Benjamin Marteaua 
  
Didier-Yu Ding\ 
  
Laurent Dumasb 
  
  
  
A generalization of the local graduai deformation method using domain parameterization

Keywords: History mat ching, Geostatistical realizations, Parameterization, Graduai deformation, Domain deformation

Reservoir model needs to be constrained by various data, including dynamic production data. Reservoir heterogeneities are usually described using geostatistical approaches. Constraining geologicaljgeostatistical mode! realizations by dynamic data is generally performed through history matching, which is a complex inversion process and requires a parameterization of the geostatistical realizations for model updating. However, the parameterization techniques are still not very efficient and need to be improved.

In recent years, the local graduai deformation method has been widely used to parameterize geostatistical realizations. The domain deformation technique has also been developed to improve the history matching efficiency. Both methods can smoothly modify mode! realizations while conserving spatial geostatistical properties. The first one consists in locally combining two or more realizations while the second one allows the optimization process to ebange the mode! realization via the variation of the shape of geometrical domains. In this paper, we generalize the local graduai deformation method by adding the possibility to change the geometry of local zones through the domain deformation. This generalization provides a greater flexibility in the definition of the local domains for the local graduai deformation method. In addition, we propose a new way to initialize the realization which guaranties a good initial point for the optimization and potentially improves the efficiency of history matching.

Introduction

A reservoir model is built based on both static and dynamic data. Static data represent the data obtained from experiments carried out on cores extracted from wells or measurements of welllogs such as porosity or permeability. Dynamic data are generally the weil production data such as weil pressure, oil rate, etc .. The integration of dynamic data in the reservoir model is generally performed through history matching.
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Reservoir heterogeneities are described using geological/ geostatistical approach. The uncertainty of a model realization is linked to the geological scheme, to the sedimentary concept, to the nature of the reservoir rocks, their extent, and to their properties. Ignoring the uncertainties in the reservoir lithology would lead to underestimating the complexity of the reservoir between wells, resulting in over or under-estimating the 10 connected reservoir pore volumes. Integration of dynamic data to constrain the geostatistical realization can reduce greatly model uncertainties. Although reservoir heterogeneities are commonly generated using geostatistical models, random realizations cannot generally match observed dynamic data. To constrain mode! realizations to reproduce measured dynamic data, an optimization procedure may be applied in an attempt to minimize an objective function. Such history matching methods require a parameterization of 15 the geostatistical model to allow the updating of an initial model realization.

To parameterize the geostatistical model, several methods were introduced. For example, the pilot point method [START_REF] Marsily | Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir mode![END_REF], the graduai deformation method [START_REF] Roggero | Graduai deformation of continuous geostatistical models for history matching[END_REF], the domain deformation method [START_REF] Ding | History matching geostatistical mode! realizations using a geometrical 3-40 domain based parameterization technique[END_REF] and the probability perturbation method [START_REF] Hoffman | Regional probability perturbations for history matching[END_REF] were all proposed to continuously deform the models. All these methods allow the modification of a >o geostatistical realization by preserving its spatial variability.

In recent years, the local graduai deformation method has been increasingly used [START_REF] Roggero | Matching of production history and 4d seismic data-application to the girassol field, offshore angola[END_REF][START_REF] Al-Akhdar | An integrated parameterization and optimization methodology for assisted history matching: Application to libyan field case[END_REF]. In that method, the deformation zones are fixed and cannot be changed during history matching. If these zones are not suitably defined, it is difficult to decrease the objective function for history matching and to find an optimal realization. The choice of deformation zones is a critical point 25 for the successful history matching of geostatistical realizations. In this paper, we propose a generalization of the local graduai deformation method, which can optimize the deformation zones through the domain deformation technique during a history matching process. This method allows the graduai deformation in varying domains and find more efficiently an optimal geostatistical realization.

Another issue in history matching is the selection of the initial model realization for the local graduai Jo deformation. The batchwork method, which combines locally different realizations according to the matching results on the wells [START_REF] Reis | Production data integration using a graduai deformation approach : application to an oil field[END_REF], is sometimes used to define an initial model. But this method does not always work well, and sometimes gives very bad results. Using the domain deformation technique alone may provide a suitable approach to define a convenient initial model.

In this paper, we will first briefly review the graduai deformation and the domain deformation methods,
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then present a generalization of the graduai deformation method by combining with the domain deformation technique to modify the shapes and sizes of the domains. We will also show how to get a convenient initial model for history matching by using the domain deformation technique. Examples are presented to show sorne promising results with the new technique. 

A generalized local graduai deformation technique

M = G(Z) (1)
The graduai deformation method [START_REF] Gervais | History matching using local graduai deformation[END_REF][START_REF] Hu | Combination of dependant realizations within the graduai deformation method[END_REF][START_REF] Roggero | Graduai deformation of continuous geostatistical models for history matching[END_REF] 
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. if we want to combine two independent Gaussian white noises Z 0 and Z 1 , we can introduce a parameter p 1 and choose Z(p 1 ) such as:

(2)

To combine N + 1 Gaussian white noises (Z 0 , ... , ZN), we introduce N parameters p = (p 1 , ... , pN). The graduai deformation is then given by:

N N -1 N Z =II cos(/)Zo + L sin(pi) II cos(/)Zi + sin(pN)zN (3) i = l i = l
For local graduai deformation, we group the mode! grid cells in zones and locally combine several Gaussian white noises inside these zones. For example: if the mode! is divided into 2 zones and 3 standard Gaussian white noises are available:

we can defi ne Z (p) by :

Zo,zone 1 l [ z l [ z l Z _ l,zone 1 d Z _ 2,zone 1 1 - an z- ' Z1,zon e2 Z2,zone 2
Zo,zone2 

Z(p) = [ cos(p

Do mains deformation method

The domain deformation method [START_REF] Ding | History matching geostatistical mode! realizations using a geometrical 3-40 domain based parameterization technique[END_REF] has sorne similarities to the local gradua! deformation method. The mode! is divided into different zones (not necessarily delimited by grid cells) and a standard Gaussian white noise is restrained to each zone. The geostatistical model realization is then modified by deforming the shapes and sizes of the zones. Fig. 2 shows an example of a reservoir mode! divided into two domains R 1 and R 2 • We build the model realization with a standard Gaussian white noise associated to Z 1 inside R 1 and to Z 2 inside R 2 . However, the random value is not clearly defined on grid cells that are partially on severa! domains. Let's consider the grid cell X of the Fig. 2 which is not entirely inside any domain. To ensure the mode! continuity, we choose for this grid cell a combination of the two Gaussian white noises Z 1 and Z 2 as follows:

(6)

where a 1 and a 2 depend on the shape and the size of the domains, which can be parameterized. As for the local graduai deformation method, Z is a standard Gaussian white noise if ai + a~ = 1. We can choose, for example, ai proportional to the proportion of the grid cell inside the domain i.
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x The new model realization therefore depends on the parameters which define the shapes and sizes of the domains. In general, to limit the number of parameters, we choose simple shapes for the domains that depend only on a small number of parameters. For example, choosing circles with fixed centers allows us to determine each domain with only one parameter: their radius .

This method can be extended to the case of M domains to deform with N + 1 Gaussian white noises. Let ti = (t 1 , ... , tq) be the set of parameters determining the shape of the domain R; and t = (t 1 , ... ,tAI) contain all the domain parameters, we can combine the Gaussian white noises:

M Z(X, t) = L ai(X, ti)ZJ('i)(X) (7) i=O
where ai(X, ti) depends on the shape of the domain Ri, J(i) E [0, ... , N] is the index of the Gaussian white noise associated to the domain Ri and J(O) = O. The new standard Gaussian white noise is parameterized with t.
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The advantage of this parameterization technique compared to the local graduai deformation is that it is not very dependent on the initial domain selections, since their shapes and sizes can be modified. ln fact, a bad definition of the zones in the local graduai deformation method could greatly deteriorate the potential diminution of the objective function. This is well illustrated in Fig. 3 which was presented by Ding & Roggero (2010) to compare the potential of the domain deformation method and the graduai deformation &s method on a history matching problem. In this figure, the pink curve presents the variations of the objective function with the size of the domains, while the blue curve presents the optimal results using the local graduai deformation technique with fixed domains sizes. In this particular case, when the domain size (radius) is fixed, the contribution of the local graduai deformation is relatively limited while changing the domain size can rapidely reduce the objective function. This example shows that in certain cases, choosing weil suited domains can be critical to the performance of the graduai deformation method. -----optimal solution with domain parameterization 
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Generalization of the gradual deformation method

Another way to wr-ite the domain deformation technique

To be able to combine the graduai deformation and the domain deformation methods, we write them in a similar form. We present here a variant of the domain deformation method. Let's start by a simple case

•• with only one zone and two model realizations.

One zone and two standard Gaussian white noises.

Let's Consider one zone R 1 parameterized by the set of parameters t 1 = (t 1 , ... , tq) and two independent model realizations associated to two Gaussian white noises Z 0 and Z 1 . For a given grid cell X, we define V 1 (X, ii) by the volume of the domain R 1 inside X and V 0 (X, tl) = vol(X-RI) its complementary. Let a 1 be:

(x ) - Vt(X,tl) a 1 ' t 1 ---------'-------'------.,- V1 (X, tt) + Vo(X, tt) (8)
A new gaussian white noise Z(X) can be built with:

(9)
This Gaussian white noise associates Z 1 to the inside of the domain R 1 and Zo to the outside. It is a combination of the two on the grid cells partial! y occupied by the zone. The new mode! realization G( Z) is dependent on the shape and size of R 1 which is parameterized with hoo Generalization: Nf zones and M + 1 Gaussian white noises. We can generalize the ab ove formula to the case of M zones ( R 1 , ... , RM). If we have at our disposal M + 1 Ga.ussian white noises (Z 0 , ... , ZM) and a set t = (t 1 , ... , tM) that parameterizes the shapes of ail the zones, we can associate one mode! reaiization to each zone and the last one to the outside of every zone. As in the previous example, for a given grid cel! X, we define Vi(X, ti

)= vol(X n Ri), Vo(X, t) = vol(X-u 1 R 1 ) and •(X ) _ Vi(X, ti) a:, ,t --M~...:...._--'----- Lj=O Vj(X, tj) (10)
For the sake of simplicity, we decided to associate foriE {1, ... , M} the Gaussian white noise Zi to the zone ~ and Zo to the outside every zone. The new standard Gaussian white noise can be built using:

(11)

We therefore have a mode! realization G(Z) dependent on the shapes and sizes of the domains Ri built by associating one Gaussian white noise to one domain. With this formula, the domain deformation parameters are easier to manipulate. If a grid cell is entirely inside the zone~ (o:i = 1 and for all j ' 1i, o:

1 = 0) we have Z(X) = Zi(X). a• 2.3.2

. Combination of the local gradua[ deformation and the domain deformation

Both the local gradua! deformation rnethod and domain deformation rnethod previously described present sorne drawbacks. On one hand, it is not easy to define suitable zones for the local graduai deformation method to ensure a potential diminition of the objective function. On the other hand, the domain deformation does not allow the combination of Gaussian white noises inside the zones and therefore limits the possibilities oo of the optimization process. We propose in this section a new method that generalizes the local graduai deformation by allowing to deforrn the domains in which the mode! realizations are combined.

A simple example : One zone and two Gaussian white noises.

Let's start with a simple example where we have two Gaussian white noises (Zo, Z 1 ) and one zone R 1 defined in a reservoir mode!. We propose a new Gaussian white noise that depends on two parameters with t 1 controling the domain R 1 and p 1 the gradua! deformation.

(
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where o: 1 (X, t 1 ) is given by Eq.( 8).

Depending on the position of the grid cell X in the reservoir model and the value of the graduai deformation es parameter, we have:

• If X is entirely outside R 1 then a 1 = 0 and Z(X) = Z 0 (X).
• If X is entirely inside R 1 then a 1 = 1 and

(13) which corresponds to the graduai deformation technique.

• If X is partially inside R 1 , Z(X) is a combination of Z 0 (X)
and Z 1 (X). In this case, both the graduai deformation method and the domain deformation method are applied simultaneously.

•

If the gradual deformation is set to a constant p1 = ~. then Z(X) =cos( ~ai)Zo(X) +sin( ~a 1 )Z 1 (X), which corresponds to the domain deformation method described in section 2.3.1 (Eq.( 9)).

One domain and N + 1 Gaussian white noise.

We can extend the previous case by adding the possibility to combine N + 1 independent standard Gaussian white noises (Zo, ... ,ZN) inside the zone R 1 . t 1 still parameterizes the shape of R 1 and we introduce N graduai deformation parameters (p 1 , ... , pN). The new Gaussian white noise proposed is then:

(14)
We have: 1oa

• If X is outside R 1 , then a 1 = 0 and Z(X) = Zo(X).

• If X is entirely inside R 1 , then a 1 = 1 and

N N ( N ) Z(X) = D cos(7rpi)Zo(X) + j; sin(7r2pi) kLL cos(7r2pk) Z 1 (X) (15)
which corresponds to the formula of the graduai deformation method described in Eq.(3).

• If X is partiaily inside R 1 , Z (X)
is a combination of Zo (X) and Z 1 (X) created by both the domain deformation and the graduai deformation techniques.

uo Extension to the case of N + 1 madel realizations and M domains.

We now extend the method to the general case where we have at our disposai N + 1 independent Gaussian white noises (Zo, ... , ZN) and M domains (R 1 , ... , RM) defined on a reservoir madel. For each zone Ri, let ai be defined by Eq.( 10) and for each couple "zone"j"Gaussian white noise" Ri/Zj, we introduce a graduai deformation parameter p{. We propose the generalized formula :

N M N M N M Z(X)
= II cos(1r 2:::: aip{)Zo(X) + 2:::: sin(1r 2:::: aip{) II cos(1r L aip7)Zj(X)

(16) j=l i=l j=l i=l k=J+l i=l
This is indeed a way to do a graduai deformation of ali mode! realizations in every varying zone but this generalized method introduces too many parameters (M * (N + 1)). Fortunately, it is possible to reduce the number of parameters just by selecting the "best" mode] realizations to combine in each zone (setting sorne of the p~ to 0). m Let's analyse sorne cases for a grid cel! X:

1. Outside every domains

For each i, ai = O. Thus, Z(X) = Z 0 (X).

Suppression of the influence of the realization l in the zone Rq

Let's set the parameter p~ to O. If the grid cell X is entirely and uniquely inside R 9 , Z(X) become:

N N N Z(X) = II cos(7r~)Zo(X) + 2:::: sin(1r~) II cos(1r~)Zj(X) (17) 
j=l,j#-l j=l,j#-l k=j+l

The realization l has no more influence in the zone R 9 . We want to apply Z 1 inside R 9 . Let 's set p~ = ~ and for ali j E { 1, ... , l-1, l + 1, ... , N} the parameters ~ = 0. Then:

• If X is entirely and uniquely inside R 9 then Z(X) = Z1(X)

• If X is only partially inside R 9 , then a combination of Z 0 and Zt is applied, as for the domain deformation method.

This case corresponds to the domain deformation method applied on the zone R 9 .

Graduai deformation on the zone R 9

If no parameter controlling the shape of Rq is introduced then for any grid cell X, a 9 is constant. This ammounts to perform a local graduai deformation inside the zone R 9 •

This new generalized method offers a great fiexibility concerning the definition of different domains and the choice of Gaussian white noises to combine in each one. For example, it is possible to perform a local gradual deformation of several mode! realizations in one zone, while in parralel applying the domain deformation method to another zone (or any combination of the two methods). Let's present the patchwork technique [START_REF] Reis | Production data integration using a graduai deformation approach : application to an oil field[END_REF].

The objective function can be explicited by: 2. divide the reservoir into M zones.

3. Name Z 0 the Gaussian white noise associated to the mode! realization that presents the lowest objective function value.

For each zone k:

• Sort the values of the local objective function. Name Zj the realization such that 9k(Zj) is minimal.

• If Zj =1-Z 0 , apply z 1 in the zone k for graduai deformation.

Fig. 4 shows an example of a reservoir mode! divided into 11 relatively independent zones. If the zones are independent from one another, the patchwork initialization is expected to give a better objective function 100 value than Z 0 • However, if the local modification of the mode! realization in a zone can affect the behavior of the mode! in the other zones, it is not possible to ensure that the patchwork mcthod will not deteriorate the mode!. In practice, the independence of different regions is not trivial to be identified and large errors could be committed. lt is frequent that a patchwork method increases the value of the objective function. initialize local zones since their shapes and sizes can be later modified. The patchwork method is improved as follows:

1. Generate N + 1 model realizations.

2. Name Z 0 the Gaussian white noise associated to the model realization that presents the lowest objective function value.

3. Group the wells into M subsets (h, ... ,lM). As in the previous section, we call 9k = ~iEh fi the local objective function associated to the kth group of wells. It is possible to choose only one weil in each group.

4. For each group of wells k:

• Sort the values of the objective subfunction 9k(Zj)• Name Zj the realization such that gk(Zj) is minimal.

• If Zj f=. Z 0 , define a parametrized zone containing the group of wells k and apply Zj inside. Simple zones defined with one or two parameters are prefered.

5. Start a simple optimization process (for instance, with a single parameter) on the sizes of the domains 1aa to have the best possible starting madel. In the case of circular zones, we can optimize the sizes of the zones with a single radius parameter.

Comparing to the patchwork proposed by [START_REF] Reis | Production data integration using a graduai deformation approach : application to an oil field[END_REF], parameterized domains are defined in Step 4

and any form of domains can be used instead of a division by regrouping grid cells. Moreover, a simple optimization process is applied in Step 5 to improve the zone sizes. As we will see in examples hereafter, m

Step 5 allows with a very limited cost (a few reservoir simulations) to get a better initial point.

It is interesting to note that our method leaves a lot of freedom concerning the shape of the zones. [START_REF] Ding | History matching geostatistical mode! realizations using a geometrical 3-40 domain based parameterization technique[END_REF] presented severa! typical domains for history matching. Elliptical domains are suitable for anisotropie permeabi!ity correlation media with their two axes proportional to the correlation lengths.

They are also adapted to investigate connectivities between a couple of injectorfproducer with the foci of no the ellipse at the wells. The simplest domain shape is the circle with its center fixed at a well and a radius r to be optimized. In the following, we will illustrate sorne examples using radial domains parameterized with their radius.

Numerical resulta

In this section, we tested our new initialization and parameterization techniques on three cases. The first 1o5 one is a simple synthetic reservoir mode!, the second one is the reservoir mode! PUNQ [START_REF] Barker | Quantifying uncertainty in production forecasts: Another look at the punq-s3 problem[END_REF] and the last one is an adapted Brugge mode! [START_REF] Chen | Closed-loop reservoir management on the brugge test case[END_REF][START_REF] Peters | Results of the brugge benchmark study for flooding optimization and history matching[END_REF][START_REF] Langouët | Optimisation sans dérivées sous contraintes[END_REF]. ln the simple synthetic case and the Brugge case, as the correlation lengths are nearly isotropie, we worked with circular zones. Anisotropie correlation lengths are present in the PUNQ reservoir, but each layer has a different anisotropy and different axis: their azimuths are respectively 30, 0, 45, -30 and 60 degrees from the principal 2oo axis. As it is difficult to favor a particular layer over the others and we don't want to introduce one new parameter per layer around each well, we also chose to work with circular domains for this test. We will briefly describe the studied cases before showing the numerical results.

.1. Description of the three studied cases

Simple synthetic case. The dimensions of the field are 2500m in the x direction, 2500rn in the y direction 2o5 and 10m in the z direction. lt is discretized uniformly by 50x50x1 grid cells of 50rn in the x direction, 50m in the y direction and 10m in the z direction. There are 25 vertical wells containing 12 water injectors and 13 producers (Fig. 5). The reservoir is heterogeous and the correlation length is 150m in the x and y directions.

The initial reservoir pressure is 250bars and a production data history of 4000 days is known. Weil bottom hole pressures are imposed with 320 bars on the injectors and 180 bars on the producers. We consider for PUNQ. The reservoir PUNQ is a synthetic case which results from a field study conducted by the industrial partners of the project PUNQ [START_REF] Barker | Quantifying uncertainty in production forecasts: Another look at the punq-s3 problem[END_REF]. The mode! is constituted of 19x28x5 grid cells of which 210 1761 are active. Six producing and seven injection wells are present. Fig. 6 shows the permeabilty at the top layer of the reservoir for a realization of the mode!. Porosity and permeability maps have been generated with the geostatistical method FFTMA [START_REF] Le Ravalee | The fft moving average (fft-ma) generator: An efficient 1so numerical method for generating and conditioning gaussian simulations[END_REF]. We have at our disposai a production history of 12 years. We use for our objective function the parameters BHFP (Bottom Hole Flowing Pressure), WC (Water CUT) and GOR (Gas Oil Ratio) for the producing wells and BHFP on the injecting wells.
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Brugge. Brugge is a synthetic reservoir mode! built for the 2008 Applied Technology Workshop [START_REF] Peters | Results of the brugge benchmark study for flooding optimization and history matching[END_REF][START_REF] Peters | Extended brugge benchmark case for history 360 matching and water ftooding optimization[END_REF]. The original model has 20 millions grid cells with average sizes of 50m x 50m x 0.25m.

We worked with an upscaled mode! of 60 thousands grid cells. 30 wells are present on the reservoir, 10 are injecting wells and 20 are producing wells. In this work, we generated our history data by creating reference porosity and permeability maps with the geostatistical method FFTMA [START_REF] Le Ravalee | The fft moving average (fft-ma) generator: An efficient 1so numerical method for generating and conditioning gaussian simulations[END_REF], and we 22• compare different optimization techniques to match these history data. Figure 7 shows the permeability map of the first layer of the reservoir for the reference realization of the model. The production has a history of 10 years. We use for our objective function the parameters BHFP (Bottom Hole Flowing Pressure) and WC (Water Cut) for the producing wells and BHFP on the injecting wells. Simple synthetic case. We generated 5 sets of 25 random realizations to apply the patchwork method with radial domains around the wells. Fig. 8 illustrates the new patchwork method: the zones created are the circles around the wells. In this figure 16 zones were created, the problem is therefore parameterized with 16 graduai deformation parameter and 16 domain deformation parameters (radius of the domains).

Fig. 9 shows the values of the objective function in each of our 5 cases for the best realization and the It is observed that the objective function is deteriorated with the radius r = 300m. However, there is a clear minimum on this curve that is inferior to the value of the "best" realization (horizontal bar in blue).

24o

A gradient based optimization method can find this minimum in 5 evaluations of the objective function .

Radial domains give a better initial model with a radius of r = 206m for the optimization proccess. inferior to the value of the objective function given by the "best" realization. We found this minimum with 7 evaluations of the objective function through a gradient-based optimization method . The objective function goes from 649.9 to 502.0 with the new patchwork approach showing a relative gain of 22%.

>•o

To compare with the initial point given by the classical patchwork technique [START_REF] Reis | Production data integration using a graduai deformation approach : application to an oil field[END_REF], we It is interesting to note that even in the case where the objective function cannot be improved , the new patchwork method is not detrimental. In fact, when ail the radius are reduced to zero, we obtain the ''best" realization among ali the random realizations.

Brugge. For this case, 19 random mode! realizations were generated. The new patchwork technique created 26o 7 zones around the wells P-10, P-13, P-15, P-16, P-19, P-2 and P-5. Fig. 13 shows the value

~65

of the objective function after patchwork with respect to the radius of the zones. Again, the minimum is inferior to the value of the objective function given by the best realization. We could find this minimum in The objective function goes from 68.9 to 17.5 with the patchwork approach, showing a relative gain of over 74%.

As for the PUNQ case, we compared our results to the one given by the classical patchwork method where we created zones delimited by grid cells around the wells (Fig. 14). Using this reservoir division, the patchwork technique gives an objective function value of 45.2. In this case, the method improves the objective function but is still far from the results given by our method. 

Numerical results of the generalized gradual deformation method

We use the mode! obta.ined by patchwork in the previous session as the starting point for the history matching. In ali tests, a graduai deformation parameter is introduced on each zone to combine the local best realization with the overall best random realization, and a domain parmeter is also introduced to control the radius of the zones.

27•

Simple synthetic case. The generalized graduai deformation method is compared to the local graduai deformation. A gradient based optimization approach has been applied in the optimization process. Fig. 15 shows the decrease of the objective function with respect to the number of evaluations for the five cases.

In each case, the decrease rate of the objective function with respect to the number of reservoir simulations obtained with the generalized graduai deformation method is similar to the one obtained with the classical local graduai deformation method, but the generalized graduai deformation method gives a better optimal result at the end (respectively 5%, 11% , 20%, 47% and 27% relative gain on the graduai deformation method). Even with an increased number of parameters, this new parameterization method gives a better result in a similar number of objective function evaluations. These results show the importance of taking into account the size of the local zones for history matching for the local gradua! deformation. ---1500 1000 L_--~~'----'---"'-''-'----''--~'-----''-----''----' previous tests, we were able to get a better model realization with a radius parameter for each zone (relative gain of 21%). Taking the size of the zones into account allows for a greater decrease of the objective function.

Conclusion >2o

We presented in this paper a new parameterization method that remedies one of the biggest fl.aws of the local graduai deformation technique in history matching. The quality of the local graduai deformation method depends strongly on the initial set of local domains. To overcome this shortcoming, a generalized formulation is proposed, which modifies the geostatistical realization with the graduai deformation method inside local domains while the shapes and sizes of these domains are also changed by the domain deformation m technique. This method allows the history matching optimization algorithm to dynamically modify the sizes of the domains and therefore reduces the dependence of the optimal realization on an initia.! expert guess for local domains selections. We successfully showed better results with our generalized graduai deformation method than those with the standard graduai deformation technique on three history matching problems.

Therefore we are confident that this new method is a good generalization of the graduai deformation technique Jlo and may allow good history matching on a greater number of cases.
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  of the history matching problem : a patchwork technique One of the issues for the history matching problem is its initialization. For the geostatisticallocal parameterization techniques described in the previous section, choosing relevant domains and mode! realizations is a key issue to have a good decrease of the objective function. It is therefore necessary to have an efficient way to initialize the history matching problem. 1403.1. Initialization of the history matching problem via patchworkBy dividing a reservoir mode! into relatively independent zones, it is possible to initialize the history matching problem by choosing the "best" realizations in each of these zones. The choice of mode! realizations for a zone can be clone by comparing the local value of the objective function and selecting the best one.
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  Lf;(xl, .. -,xp) is the objective function associated to a weil i on which we have data to match, n is the number of wells in the reservoir and (x 1 , ... , xp) are the parameters to be optimized. For a specifie zone k, if I is the set of wells inside the zone k, we cal! local objective function associated to the zone k the function 9k = LiEI k A patchwork initialization is performed by the following steps: N + 1 madel realizations.
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 89 Figure 8: Initialization for the new paxameterization method via modified patchwork on a synthetic reservoir mode!
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 14 Figure 14: An engineering division of the Brugge reservoir into zones
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 1519 Figure 15: Comparison of the generalized gra.dual deformation and the gTadual deformation techniques on 5 instances of the synthetic case.

  consists in combining two or more Gaussian white noises to modify the model realization. More precisely, it uses the fact that if (Z 0 , ...

	.. 1 . .

, ZN) areN+ 1 independent standard Gaussian white noises and (a 0 , ... , aN) areN+ 1 real numbers such that I:i a; = 1, then Z = L:i aiZi is still a standard Gaussian white noise. Then, if the ai depend on a set of parameters p = (p 1 , ... , pN) th at guaranties th at for all p, L:i a; (p) = 1, we can generate new model realizations for all p. Moreover, a continuous variation of the set of parameters p gives a continuous variation of the spatial properties of the mode! realization as illustrated in Fig.

l

. For example, ..

  In this case, Z 0 and Z 1 are combined in the domain zone 1 and Z 0 and Z 2 are combined in the domain zonez. This approach allows us to independently modify

			(4)
		cos(p 2 )Zo,zone 2 + sin(p 2 )Zz,zone 2	(5)
	45	realizations in severa! regions of the model.
	50	

1 )Zo,zone 1 +sin(p 1 )Zl,zone,] with p = (p 1 , p 2 ). Z(p) is still a standard Gaussian white noise and can thus stilllegitimately be used to generate a model realization through the operator G.

our objective function to be minirnized the water rate on the 12 injectors as weil as the oil rate and the water-cut on the 13 producers.

divided the grid into zones delimited by grid cells as shawn in Fig.l2. In this example, each zone contains one and only one weil. Using this domain division, the objective function increases from 649.9 for the best global realization to 851.1. Unfortunately, the classical patchwork method is detrimental to the objective function but we have no mean to improve it.

•••

To further illustrate our method, we also compared three variant parameterization techniques from the best initial point obtained with the improved patchwork: the generalized graduai deformation method (9 radius parameters as we have 9 zones), the generalized graduai deformation method with one radius pararneter for ali the zones and the local graduai deformation rnethod where the radius are unchanged. For this case, a derivative free optimizer [START_REF] Langouët | Optimisation sans dérivées sous contraintes[END_REF] was chosen to minimize our objective function. Results

•oo are presented in Fig17.

We can see in this figure that ali the three methods give a sirnilar decrease rate for the objective function.

However, the methods that allow the sizes of the zones to vary give better final results (about 15% relative gain). Moreover, it seerns sufficient to introduce only one parameter to controle the sizes of all the zones in this example. These simulations also show that taking into account the sizes of the zones can add a great

•o• flexibility to the parameterization technique without increasing greatly the cost of the history matching process. Brugge. We work in this test with 7 zones (see section 4.2). We performed two history matching, one using the local graduai deformation method on the zones delimited by grid cells (Fig. l4) and one using our parameterization method. We show in Fig. l8 the results we obtained. In this case, the initialization method alone gives a better mode! realization than the local graduai deformation method. Our method presents a final relative gain of 60%. It is quite evident that a good definition of the zones is crucial to have a fast decrease of the objective function for this test.