving force, typically denoted Y, is used by a number 

of researchers in determining damage due to quasi-static loadings using a micro-meso model [14-

16]or meso-macro model [17-18]. The first models consider the different damage mechanisms and 

describe their potential synergic effect, typically the diffuse damage (fiber-matrix debonding) and 

the transverse microcracking [15] while the second ones focus on the matrix cracking and 

delamination.  

In a same thermodynamics framework, a time-dependent damage driving force would perform the 

same function for cyclic and creep loads. The model presented in this paper proposes an expression 

for a time-dependent damage driving force easy to identify and implement. It is developed and 

validated using experimental results of creep and fatigue tests on tubular composite specimens. 

 

2.  Material  

The material used in this work is a M10 amine/epoxy resin system reinforced by Toray T700S 

carbon fibres. Tubes with a nominal diameter of 60mm and a 300mm length were manufactured by 
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Mahytec Company using filament winding process, and then cured according to manufacturer’s 

specifications (curing temperature of 120°C for four hours). The use of tubular specimens rather 

than flat specimens was justified by the lack of edge effects results in a more uniform stress state, as 

well as the fact that the targeted industrial application in this study is a tubular structure. Six lay-ups 

were considered in this study. [±15°], [±45°], and [±75°] laminates were tested in order to identify 

the longitudinal, shear and transverse behaviours of the composite material. Additionally, [±55°], 

[±60°] and a proprietary [±θ/±φ] (where θ is a winding angle for circumferential rigidity and φ a 

winding angle for axial rigidity) were tested for model validation. The nominal thickness of the 

specimens is 1.2 mm except for the [±θ/±φ] lay-ups which have a thickness of 2.4 mm. 

For each laminate, quasi-static, creep, and fatigue tests were performed. Quasi-static and creep tests 

were used to characterise the elastic, plastic and visco elasto plastic behaviour of the material [23]. 

 

3.  Quasi-static Damage Model 

The model, firstly developed by Thiebaud and Perreux [18] and extended latter to the mesoscopic 

scale by Perreux and Lazuardi [22], is the basis of the new time-dependent damage model proposed 

in the following section. This model is based on Continuum Damage Mechanics, using the internal 

state variables Di to describe the stiffness loss due to microcracking. The stiffness loss is taken into 

account using a damaged compliance tensor given as 

HSS +=~
 (1) 

where  
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The damage variables DI and DII are written as 
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These damage variables are linked to the density of microcracks [19] and could be expressed from 

each other:: 
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Thus, only DI is necessary to describe the effect of microcracks on the transverse and shear moduli. 

In order to determine the evolution of DI, an associated plasticity formalism with the following 

damage criterion is used: 

0≤−−−= C
DD YRYf  (4) 

where Y is the damage motor force, YC is the damage yield point for the ply, and RD
 represents the 

accumulated damage. Damage occurs when  the two following conditions are fulfilled:  

0=Df  and 0>
∂

∂
Y

Y

f D
&   

The form of the hardening function RD is chosen so as to provide coherence with experimental 

observations. A power law is proposed: 

( )P
I

D DR α=  (5) 

where α and P are material parameters. 

The damage driving force Y is defined as the partial derivative of the free energy density ψ with 

respect to damage DI: 

ID
Y

∂
∂= ψ

 (6) 
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where
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where 
*ψ  is a function of other internal variables. 

The evolution of damage and its effect on the elastic behavior of the lamina can now be determined 

using the relation 

Y

f
D

D
D

I ∂
∂−= λ&  (8) 

where λD is the Lagrange multiplier.  

 

4.  Development of Time-Dependent Damage Model 

The above formulation is valid only for the first cycle of a fatigue test or the initial loading of a 

creep test. In order to include any subsequent creep or fatigue damage, an additional damage 

kinematic taking into account the time dependant phenomenon is needed.  

Joseph and Perreux [17], for example, proposed the following damage evolution law: 
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∂
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*ϕλ&  (9) 

where Y is the static damage driving force, fD
 is a static damage criteria, λD a Lagrange multiplier, 

and ϕ is a dissipation potential defined as: 
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where KD, nD, DC, and YC are model parameters, RD takes into account accumulated damage, and the 

variable Z is the time-dependent damage driving force which essentially lags behind Y as shown in 

Fig. 1. Z is defined with the following equations : 

( ) CIC YDDY <− 2
 → 0=Z&  
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Fig. 1 Role of Z in creep and fatigue modeling 

 

While initial results of this approach showed promise for taking into account the effects of 

frequency, average stress, stress amplitude and creep damage, in practice this approach proved too 

complicated to implement because of the complexity involved in determining Z. Nevertheless, this 

approach is conceptually satisfying, and so the present work will seek to propose a simpler model 

while keeping several aspects of the aforementioned model.  

The new damage model is based on the idea of a damage spectrum, which assumes that the time-

dependent propagation of a microcrack will be influenced by several factors, such as the orientation 

of the polymer chains that must be broken for the crack to propagate, proximity to fibers, and 

proximity to other microcracks or voids. The rate of loading and time under load will determine 

which phenomena are activated. The net result is that some cracks propagate rapidly and others 

slowly, and the overall damage is the sum of a spectrum of damages.  

The rate of change of the damage is the sum of the rate of change of the instantaneous damage as 

defined in equation (8), and the rate of change of a time-dependent damage*ID& : 
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where *
ID&  is the sum of the elementary time-dependent damages: 

∑=
i

iII dD ,
* &&  (12) 

Each elementary damage dI,i will be driven by an associated variable yi. As in equation (6), this is 

written: 

iI
i d

y
,∂

∂−= ψ
 (13) 

This formulation is inspired by the viscoelastic model, proposed by Petipas et al. [20], also based on 

a spectrum. In this approach, a family of second-order tensors ξξξξi, corresponding to the mechanisms 

of viscoelastic flow, are defined. Each ξξξξi, with driving force χi, is associated with a relaxation time 

τi and weighted by µi; the weighted sum of these elementary strains gives the overall viscoelastic 

strain. The free energy density is written as:  
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where εεεεe is the elastic strain and C and CR are respectively the elastic and viscoelastic stiffness 

matrices, given by:   
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The associated driving force χi is obtained from (14): 

iξ
χ

∂

∂
=

ψ
i

 (16) 

Using a similar formalism, the evolution of the damage yi will be determined by a potential ϕ. 

Based on experimental observations, the following form is proposed: 
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Here µi and τi define the damage spectrum, which is chosen as triangular (Fig. 2) as suggested by 

Richard and Perreux [21] for ease of implementation, and is found from the equations: 
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Fig. 2 Relaxation time spectrum 

 

Additionally, the spectrum is normalized so that 
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Finally, the rate of change of each di is obtained from the derivative of the potential with respect to 

yi: 
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The formulation up to this point can be used to describe the initial stiffness loss and subsequent 

stabilization; in order to predict the acceleration of damage prior to final failure, an additional 

relation is needed. While predicting the fatigue life of a structure is complicated, and the material 

behavior model developed here is not strictly speaking adequate for predicting failure, an attempt 

can be made at simulating the final portion of life. The braking parameter can be taken as constant 

until a critical amount of damage is reached, when damage accelerates and macrocracking, 

delamination, and other structural effects become more important. At this point a linear degradation 

of the braking parameter is proposed, resulting in an acceleration of DI: 
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This is shown schematically in Fig. 3.  

The critical damage parameter Dcrit does not appear in any other equation or calculation, and is not 

integral to the model. It can thus be omitted if the final stages of damage evolution are not needed.  

In order to determine the structural response of the laminate, an approach based on classical 

lamination theory extended for non-linear responses is used [22]. This approach consists of writing 

solving the generalized forces and moments for incremental strains and curvatures using the 

tangential matrices - not the traditional elastic A, B and D matrices.  
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Equations (19) and (20) determine the fatigue and time-dependent damage of a laminate.  
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Fig. 3 Evolution of parameter α with damage 

 

4.1 Role of Model Parameters 

In the above formulation, there are a total of 4 parameters. The relaxation times τi and associated 

weights µi are the same as those used in viscoelastic modeling; these can be identified with a 

traditional creep test [23]. Parameter β determines the magnitude of damage possible for a given 

stress state, and is largely analogous to the matrix SR in viscoelasticity. This parameter is scaled by 

( )αID−1 to take into account the change in damage propagation with accumulated damage, which 

generally occurs more rapidly at the beginning of a test and then slows; parameter α1 determines the 

extent of this "braking" phenomena. Finally, in equation (18) the yi lag behind the instantaneous 

force Y, and this difference is what drives the time-dependent damage development. 

As shown experimentally, the damage tends towards a certain characteristic damage state (CDS), 

and, the parameter β will be used to ensure consistence with this state for any set of parameters. In 

other words, once a potential set of parameters is identified, an optimization of the parameter β is 

performed. Thus, any change in α, nc, and n0 requires a modification of β to assure that the 

experimentally-observed CDS is maintained. This step is relatively quick, as each simulation takes 

approximately one minute. However, its identification, and thus the experimental determination of 

the characteristic damage state via a creep test, is indispensable to the model.  
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The parameter α determines the influence of accumulated damage on damage progression. A value 

of between 2.0 and 3.0 appears necessary to describe the generally observed pattern of a rapid loss 

of stiffness followed by a stabilization.  

The choice of the nc and in n0 is clearly a fundamental aspect of this modeling approach. As nc 

increases, the rate of damage progression slows. As nc represents the centre point of the spectrum, 

this is not surprising: essentially, more time is needed for damage phenomenon to manifest. 

Similarly, as n0 increases, the rate of damage progression increases. By increasing the width of the 

spectrum, a higher weight is assigned to earlier phenomenon, thus increasing the speed at which 

damage occurs. This also determines the effect of frequency on damage progression: for a given nc, 

a larger value of n0 will cause a greater rate of damage than a smaller value of n0.  

The role of the parameters now being understood, it is possible to identify them for an actual 

material system.  

 

4.2 Method of parameters identification 

As previously discussed, fatigue, creep, and their interaction with each other influence fatigue life. 

As such, two different fatigue tests at 65 MPa and 85 MPa with different R ratios (0.1 and 0.3 

respectively) and a creep test at 85MPa on [±45°] tubes are used for the identification process. The 

identification is made from the measurement of the damage frequently characterized by the stiffness 

loss [7, 24]. During creep tests or cyclic tests, after loading to a certain stress level or after a certain 

number of cycles respectively, the specimen was unloaded and the variation in the axial modulus 

was measured: 

Dzz=ΔEzz/Ezz 
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The process of identification used is an iterative one. An initial choice of α is made based on the 

overall trends observed in the fatigue tests; this value will be fixed during identification of 

parameters nc and n0, although it is possible to refine this choice later. Here, α=2.5 is selected. The 

values of nc and n0 are systematically varied by a certain percentage, for example 5% or 10%; for 

each variation, β is determined. The fatigue tests are simulated and the residual, based on the error 

between the simulation and the experimental results, is evaluated; based on the best result, a new nc 

and n0 are determined. This iterative process is repeated until a satisfactory fit is obtained for the 

fatigue tests. As it can be time consuming to simulate each fatigue test to failure (approximately 120 

to 140 cycles per minute), it is more practical to optimize the parameters based on the damage level 

at a relatively early stage in the test. As such the optimization is only performed on the results of the 

first 5000 cycles of the test. 

The parameters are determined using an iterative process. The identified values are reported in 

Table 1. 

Table 1. Identified value of parameter 

Parameter Value 

β 350 

α 2.5 

nc 5.00 

n0 3.25 

 

5. Comparison of model with creep and fatigue tests 

The parameters being identified, it is now possible to validate the model against other loadings and 

lay-ups. In Fig. 4, the model is compared with the results of the fatigue tests performed at f=2 Hz on 

the [±45°] lay-up. Due to time computation, the simulations are made on relatively low number of 

cycles. It is recalled that only the first 5000 cycles of the tests at σmax=85 MPa with R=0.3 and 
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σmax=65 MPa and R=0.1 were used for the identification. Given the dispersion inherent in fatigue 

testing, a good correlation is found (Fig. 4). The difference between σmax=85 MPa and σmax=65 MPa 

is predicted, as well as the difference in R ratios at both stress levels.  

Using the same set of parameters, the creep damage evolution can be predicted (Fig. 5). While it is 

not a surprise that the final value of Dzz corresponds to the data as it was used for the optimization, 

it should be noted that the form of the curve, which is determined by nc, n0, and α, also correlates 

well with the experimentally observed evolution. This gives some credibility to the notion of a 

single damage spectrum which determines the overall fatigue and creep damage behavior of a 

material. 

 
Fig. 4 Comparison of damage evolutions resulting from the model and fatigue tests at different loadings on 
[±45°] lay-up (f=2 Hz) 
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Fig. 5 Comparison of the damage evolution resulting from the model and creep test  (85 MPa) on [±45°] lay-
up 

 

The model is compared with the test performed at f=0.5 Hz, 2 Hz and 4 Hz in Fig. 6. Given the 

limited amount of data for f=0.5 Hz and f=4 Hz and experimental variation, the model seems 

capable of simulating the fatigue-creep interaction effect. The damage evolution at f=0.5 Hz is more 

rapid than the evolution at 2 Hz, and the progression at 4 Hz is slower than that at 2 Hz. It should be 

noted that temperature effects would not be predicted with this model, so high frequency tests could 

only be simulated in an environment where specimen temperature did not exceed a certain level. 

A comparison with fatigue data from the [±θ/±φ] lay-up is shown in Fig. 7. The model is better at 

predicting high cycle fatigue than predicting low-cycle fatigue. The model also predicts a 

stabilization in damage progression that does not occur in the test at σmax=300 MPa. This could be 

due to the braking parameter being load or lay-up dependent.  

There is another possible explanation. The damage levels observed experimentally, 0.13 – 0.18, 

cannot be entirely explained by stiffness loss in the ±θ plies, as elevated damage levels in these 

plies would result in approximately Dzz= 0.07. There is the possibility of propagation of damage 
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from the ±θ to the ±φ plies, even though damage would not normally occur there. This would result 

in the additional stiffness loss, although predicting this phenomenon would be extremely difficult. 

 

 
Fig. 6 Comparison of damage evolutions resulting from the model and fatigue tests - σmax=85 MPa, R=0.1 - at 
different frequencies on [±45°] lay-up 

 
 
 

 

Fig. 7 Comparison of the damage evolution resulting from the model and fatigue tests at different loadings - 
R=0.1, f=2 Hz - on [±θ/±φ] lay-up 
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6. Conclusion 

In this paper, a new viscous damage model was developed. It is based on a spectral 

distribution of time-dependent damage mechanisms, which are then predicted using a 

dissipation potential similar to that used in viscoelastic modeling. This model is based on 

the  observation of creep and fatigue damage showing that the micro cracking growth is 

affected by the rate of loading. We have assumed that this phenomenon is connected to 

polymer relaxation of stress and then the damage kinetics could be described by similar 

equation than the viscoelasticity strain in polymer. The influence of the various model 

parameters was discussed, and an approach for identifying them given. Following the 

identification of these parameters for the material system used in the experimental part of 

this work, a comparison with the creep and fatigue tests was given. The performance of this 

model is presented and assessed on various stacking sequence. The materials tested  are 

tubes manufacturing by the same process and the same material in order to reduce the 

variability of the experimental results. The model is able to predict the effects of frequency, 

R ratio, and stress level. As it has been observed  its accuracy seems especially adapted  for 

predicting high cycle fatigue. 
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