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Abstract

In this paper we study two different model re-
duction strategies for solving problems involv-
ing single phase flow in a porous medium con-
taining faults or fractures whose location and
properties are known. These faults are repre-
sented as interfaces of dimension N − 1 im-
mersed in an N dimensional domain. Both
approaches can handle various configurations
of position and permeability of the faults, and
one can handle discretization grids that do not
match up at the fault interface. For the nu-
merical discretization we use the hybrid finite
volume scheme as it is known to be well suited
to simulating subsurface flow. Some results,
which may be of use in the implementation of
the proposed methods in industrial codes, are
demonstrated.

Keywords: Porous media, Faults, Inter-
face model, Non-matching grids, Finite vol-
umes

1 Introduction

Fluid flow in porous media can be strongly in-
fluenced by the presence of large faults, which,
depending on their porosity and permeability,
may act as preferential paths for flow linking
geologically otherwise unconnected layers or as
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barriers isolating some part of the fluid. The
faults may connect different parts of the do-
main and they may also intersect one another.
Among the many domains of application re-
quiring an accurate description of fluid flow in
faulted media, we mention CO2 injection and
sequestration, oil migration and recovery, and
prevention of groundwater contamination from
underground nuclear waste disposal, to cite just
a few.

Since the width of a fault is several orders of
magnitude smaller than any other characteris-
tic size of the porous medium in which it lies
and since it is usually very small in compari-
son to the typical mesh size, it is unreasonable
and often for real cases completely unafford-
able to uniformly refine the computational grid
to a degree that the fault may be represented
exactly. To deal with this difficulty we con-
sider approximation based on a reduced model
(RM) in which flow along and across the frac-
ture is described using a simplified set of equa-
tions. A reduced model for Darcy flow was in-
troduced in [3] and extended in [17, 32]. In
these references the authors propose a reduced
model in which each fault is represented by a
single (N − 1) dimensional object and flow in
the fault is coupled with flow in the rest of the
domain by suitable interface conditions. In this
article we will refer to such a model as a sin-
gle layer-reduced model (SLRM) or simply (SL).
In the aforementioned works it was essentially
supposed that the fault crossed the entire do-
main, so, to take into account fractures ter-
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minating in the interior of the domain, in [4],
the authors extended the model by imposing
no flow conditions on the tips of the faults ly-
ing in the interior of the domain. These mod-
els were all concerned with single phase Darcy
flow. Other results considering similar single-
layer reduced models for single phase Darcy
flow include [5, 30, 29, 25, 26, 24, 27, 34, 35, 9]
to name a few.

The SLRM has also been extended to treat
nonlinear problems: in [21, 31] an extension was
given that couples Forchheimer flow in the frac-
ture with Darcy flow in the surrounding rock
matrix. In [28] the authors extended the re-
duced model to treat a two-phase flow problem
by introducing new non-linear coupling condi-
tions for the saturation, which involve the cap-
illary pressure, at the fault interface. Other
authors have also treated the case of two-phase
flow; we cite [37, 22, 33, 10] among others.

For information concerning other types of
models for flow in porous media with faults and
fractures, we simply cite some of the main ref-
erences in the literature [7, 1, 8, 2].

For the numerical discretisation of these re-
duced models both finite element and finite vol-
ume methods have been analysed and used ef-
fectively showing the flexibility of the models
with respect to discretisation method. In [20]
it was shown that for the numerical discretiza-
tion of the SLRM, the mesh on one side of the
fracture does not need to match up with that
on the other nor with the mesh inside the inter-
face fracture. In [12, 23, 19] the authors went
further and showed that by using extended fi-
nite elements the mesh on the rock matrix can
be chosen completely independently of the frac-
ture, allowing the fracture to cut across cells of
the grid.

One application that particularly concerns us
here is the simulation of sedimentary basins. In
such basins, due to subsurface movements on a
geological time scale, the surrounding porous
medium on one side of a fault may slip with
respect to that on the other. An example is
depicted in Figure 1, where the right side of
the domain has slipped with respect to the left
side.

To better deal with the case of slipping faults,

Figure 1: Example of a schematic basin with
slippage along a fault.

in [39] the authors extended the reduced model
in such a way that each fault is approximated
by two distinct (N−1)-dimensional objects, one
associated with each side of the fault. In the
sequel we will refer to this type of approxima-
tion as a double-layer reduced model (DLRM)
or (DL).

The main purpose of this article is to give a
numerical discretization of the model proposed
in [39] using the hybrid finite volume scheme
[16, 15] modified to handle the fault flow. A
comparison of the SLRM and the DLRM is
given in the continuous as well as numerical
context, showing their equivalence under suit-
able conditions. Moreover for both the reduced
models, SLRM or DLRM, we prove an equiv-
alence between their numerical approximation
and what we call the “virtual fault cell” ap-
proach, avoiding the construction of the tan-
gential operators. Several numerical examples
are presented to show the robustness of the pro-
posed method for both academic and realistic
problems.

The paper is organized as follows: in Sec-
tion 2 the notation and the governing equa-
tions of the physical problem are presented. In
Section 3 the double-layer reduced model and
the single-layer reduced model are derived and
compared. Section 4 is devoted to the dis-
cretization of the proposed schemes, and some
theoretical results, which may facilitate the im-
plementation, are presented. In Section 5 a col-
lection of examples highlights the possibilities
of the proposed methods. Section 6 contains
the conclusions. An appendix A, in which we
briefly recall the derivation of the hybrid finite
volume scheme for a standard diffusion prob-
lem, is included.
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2 Flow in a domain with a
fault

Throughout the rest of this article, unless oth-
erwise specified, i, respectively j, will denote
an index with values i ∈ {1, 2, f} , respectively
j ∈ {1, 2}.

We consider as a computational domain a
bounded, connected, open set Ω ⊂ RN , N = 2
or 3, representing a porous medium.

We assume that Ω contains a fault Ωf , a con-
nected, open subset of Ω, and that Ω\Ωf is di-
vided into two disjoint, connected, open subsets
Ωj as is shown in Figure 2. We denote by Γ the
boundary of Ω, i.e. Γ := Ω \ Ω, and by Γi the
external boundary of Ωi, i.e. Γi := ∂Ωi∩Γ. The
interface between the domain Ωj and Ωf is de-
noted by γj and the unit normal vector field on
γj pointing outward from Ωj is denoted by nj
. We suppose that the fault has a central axis
γ̂, a non self-intersecting (N − 1)-dimensional
surface, such that

Ωf =

{
x ∈ RN : x = s+ rn, s ∈ γ̂, |r| < d

2

}
,

where d is the thickness of Ωf and n is the con-
tinuous unit normal vector field on γ̂, pointing
outward from Ω1 toward Ω2. We assume that
the thickness d of Ωf is small compared to its
other dimensions.

Throughout the following, we indicate with
a subscript i, or j as appropriate, the restric-
tion of data and unknown functions (scalar or
vector) to the corresponding subdomain of Ω.

Our purpose is to compute the steady pres-
sure field p and the velocity field, or Darcy ve-
locity, u in the entire domain Ω. We suppose
that flow is governed by the law of mass con-
servation together with Darcy’s law, and for
simplicity we assume that the only boundary
condition on Γ is a homogeneous condition for
the pressure:

∇ · u = q
u+ Λ∇p = 0

in Ω

p = 0 on Γ.

(1)

Here Λ denotes the symmetric and positive def-
inite permeability tensor in Ω, and the scalar

source term q represents a possible volume
source or sink. We write problem (1) as an
equivalent transmission problem:

∇ · ui = qi
ui + Λi∇pi = 0

in Ωi

pi = 0 on Γi,

(2a)

coupled with interface conditions:

pj = pf

uj · nj = uf · nj
on γj . (2b)

We have supposed, following [32], that the per-
meability tensor in Ωf can be written as Λf =
λf,nN+λf,τT , where the projection matrixN
in the direction normal to γ̂ and the projection
matrix T in the direction tangential to γ̂ are
defined as follows:

N := n⊗ n and T := I −N .

The demonstration of the well posedness of
problem (1) in its mixed weak form can be
found in any number of texts; see [11, 36, 14,
38].

3 A double-layer reduced
model

We are interested in a reduced model in which
the fault Ωf is represented by an interface
which is identified with its central axis γ̂. How-
ever, since Ω1 can slip along the fault with re-
spect to Ω2, or vice versa, following [39], we
subdivide Ωf into two disjoint layers Ωfj , such

that Ωf = ∪jΩfj :

Ωfj =
{
x ∈ RN : x = s+ rn, s ∈ γ̂, r ∈ Tj

}
,

where T1 = (−d/2, 0) and T2 = (0, d/2) . Each
layer Ωfj , in turn has a central axis, a transla-
tion of γ̂, which we denote by γ̂j . For a double-
layer reduced model, a DLRM, each layer Ωfj
is approximated by its central axis γ̂j . We first
derive equations governing flow in γ̂j and an
equation coupling flow in γ̂j with flow in Ωj .
These equations are derived similarly to the
corresponding equations in the single-layer re-
duced model, the SLRM. Then to complete the
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Figure 2: Representation of each sub-domain.

model we derive an equation coupling flow in γ̂1

with flow in γ̂2, as in the final model γ̂, γ̂1 and
γ̂2 are all identified with each other. To obtain
the equations describing flow on γ̂j we integrate
the equations for flow in Ωf , (2a), across normal
cross sections of Ωfj . However, we first split
the vector terms into their normal and tangen-
tial parts. To do this we will make use of the
normal and tangential divergence and gradient
operators:

∇n· := N : ∇ and ∇τ · := T : ∇,
∇n := N∇ and ∇τ := T∇,

and we will write the Darcy velocity in Ωf as a
sum of its normal and tangential components:

uf = Nuf + Tuf = uf,n + uf,τ

with uf,n := Nuf and uf,τ := Tuf . We will
use the hat notation ·̂ to denote reduced func-
tions, i.e. functions defined on γ̂1 or γ̂2 in the
reduced model. The reduced source term on
γ̂j is defined to be q̂j :=

∫
Tj
qf , while the re-

duced (tangential) Darcy velocity along γ̂j is
ûj :=

∫
Tj
uf,τ . Then integrating the conser-

vation equation, the second equation of (2a),
across normal cross sections of Ωfj we obtain∫

Tj

∇ · uf = uf · n|γ̂ − uf · n|γj

+∇τ · ûj = q̂j

which we may now write as

∇τ · ûj = q̂j + Ju · nKγj in γ̂j , (3)

where we have introduced the flux jump
Ju · nKγj across γ̂j defined by

Ju · nKγj :=(−1)j(uf · n|γ̂ − uf · n|γj )

=(−1)j
(
ûn − uj · n|γj

)
.

For the second equality we have used the con-
tinuity of the flux at γj , the second equation of
(2b), and have introduced the notation ûn for
uf · n|γ̂ .

We consider now Darcy’s law in the fault Ωf
and split it into its normal and tangential com-
ponents:

uf,n = −λf,n∇npf
uf,τ = −λf,τ∇τpf .

To derive a reduced form of Darcy’s law on γ̂j
we will need the reduced pressure p̂j and the

reduced permeability λ̂ defined by

p̂j :=
2

d

∫
Tj

pf and λ̂ := d
λf,τ

2
.

Considering the tangential part of Darcy’s law
and integrating it across normal cross sections
of each layer of the fault we obtain

ûj = −λ̂∇τ p̂j , in γ̂j . (4)

The normal part of Darcy’s law can now be
used to derive a condition coupling flow in γ̂j
with flow in Ωj . We integrate over the normal
cross sections of the outer half of the layer Ωfj
and use the first equation of (2b), the continu-
ity condition for the pressure at the interface
γj , to obtain∫ b

a

uf,n · n = (−1)jλf,n (p̂j − pj) ,
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where a and b are respectively −d2 and −d4 if

j = 1 and d
4 and d

2 if j = 2. Approximating the
integral in the preceding equation as follows:∫ b

a

uf,n · n ≈
d

4
uf,n · n|γj ,

and using the continuity condition for the nor-
mal component of the velocity, the second equa-
tion of (2b), we obtain the coupling condition

uj · n = (−1)j2λ̂n (p̂j − pj) , on γ̂j , (5)

where λ̂n :=
2

d
λf,n.

Now even though γ̂j and γ̂ are, in the DLRM,
in fact the same interface, they are thought of
as being different sides of the interface, and two
distinct flows (Darcy velocities and pressures)
(ûj , p̂j) are calculated, so an additional equa-
tion is now needed to express the coupling be-
tween the two sides of the fault. To obtain this
we consider again the normal component of the
Darcy equation in Ωf and this time integrate
across the normal cross sections of the inner
halves of the two layers Ωf1 and Ωf2 :∫ d

4

− d4
uf,n · n = −λf,n (p̂2 − p̂1) .

Then using a mid-point rule to approximate the
integral of uf,n · n,∫ d

4

− d4
uf,n · n ≈

d

2
uf · n|γ̂ =

d

2
ûn,

we obtain the condition

ûn = λ̂n Jp̂Kγ̂ , (6)

where Jp̂Kγ̂ := p̂1 − p̂2.
Collecting the equations (2a) for flow in Ωj ,

(3) and (4) for flow in the reduced fault layers
γ̂j , and the coupling conditions (5) and (6) we
obtain the double-layer reduced model: for the
porous medium domains Ωj

∇ · uj = qj
uj = −Λj∇pj

in Ωj

pj = 0 on Γj

, (7a)

for the two reduced layers of the fault

∇τ · ûj = q̂j + Ju · nKγj
ûj = −λ̂∇τ p̂j

in γ̂j

p̂j = 0 on ∂γ̂j

, (7b)

with the coupling conditions

u1 · n = 2λ̂n (p1 − p̂1) on γ̂1

u2 · n = 2λ̂n (p̂2 − p2) on γ̂2

ûn = λ̂n Jp̂Kγ̂ on γ̂.

(7c)

As mentioned earlier, while constructing the
DLRM we have distinguished 3 different inter-
faces, γ̂1, γ̂, and γ̂2, which are all in fact in the
final model associated with the same interface-
domain. An alternative form of (7c) can thus
be obtained by considering the three equations
to be equations on the same interface γ̂ and
adding and subtracting the first two equations
to obtain an equivalent version of the coupling
conditions on γ̂:

{{u · n}}γ̂ = λ̂n

(
JpKγ̂ − Jp̂Kγ̂

)
Ju · nKγ̂ = 4λ̂n

(
{{p}}γ̂ − {{p̂}}γ̂

)
ûn = λ̂n Jp̂Kγ̂ .

(7c-bis)

Here the mean operators are defined by

{{u · n}}γ̂ :=
1

2
(u1 · n|γ̂ + u2 · n|γ̂)

{{p}}γ̂ :=
1

2
(p1|γ̂ + p2|γ̂)

and the jump operators by

Ju · nKγ̂ := u1 · n|γ̂ − u2 · n|γ̂
JpKγ̂ := p1|γ̂ − p2|γ̂ .

We remark that one can consider different
values of λ̂ and λ̂n for each layer but, for sim-
plicity of exposition, we have not done this here.
However, in Section 5.3 we give an example
with different values of λ̂ for each layer of the
fault.

The numerical discretization that we will use
for the approximation of (7) is based on a
weak formulation which we now define. Let
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V :=
∏2
j=1 Vj , where Vj := H1

Γ (Ωj) is the space

of those functions in H1 (Ωj) having a vanish-

ing trace on ∂Ωj ∩ Γ and V̂ :=
∏2
j=1 V̂j , where

V̂j = H1
Γ (γ̂) is the space of functions in H1 (γ̂)

having a vanishing trace on ∂γ̂ ∩ Γ. We then
define the bilinear forms aΩ and aγ̂ on V × V
and V̂ × V̂, respectively by

aΩ (p, v) :=
∑
j=1,2

(Λj∇pj ,∇vj)Ωj
, (8)

and

aγ̂ (p̂, v̂) :=
∑
j=1,2

(
λ̂∇τ p̂j ,∇τ v̂j

)
γ̂j
, (9)

and the global diffusion bilinear form a is de-
fined on (V × V̂)× (V × V̂) by

a
(
(p, p̂), (v, v̂)

)
:= aΩ (p, v) + aγ̂ (p̂, v̂) .

To enforce the coupling conditions (7c) in the
weak formulation we need another bilinear
form. Let cc denote the bilinear form defined
on (V × V̂)× (V × V̂) by

cc
(
(p, p̂), (v, v̂)

)
:=
(
λ̂n Jp̂Kγ̂ , Jv̂Kγ̂

)
γ̂

+
∑
j=1,2

2
(
λ̂npj − λ̂np̂j , vj − v̂j

)
γ̂j
, (10)

which using (7c-bis) may alternatively be writ-
ten as

cc
(
(p, p̂), (v, v̂)

)
:=
(
λ̂n Jp̂Kγ̂ , Jv̂Kγ̂

)
γ̂

+ 4
(
λ̂n {{p}}γ̂ − λ̂n {{p̂}}γ̂ , {{v}}γ̂ − {{v̂}}γ̂

)
γ̂

+
(
λ̂n JpKγ̂ − λ̂n Jp̂Kγ̂ , JvKγ̂ − Jv̂Kγ̂

)
γ̂
.

(10-bis)

The right-hand side functional F is defined on
V × V̂ by

F (v, v̂) :=
∑
j=1,2

(qj , vj)Ωj
+
∑
j=1,2

(q̂j , v̂j)γ̂j .

The weak formulation of (7) may be written as
follows:

find (p, p̂) ∈ V × V̂ such that

a
(
(p, p̂), (v, v̂)

)
+ cc

(
(p, p̂), (v, v̂)

)
= F (v, v̂) ,

for all (v, v̂) ∈ V × V̂. (11)

We point out that the SLRM in [32, 12], with
a suitable choice of the weighting parameter,
can be recovered by requiring that p̂1 = p̂2,
which implies that û1 = û2, and that ûn =
(u1 ·n+u2 ·n)/2 + (q̂1 − q̂2)/2. This however
is equivalent to collapsing the interior half of
the fault resulting in a fault of half the width.
Thus to maintain the full width of the fault
every occurrence of d should be replaced by 2d
or more to the point, every occurrence of λ̂ by
2λ̂ and every occurrence of λ̂n by λ̂n/2. Thus,
now writing p̂ for p̂j , û for û1 + û2 and q̂ for
q̂1 + q̂2, the SLRM can be written as follows:
for the porous medium domains Ωj

∇ · uj = qj
uj = −Λj∇pj

in Ωj

p = 0 on Γj

(12a)

for the the reduced fault γ̂

∇τ · û = q̂ + Ju · nKγ̂
û = −2λ̂∇τ p̂

in γ̂

p̂ = 0 on ∂γ̂

(12b)

with the coupling conditions

{{u · n}}γ̂ =
λ̂n
2

JpKγ̂

Ju · nKγ̂ = 2λ̂n

(
{{p}}γ̂ − p̂

) on γ̂. (12c)

Note that in the case of the SLRM the weak
formulation of (7) is modified as follows: the
space V is unchanged, the space V̂ is replaced
by a single copy (instead of two) of H1

Γ(γ̂), in
the two bilinear forms making up a((·, ·), (·, ·))
the bilinear form aΩ(·, ·) is unchanged, and the
bilinear form aγ̂(·, ·) is modified by removing
the sum over j and dropping the index j, and
multiplying by 2:

aγ̂ (p̂, v̂) := 2
(
λ̂∇τ p̂,∇τ v̂

)
γ̂
. (13)

For the SLRM the bilinear form for the cou-
pling simplifies to

cc
(
(p, p̂), (v, v̂)

)
:=

1

2

(
λ̂n JpKγ̂ , JvKγ̂

)
γ̂

+ 2
(
λ̂n({{p}}γ̂ − p̂), ({{v}}γ̂ − v̂)

)
γ̂
. (14)
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4 Numerical approximation

The numerical approximation of the proposed
models is the main part of this work. For
the derivation of the approximation, we will
consider only planar faults and faces although
some numerical results with non-planar faults
are shown in Section 5. In the first subsec-
tion we briefly recall the hybrid finite volume
(HFV) scheme which is the basis for the nu-
merical scheme we use, (a more thorough de-
scription is given in Appendix A.2) and show
how this scheme can be extended to approxi-
mate a reduced fault model. Then follows an
exposition of approximation using the virtual
fault cells approach. The final subsection is de-
voted to a comparison of the two discretization
techniques.

4.1 Discretization with the HFV
scheme

To solve numerically (7) and (12) we use the
hybrid finite volume (HFV) scheme, introduced
in [16, 13]. First we recall what is meant by a
HFV discretization of an open set O ⊂ RN for
N = 1, 2, 3.

Definition 1 (Discretization of O). For O an
open set in RN , a discretization of O, denoted
by D is defined to be a triple D := (M, E ,P)
where

1. M is a set of cells or control volumes; i.e. a
set of disjoint, non-empty, open, polyhedra
if N = 3, polygons if N = 2, or line seg-
ments if N = 1, lying in O such that

O =
⋃

K∈M
K. (15)

For K a cell, let |K| > 0 denote the mea-
sure of K.

2. E is the set of the (N − 1)-dimensional
faces of the cells in M. The set E is di-
vided into the set of external faces Eext =
{σ ∈ E : E ⊂ ∂O}, and the set of in-
ternal faces Eint = {σ ∈ E : E ⊂ O}.
We have E = Eint ∪ Eext. For σ ∈ E ,
|σ| > 0 will denote the measure of σ. We

assume |σ| = 1 if N = 1. For each
cell K ∈ M, we denote by EK ⊂ E the
set of all (N − 1)-dimensional faces of K
and for each face σ ∈ E we denote by
Mσ := {K ∈M : σ ∈ EK} the set of all
cells in M having σ as a face;

3. P is the set of points, defined by P :=
{xK : K ∈M} ∪ {xσ : σ ∈ E}, where xK
is the barycentre of the cell K ∈ M and
xσ is the barycentre of the face σ ∈ E;

4. for each cell K ∈ M and face σ ∈ EK , we
indicate by nK,σ the unit vector normal to
σ pointing outward from K;

5. for each cell K ∈ M and face σ ∈ EK we
denote by DK,σ ⊂ K the cone with ver-
tex xK and base σ and by dK,σ ∈ R+ the
orthogonal distance between xK and σ.

To obtain a HFV discretization of a domain
with a fault we extend this definition to the case
of an open set Ω ⊂ RN , for N = 2, 3, which is
divided into the subdomains Ω1 and Ω2 by an
interface (planar if N = 3, linear if N = 2) fault
γ̂.

Definition 2 (Discretization of (Ω, γ̂)). For a
domain Ω ⊂ RN divided into the subdomains
Ω1 and Ω2 by an interface fault γ̂, we con-
struct a discretization (D, D̂) from discretiza-
tions Dj = (Mj , Ej ,Pj) of Ωj and from, in

the case of the SLRM, a discretization D̂ =
(M̂, Ê , P̂) of γ̂ or in the case of the DLRM,
discretizations D̂j = (M̂j , Êj , P̂j) of γ̂j, where
γ̂j is the part of the boundary of Ωj lying on the
fault γ̂. Then D is defined to be

D = (M, E ,P) where

M =M1 ∪M2, E = E1 ∪ E2, P = P1 ∪ P2,

and D̂ is defined by

in the case of the SLRM

D̂ = (M̂, Ê , P̂) as given

or in the case of the DLRM

D̂ = (M̂, Ê , P̂) where

M̂ = M̂1 ∪ M̂2, Ê = Ê1 ∪ Ê2, P̂ = P̂1 ∪ P̂2,

7



Denote by Ej,int, the set of internal faces of Ej,
and divide the external faces of Ej into Ej,Γ, the
set of faces lying on the boundary Γ of Ω, and
Ej,γ̂ , the set of those lying on the fault γ̂.

For the SLRM, if K̂ ∈ M̂, a face in Ej,γ̂ co-

inciding with K̂ will be denoted σK̂,j while for

the DLRM if K̂j ∈ M̂j, a face in Ej,γ̂ coincid-

ing with K̂j will be denoted σK̂j .

For the SLRM we will say that the discretiza-
tion (D, D̂) is conforming if the set of control
volumes M̂ is identical to both the set of faces
E1,γ̂ and the set of faces E2,γ̂ ; i.e. the discretiza-
tions D1 and D2 match up along γ̂, and the dis-
cretization on γ̂ is inherited from each of the
discretizations D1 and D2. In the case of the
DLRM, the discretization (D, D̂) is said to be
conforming if the set of cells in M̂j is identical
with the set of faces Ej,γ̂ . However, the two dis-

cretizations D̂j (when viewed as discretizations
on γ̂j) are not required to be identical.

See Figure 3 for an example of meshes. For a
discretization (D, D̂), the pressure in the matrix
is approximated by a scalar value pK in each
cell K ∈ M and by a scalar value pσ for each
face σ ∈ E . Similarly, the pressure in the fault is
approximated by a scalar value p̂K̂ in each cell

K̂ ∈ M̂ and by a scalar value p̂σ̂ on each face
σ̂ ∈ Ê . So the discrete solution which we will
denote (p, p̂), with apologies for the abuse of
notation, associated with (D, D̂) is of the form

p = ((pK)K∈M, (pσ)σ∈E)

p̂ =
(
(p̂K̂)K̂∈M̂, (p̂σ̂)σ̂∈Ê

)
with pK , pσ, p̂K̂ , and p̂σ̂ representing an approx-

imation of the average value of p in K,σ, K̂ and
σ̂, respectively. Thus for the SLRM with a con-
forming discretization (D, D̂), a cell K̂ ∈ M̂ is
also both a face σ1 ∈ E1,γ̂ and a face σ2 ∈ E2,γ̂
and will thus be associated with three values
p̂K̂ , pσ1

and pσ2
. Similarly for the DLRM with

a conforming discretization (D, D̂), if a cell in
M̂1 is also a cell in M̂2 it will be associated
with four values; cf. Figure 4.

The discrete problem for the HFV scheme is
based on the variational form of the continu-
ous problem (11) and requires the definition of
a discrete gradient. Once the discrete gradient

p̂σ

pσ

pK

p̂K

γ̂

Figure 4: Example of a mesh for (Ω, γ̂) with a
representation of the d.o.f.’s. In the case of the
DLRM the d.o.f.’s in the fault are doubled.

∇D is defined the bilinear form (8) is approx-
imated by replacing the gradient with the dis-
crete gradient in its definition. To define the
discrete gradient operator we begin by defining
for each K ∈M a cell gradient:

∇K p :=
1

|K|
∑
σ∈EK

|σ| (pσ − pK)nK,σ

and for each face σ ∈ EK a stabilization term
for the cone DK,σ with vertex xK and base σ
(DK,σ ⊂ K):

RK,σp :=
β

dK,σ
[pσ − pK −∇K p · (xσ − xK)] ,

where β =
√
αN , and α ∈ R+ is a stabiliza-

tion parameter which can vary from cell to cell.
Then the discrete gradient for the matrix do-
main is defined by

∇D p|DK,σ := ∇K p+RK,σpnK,σ.

The discrete gradient ∇D p is thus piecewise
constant, constant on each cone DK,σ, K ∈
M, σ ∈ EK,σ. See Appendix A.2 for more de-
tails.

For implementation in the SLRM or DLRM
we also need a discrete (tangential) gradient in
the fault which is defined similarly. Once the
discrete tangential gradient ∇̂D is defined the
bilinear form (9) is approximated by replac-
ing the tangential gradient with the discrete
tangential gradient in its definition. For each
K̂ ∈ M̂, the (fault) cell gradient is defined by

∇̂K̂ p̂ :=
1

ˆ|K|

∑
σ̂∈EK̂

|σ̂|
(
p̂σ̂ − p̂K̂

)
n̂K̂,σ̂, (16)

8



γ̂

Ω1 Ω2

(a) SLRM

Ω1

γ̂1 γ̂2

Ω2

(b) DLRM

Figure 3: Example of cells adjacent to the fault for the SLRM and DLRM. These represent
conforming meshes in the sense that the fault mesh is inherited from the domain mesh.

and for each σ̂ ∈ ÊK̂ the stabilization term
RK̂,σ̂ is defined on the cone DK̂,σ̂ by

RK̂,σ̂p̂ :=
β̂

dK̂,σ̂

[
p̂σ̂ − p̂K̂ − ∇̂K̂ p̂ ·

(
xσ̂ − xK̂

)]
,

(17)

where β̂ =
√
α̂(N − 1) and α̂ ∈ R+ is a stabi-

lization parameter for the fault cell K̂. Then,
as in the matrix, the discrete (tangential) gra-
dient for the fault domain γ̂ is defined cone by
cone:

∇̂D p̂
∣∣∣
DK̂,σ̂

:= ∇̂K̂ p̂+RK̂,σ̂p̂ n̂K̂,σ̂. (18)

The HFV equations in the matrix domain
and those in the fault then must be coupled
through a discrete version of the coupling equa-
tions. For the SLRM with a conforming dis-
cretization (D, D̂) this approximation is quite
simple; the bilinear form cc((·, ·), (·, ·)) of (14)
is approximated as follows: for (p, p̂) and (v, v̂)
in V × V̂,

cc
(
(p, p̂), (v, v̂)

)
≈
∑
K̂∈M̂

λ̂n
2

∣∣K̂∣∣ JpKK̂ JvKK̂

+
∑
K̂∈M̂

2λ̂n
∣∣K̂∣∣ ({{p}}K̂ − p̂K̂) ({{v}}K̂ − v̂K̂) .

(19)

where the jump and the average term are given
by

JpKK̂ = pσK̂,1− pσK̂,2 , {{p}}K̂ =
pσK̂,1+ pσK̂,2

2
,

with σK̂,j the face in Ej,γ̂ coinciding with K̂.

For the DLRM, even with a conforming dis-
cretization, the fault cells in M̂1 do not match
up with those in M̂2 and this non matching
between the two layers must be taken into ac-
count. Here the expression for the bilinear form
cc((·, ·), (·, ·)) given in (10) is used. For the first
term of (10) we must consider a common re-

finement of the meshes M̂j . We let
ˆ̂M be the

smallest common refinement

ˆ̂M = { ˆ̂
K = K̂1 ∩ K̂2 6= ∅ : K̂j ∈ M̂j},

and the approximation is given by

∑
ˆ̂
K∈ ˆ̂M

λ̂n| ˆ̂K|(p̂K̂ ˆ̂
K,1

− p̂K̂ ˆ̂
K,2

)(v̂K̂ ˆ̂
K,1

− v̂K̂ ˆ̂
K,2

),

(20)

where K̂ ˆ̂
K,j
∈ M̂j is such that

ˆ̂
K = K̂ ˆ̂

K,1
∩

K̂ ˆ̂
K,2

. The second term of (10), which is not

affected by the fact that the discretizations of
the two layers of the fault may not coincide, is
approximated simply by

∑
j

∑
K̂j∈M̂j

2λ̂n|K̂j |(pσK̂j− p̂K̂j )(vσK̂j− v̂K̂j ),

(21)

where σK̂j is the face in Eγ̂,j coinciding with K̂j .

9



4.2 Discretization with virtual
fault cells

We consider another type of discretization
based on a different construction of the fault
mesh. This second approach avoids the ex-
plicit construction of the tangential operators
placing all of the complexity of the approxima-
tion on the construction of the fault mesh. We
start with a conforming discretization (D, D̂)
as described in the preceding subsection and
construct a new discretization (D, D̂) consist-
ing only of N -dimensional cells. This second
method of discretization in fact is made by giv-
ing width to the interface cells in the direction
normal to the interface and can be seen in some
loose sense as the inverse of the process used to
obtain the reduced model. We will use the wide
hat notation ·̂ to denote objects pertaining to
the virtual fault domain.

Definition 3 (Virtual fault cell - SLRM).
Given K̂ ∈ M̂ we construct an N -dimensional
cell K̂, called a virtual fault cell, by expanding
K̂ in both directions ±n, normal to the fault:

K̂ =

{
x = x̂+

ξd

2
n ∈ RN : x̂ ∈ K̂, |ξ| < 1

}
.

Definition 4 (Virtual fault cell - DLRM).
Given K̂ ∈ M̂j we construct the N -

dimensional cell K̂, called a virtual fault cell, by
expanding K̂ in the normal direction but only
on one side of the fault, the side toward Ωj,
i.e. in the direction (−1)jn:

K̂=

{
x= x̂+ (−1)j

ξd

2
n : x̂ ∈ K̂, 0 ≤ ξ < 1

}
.

In Figure 5 we show an example of the con-
struction of virtual cells for both the SLRM and
DLRM. We consider the mesh M̂ for the faults
defined to be the collection of all the virtual
cells. We will also need a set of faces Ê and a
set of points P̂.

Definition 5 (Discretization of γ̂ by virtual
cells - SLRM). Given a conforming discretiza-
tion (D, D̂) of (Ω, γ̂) as defined in Definition
2, the corresponding discretization of γ̂ by vir-
tual fault cells, is defined to be the triplet D̂ :=

(
M̂, Ê , P̂

)
, where M̂ is the set of virtual fault

cells obtained by expanding the cells of M̂, Ê is
the set of ((N − 1)-dimensional) faces of cells

in M̂, and P̂ is the set of points that are the
barycentres of elements of M̂ or of elements of
Ê.

Now we construct the setM′ =M∪M̂ but
in which we identify the faces in Ej,γ̂ with the

corresponding faces in Ê on the jth side of γ̂. In
this manner we obtain a set of cells M′ which
may be thought of as a mesh for the “virtual
domain” Ω̂ obtained from Ω by expanding the
“flat domain” γ̂ to obtain an N -dimensional
fault domain of width d. More precisely, since
we have assumed that the discretization (D, D̂)
is conforming, each face σj ∈ Ej,γ̂ coincides

with a cell K̂ ∈ M̂, that we may denote K̂σj .

Then the virtual cell K̂σj ∈ M̂ obtained by ex-

panding K̂σj has one face σK̂σj
parallel to K̂σj

and on the jth side of K̂σj , and we shall iden-
tify this face with σj . There will be only one
pressure unknown associated with each face σj ;
i.e. pσj = pσ

K̂σj

. Then with E ′ and P ′ defined

in the obvious manner, we may consider the dis-
cretization D′ = (M′, E ′,P ′) as a discretization
of the domain

Ω̂ := Ω1 ∪ Ω2 ∪ γ̂,

where γ̂ is the interior of the union of the clo-
sures of the virtual cells in M̂. Now we may
apply the standard HFV method to the dis-
cretization D′ of Ω̂.

We will show below that, under certain
hypotheses, this scheme is equivalent to the
scheme defined earlier.

Remark 1. In the general case where the fault
segments are not collinear it is still possible to
build up the virtual cells, however a more care-
ful description of the pairs of degrees of free-
dom should be considered. Moreover the virtual
cells may overlap each others. In Section 5 we
consider faults made of non collinear elements.
See Figure 6 for an example of virtual cells for
a general mesh.
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Ω2Ω1

d

γ̂

(a) SLRM

Ω2Ω1

γ̂1 γ̂2

d/2 d/2

(b) DLRM

Figure 5: Representation of virtual cells, in red, for a general configuration.

d

(a) SLRM

d/2

d/2

(b) DLRM

Figure 6: Example of construction of virtual cells, for both the SLRM and DLRM, for a general
configuration. The arrow in the figure are the outward normals for the tangential part of the
fault cells.
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4.3 Comparison of the two ap-
proaches

In this subsection we prove two results that can
be useful for the implementation of the pro-
posed method. In particular, we show that
for the SLRM, the implementation of the HFV
method for the reduced model by the method
with virtual cells as described in Subsection
4.2 is equivalent to the implementation with
the discretization described in Subsection 4.1
cf. also [32, section 5] where a similar result
for the SLRM discretized with a mixed method
was used to establish error estimates. For the
DLRM we show equivalence of modifications of
the two methods obtained by discretizing in the
fault with a 2 point flux scheme instead of the
HFV method while retaining the HFV method
for discretization in the matrix cells ofM1 and
M2 and retaining the discretization given for
the coupling conditions.

Theorem 1 (Discrete equivalence - SLRM).
For a domain Ω with an interface fault γ̂ mod-
eled with the SLRM and a conforming dis-
cretization (D, D̂), the numerical solution ob-
tained using the HFV method of Subsection 4.1
with stabilization parameters α and α̂ satisfying
αN = 2 and αN = 2α̂(N − 1) is equivalent to
that obtained using the HFV method with stabi-
lization parameter α for the associated virtual
fault discretization D′ = (D, D̂) of the virtual

domain Ω̂ described in Subsection 4.2.

Proof. For simplicity we give the proof only in
the case in which N = 2, the proof in the case
N = 3 being quite similar. Also for simplicity
we assume that Λf is constant. It is easy to
check that there is an obvious correspondence
between the unknown values

p = ((pK)K∈M, (pσ)σ∈E) and
p̂ =

(
(p̂K̂)K̂∈M̂, (p̂σ̂)σ̂∈Ê

)
for the standard HFV discretization for the re-
duced model and those for the discretization
with virtual fault cells

p′ = ((p′K)K∈M′ , (p′σ)σ∈E′) ;

see Figure 7. For the SLRM, the bilinear form

γ̂

p̂σ̂K̂,1

p̂σ̂K̂,2

∣ ∣ K̂∣ ∣

p̂K̂

p
σ
K̂
,1
,p
σ
K̂
,2 τ

n

(a) 1D

d/2d/2

γ̂

σ
K̂
,2

σ̂K̂,2
p
σ
K̂
,1 p

σ
K̂
,2

K̂

σ̂K̂,1

σ
K̂
,1 ∣ ∣ K̂∣ ∣

pσ̂
K̂,2

pσ̂
K̂,1

pK̂

τ

n

(b) 2D

Figure 7: Notations for a 1D-cell and a virtual
2D-cell. The names of the unknowns are chosen
along to easily compare the results.

a
(
(·, ·), (·, ·)

)
+cc

(
(·, ·), (·, ·)

)
of (11) is made up

of four parts: aΩ(·, ·), aγ̂(·, ·) and the two terms
of cc

(
(·, ·), (·, ·)

)
as given in (14). For the vir-

tual fault scheme the weak formulation takes
the form

find p ∈ VΩ̂ such that

aΩ̂(p, v) = F (v), (22)

for all v ∈ VΩ̂,

where VΩ̂ = H1
Γ(Ω̂) and where

aΩ̂(p, v) := (Λ∇p,∇v)Ω̂ .

To compare the two schemes we first observe
that for p and v in VΩ̂, we have

aΩ̂(p, v) = (Λ∇p,∇v)Ω1∪Ω2
+ (Λ∇p,∇v)γ̂ ,

(23)
where γ̂ is the interior of the union of the clo-
sures of the virtual cells. Then we compare
the approximations of these bilinear forms. As
the terms from the form aΩ(·, ·) are exactly
the same as those in the first term in the de-
composition of aΩ̂(·, ·) given in (23), and they
are approximated in precisely the same man-
ner, we are left to compare the approximation
of aγ̂(·, ·) + cc((·, ·), (·, ·)) with that of the sec-
ond term of the decomposition of aΩ̂(·, ·) given
in (23). From (19), we see that the bilinear
form cc

(
(·, ·), (·, ·)

)
of (14) is approximated as
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follows: for (p, p̂) and (v, v̂) in V × V̂,

cc
(
(p, p̂), (v, v̂)

)
≈
∑
K̂∈M̂

λ̂n
2

∣∣K̂∣∣ JpKK̂ JvKK̂

+
∑
K̂∈M̂

2λ̂n
∣∣K̂∣∣ ({{p}}K̂ − p̂K̂) ({{v}}K̂ − v̂K̂) .

(24)

From (16)-(18), we calculate that the bilin-
ear form aγ̂(·, ·) of (13), corresponding to the
tangential flow equation (12b), is approximated
as follows: for p̂ and v̂ in V̂,

aγ̂(p̂, v̂) =
∑
K̂∈M̂

∫
K̂

2λ̂∇τ p̂ · ∇τ v̂dx̂

≈
∑
K̂∈M̂

∫
K̂

2λ̂∇̂D p̂ · ∇̂D v̂dx̂

=
∑
K̂∈M̂

2λ̂
∣∣K̂∣∣∇̂K̂ p̂ · ∇̂K̂ v̂

+2
∑
K̂∈M̂

λ̂
∣∣K̂∣∣ 2∑

j=1

RK̂,σ̂K̂,j
p̂RK̂,σ̂K̂,j

v̂,

where σ̂K̂,1 and σ̂K̂,2 are the two faces (i.e. ver-

tices) of K̂, which we suppose are numbered
such that the vector pointing from σ̂K̂,2 toward
σ̂K̂,1 is oriented in the same direction as τ , so
that the second summation in the last term is
over the two cones (i.e. half segments) of K̂.
The cell gradient may be written

∇̂K̂ p̂ =
1∣∣K̂∣∣δK̂(p̂σ̂)τ ,

where we have written δK̂(p̂σ̂) for p̂σ̂K̂,1− p̂σ̂K̂,2 ,
while the stabilization term in the cone DK̂,σ̂K̂,j
is

RK̂,σ̂K̂,j
p̂ = (−1)j

β̂∣∣K̂∣∣/2 (µK̂(p̂σ̂)− p̂K̂
)
,

where we have denoted by µK̂(p̂σ̂) the average
value (p̂σ̂K̂,1 + p̂σ̂K̂,2)/2 . So we may now write

the approximation for the bilinear form aγ̂(·, ·),

as follows:

aγ̂(p̂, v̂) ≈
∑
K̂∈M̂

2λ̂∣∣K̂∣∣δK̂(p̂σ̂)δK̂(v̂σ̂)

+
∑
K̂∈M̂

8λ̂β̂2∣∣K̂∣∣ (µK̂(p̂σ̂)− p̂K̂
) (
µK̂(v̂σ̂)− v̂K̂

)
,

(25)

with β̂ =
√
α̂(N − 1).

We next need to make explicit the terms in
the approximation of the second term in the de-
composition given in (23) of aΩ̂(·, ·) which we
then split into tangential and normal compo-
nents: for p and v in VΩ̂,

(Λ∇p,∇v)γ̂ ≈
∑
K̂∈M̂

∫
K̂

∇D p · Λ∇D vdx

=
∑
K̂∈M̂

∫
K̂

N∇D p · ΛN∇D vdx

+
∑
K̂∈M̂

∫
K̂

T∇D p · ΛT∇D vdx.

For K̂ ∈ M̂ and σK̂,j the face of K̂ identified
with a face in Ej,γ̂ and σ̂K̂,1 and σ̂K̂,2 the re-

maining two faces of K̂ numbered such that τ
points from the midpoint of σ̂K̂,2 toward that

of σ̂K̂,1, (see Figure 7) the cell gradient maybe
written as follows:

∇K̂p = −1

d
(pσ

K̂,1
− pσ

K̂,2
)n

+
1∣∣K̂∣∣ (pσ̂K̂,1 − pσ̂K̂,2)τ ,

where we recall that K̂ is a rectangle with∣∣K̂∣∣ = d
∣∣K̂∣∣, while the four stabilization terms

are

RK̂,σ
K̂,j
pnK̂,σ

K̂,j
=(−1)j

2β

d

(
µK̂(pσ)−pK̂

)
n

RK̂,σ̂
K̂,j
pnK̂,σ̂

K̂,j
=(−1)j+1 2β∣∣K̂∣∣ (µK̂(pσ̂)−pK̂

)
τ,

with the average terms µK̂(pσ) = (pσ
K̂,1

+

pσ
K̂,2

)/2 and µK̂(pσ̂) = (pσ̂
K̂,1

+ pσ̂
K̂,2

)/2. The

13



contribution from the normal part of the dis-
crete term is thus∑

K̂∈M̂

∫
K̂

N∇D p · ΛN∇D vdx

=
∑
K̂∈M̂

λ̂n
2

∣∣K̂∣∣δK̂(pσ)δK̂(vσ)

+
∑
K̂∈M̂

λ̂n
∣∣K̂∣∣β2

(
µK̂(pσ)−pK̂

)(
µK̂(vσ)−vK̂

)
,

(26)

while that from the tangential part is∑
K̂∈M̂

∫
K̂

T∇D p · ΛT∇D vdx

=
∑
K̂∈M̂

2λ̂∣∣K̂∣∣δK̂(pσ̂)δK̂(vσ̂)

+
∑
K̂∈M̂

4λ̂β2∣∣K̂∣∣ (µK̂(pσ̂)−pK̂
)(
µK̂(vσ̂)−vK̂

)
,

(27)

with δK̂(pσ) = pσ
K̂,1
− pσ

K̂,2
and δK̂(pσ̂) =

pσ̂
K̂,1
− pσ̂

K̂,2
, and β =

√
αN . Now identify-

ing for each K̂ ∈ M̂, the unknowns p̂K̂ , p̂σ̂K̂,1 ,
p̂σ̂K̂,2 , pσK̂,1 and pσK̂,2 , respectively, of the HFV
discretization of the SLRM with the unknowns
pK̂ , pσ̂K̂,1 , pσ̂K̂,2 , pσK̂,1 and pσ

K̂,2
, respectively of

the HFV discretization of Ω̂ using virtual ele-
ments we have that equation (26) is equivalent
to (24) if β2 = 2, while equation (27) is equiv-

alent to (25) provided that 2β̂2 = β2.

We turn our attention now to a compari-
son of the the two discretization techniques for
the DLRM for a domain Ω with interface fault
γ̂ = γ̂1 = γ̂2. We suppose that we have a con-
forming discretization (D, D̂), and recall that
this does not imply that M̂1 coincides with
M̂2. We point out though that in the case that
M̂1 and M̂2 do coincide the demonstration of
Theorem 1 extends immediately to show that
the discretization with virtual (N -dimensional)
fault cells and that with interface ((N − 1)-
dimensional) cells for the fault are equivalent

with the appropriate conditions on β and β̂.

However in the general case (when the grids
M̂1 and M̂2 in the fault are non matching)
such an equivalence no longer holds as tangen-
tial terms of the discrete gradient are involved
in the approximation of the coupling condi-
tions. In the following theorem however we do
obtain an equivalence when the classical two-
point flux scheme is used for the problem inside
the fault (while retaining the HFV method in
the matrix domains).

Before stating the equivalence theorem for
the DLRM we give a more precise description
of the modification of each scheme that is used
in the theorem. For the discretization using
(N − 1)-dimensional cells in the fault the mod-
ifications are as follows:

• for the discretization of the bilinear form
aΩ(·, ·) there is no change as the HFV
method is still used.

• for the discretization of aγ̂(·, ·) the HFV
method is replaced by the two point flux
method: there are no pressure unknowns
on the faces σ̂K̂,j of the cells K̂ ∈ M̂.

• for the discretization of cc
(
(·, ·), (·, ·)

)
there

is no change.

For the discretization using virtual (N -
dimensional) cells in the fault we have

• for the discretization of the first term in
the decomposition (23) of aΩ̂(·, ·) there is
no change: the HFV method is used.

• for the discretization of the second term
in the decomposition (23) of aΩ̂(·, ·) the
two point flux method is used with a minor
modification:

– for the tangential component the
standard two-point flux method is
used. There are no pressure un-
knowns associated with the faces σ̂K̂,j
of K̂j ∈ M̂j that lie in the interior of
γ̂.

– for the normal component, for a cell
K̂j ∈ M̂j , as the HFV method has
been used in the neighboring cell
Kj ∈ Mj there is a pressure value
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available on the the face σK̂j common

to the virtual cell K̂j and to the cell
Kj . The value pσ

K̂j
together with the

value pK̂j is used to approximate the

normal component of the gradient of
p in K̂j (instead of the value pKj ).

The following result shows the equivalence
when a two-point flux scheme is considered to
approximate the tangential component of the
second term of (23), but would also be the case
if we were using the HFV method, provided or
course that 2β̂2 = β2. The proof is given in the
simple case of planar faults.

Theorem 2 (Two-points discrete equivalence
- DLRM). Suppose Ω is a domain with an in-
terface fault γ̂ modeled with the DLRM and
that (D, D̂) is a conforming discretization of
(Ω, γ̂). The numerical solution obtained us-
ing the HFV method of Subsection 4.1 but a
two-point scheme as described above for the
fault is equivalent to that obtained using the
HFV method for the associated virtual fault dis-
cretization D′ = (D, D̂) of the virtual domain

Ω̂ described in Subsection 4.2 with the modifi-
cation for the virtual cells described above.

Proof. Again for simplicity we assume N = 2
and that Λf is constant. As in the proof of
Theorem 1 it is sufficient to compare the terms
coming from the bilinear forms cc

(
(·, ·), (·, ·)

)
and aγ̂(·, ·), i.e. from the coupling terms and
those associated with flow in the fault, with the
terms associated with the second term in (23).
It is also clear that the terms in the discretiza-
tion of aγ̂(·, ·) correspond precisely to those in
the tangential component of the discretization
of the second term of (23).

So we have left to compare the terms asso-
ciated with the discretization of cc

(
(·, ·), (·, ·)

)
with those associated with the normal compo-
nent of the discretization of the second term of
(23). From (10) and the approximations given
in (20) and (21) we have the approximation of
cc
(
(p, p̂), (v, v̂)

)
is given as follows:∑

j

∑
K̂j∈M̂j

2λ̂n|K̂j |(pσK̂j− p̂K̂j )(vσK̂j− v̂K̂j ) (28)

+
∑
ˆ̂
K∈ ˆ̂M

λ̂n| ˆ̂K|(p̂K̂ ˆ̂
K,1

− p̂K̂ ˆ̂
K,2

)(v̂K̂ ˆ̂
K,1

− v̂K̂ ˆ̂
K,2

),

(29)

where as in (20),
ˆ̂M is the smallest com-

mon refinement of M̂1 and M̂2, and for
ˆ̂
K ∈

ˆ̂M, K̂ ˆ̂
K,j
∈ M̂j is such that K̂ ˆ̂

K,1
∩ K̂ ˆ̂

K,2
=

ˆ̂
K.

The normal component of the second term of

(23) is (λf,n
∂p

∂n
,
∂v

∂n
)γ̂ and is approximated by∑

j

∑
K̂j∈M̂j

2λ̂n|K̂j |(pσ̂
Kj
− pK̂j )(vσ̂Kj− vK̂j ) (30)

+
∑
̂̂
K∈̂̂M

λ̂n| ˆ̂K|(pK̂ ˆ̂
K,2

− pK̂ ˆ̂
K,1

)(vK̂ ˆ̂
K,2

− vK̂ ˆ̂
K,1

),

(31)

where we have used the fact that for K̂j ∈ M̂j ,

λf,n|K̂j | = λf,n
d|K̂j |

4
= 2λ̂n

(
d

4

)2

|K̂j |,

and similarly that if
̂̂
K ∈ ̂̂M, then

λf,n|
̂̂
K| = λf,n

d| ˆ̂K|
2

= λ̂n

(
d

2

)2

| ˆ̂K|.

Now identifying for each K̂j ∈ M̂j , the
unknowns p̂K̂j and pσK̂j

, respectively, of the

discretization of the DLRM using (N − 1)-
dimensional cells in the fault with the un-
knowns pK̂j and pσ̂

Kj
, respectively, of the dis-

cretization of the DLRM using virtual ele-
ments in the fault we have that expression (30)
is equivalent to (28) while expression (31) is
equivalent to (29).

Remark 2. Theorem 2 shows that the straight-
forward discretization of the DLRM is similar
to a two-point flux approximation of the normal
fluxes in the virtual fault cell approach. While
this is satisfactory for the fluxes between the
fault and its adjacent domain, it is not accurate
enough for the fluxes between the two sides of
the fault where the grids do not match. There-
fore, in the following, we shall only consider
the virtual cell approach for which an accurate
approximation of the non matching terms is ob-
tained with the HFV scheme.
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5 Numerical experiments

In the three following subsections we present
several numerical experiments to validate and
assess the proposed double-layer reduced model
discretized by the hybrid finite volume scheme.
The first subsection is devoted to academic
tests for an homogeneous porous medium di-
vided into two subdomains by a single fault
while the second section considers instead a lay-
ered heterogeneous medium outside the fault.
For these two academic tests we use a direct
method to solve the linear systems. The third
section present a realistic test. In all exper-
iments we consider a stabilization parameter
α = 1.

5.1 Model validity: homogeneous
case

We consider the domain Ω = (0, 100)2, with a
vertical fault of thickness d = 2 running along
the middle of Ω: γ̂ =

{
(x, y) ∈ R2 : x = 50

}
.

See Figure 8a. We assume Dirichlet boundary
conditions for

ΓD,1 =
{

(x, y) ∈ R2 : y = 100 and x < 20
}

ΓD,2 =
{

(x, y) ∈ R2 : y = 0 and x > 80
}

with data p = 1 and homogeneous Neumann
boundary conditions for the rest of the bound-
ary. For the fault we impose homogeneous Neu-
mann boundary conditions. We set a source
term in the regions

Ωq,1 = {(x, y) ∈ (0, 2)× (0, 4)}
Ωq,2 =

{
(x, y) ∈ (98, 100)2

}
equal to 10−2, for Ωq,1 and −10−2 for Ωq,2.

We consider a coarse mesh where the reduced
model is used and a fine mesh corresponding to
a fine 2-D discretization of a region including
the fault is used. In the latter method the fault
is discretized with six elements in the normal
direction to the fault. See Figures 8b, 8c. One
should note that for the reduced model the sub-
domain meshes do not match. We introduce
the relative error between the solution pcoarse

obtained with the reduced model and a coarse
grid and the full 2-D model solution pfine, that

obtained with a fine 2-D discretization of the
fault, as an indicator of the validity of the re-
duced model. For a given cell K ∈M we have

err(K) :=
‖Πpfine − pcoarse‖L2(K)

‖Πpfine‖L2(K)

, (32)

with M the coarse mesh and Πpfine the inter-
polation of pfine on the coarse meshM, setting
up the problem such that the pressure field is
not zero.

We consider three test cases corresponding to
different permeabilities in the fault while main-
taining the identity matrix for the permeability
tensor in Ω.

Barrier We choose as the permeability in the
fault Λf = diag

{
10−2, 1

}
. In Figure 9 we show

the solutions obtained with the reduced model,
Figure 9a, with the full 2-D model on a refined
mesh, Figure 9b, and the error between them
err(K) given by equation (32), Figure 9c. We
can observe that the largest part of the error is
concentrated close to the fault. This is reason-
able since the solution presents a steep gradient
of the pressure across the fault, as we can see
in Figures 9b and 9a. However a little far away
from the fault the error is much smaller. The
error in all the domain is of the order O

(
10−2

)
,

confirming a good approximation in this case.

Channel We chose as the permeability in the
fault Λf = diag

{
1, 102

}
. Figure 10 shows the

solutions obtained with the reduced model, Fig-
ure 10a, with the full 2-D model on a refined
mesh, Figure 10b, and the error between them,
Figure 10c. We observe that since the solution
is smoother the error is spread over the whole
domain and not only closed to the fault. For
this problem the error is half that of the pre-
vious case and is concentrated in the left part
of the domain, since there the source term is
larger. The solution is qualitatively the same.

Fully immersed We chose as the perme-
ability in the fault Λf = diag

{
10−2, 102

}
if

25 ≤ y ≤ 75 and Λf equal to the identity
matrix otherwise, like in the subdomains. Fig-
ure 11 shows the solutions obtained with the
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γ̂

(a) Computational domain. (b) Coarse mesh. (c) Fine mesh.

Figure 8: Homogeneous academic case: (a) computational domain with some of the data for the
problem and meshes. The coarse mesh (b) for the reduced model has 1275 hexahedra outside
the fault and 51 elements in the fault, while the fine mesh (c) corresponding to a fine 2-D
discretization of the fault has 34000 hexahedra.

(a) With the RM.
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(b) Without the RM. (c) Model error.
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Figure 9: Barrier case: Model error between the reduced model solution on the coarse mesh
(Figure 8b) and the full 2-D model solution on the fine mesh (Figure 8c).
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Figure 10: Channel case: Model error between the reduced model solution on the coarse mesh
(Figure 8b) and the full 2-D model solution on the fine mesh (Figure 8c).
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reduced model, Figure 11a, with the full 2-D
model on a refined mesh, Figure 11b. The be-
haviour of the error is a combination of the two
previous cases. In fact the larger error is con-
centrated close to the fault and decays away
from it. Around the two extremities the error
behaves like in the last test case. The error is
however of the same magnitude as for the first
test case.

5.2 Model validity: heteroge-
neous problem

The following test case is inspired by the last
example in [18]. We consider a problem with
an heterogeneous porous medium composed by
several layers and a fault in its middle. The
domain and fault are

Ω = (0, 100)2 and γ̂ =
{

(x, y) ∈ R2 : x = 50
}

with fault thickness d = 2.5. We impose a zero
source term and for pressure boundary condi-
tions p = 1.5 on the top, and p = 1 on the
bottom. Moreover on the left and on the right
we impose a no flow boundary condition. The
layers of the porous medium are defined as

Ωl =
{

(x, y) ∈ R2 : y ∈ Il and x < 50
}

Ωr =
{

(x, y) ∈ R2 : y ∈ Ir and x > 50
}
,

where the intervals are defined as

Il = [25, 50] ∪ [75, 100] and

Ir = [12.5, 37.5] ∪ [62.5, 87.5].

A sketch of the computational domain is given
in Figure 12a. The permeability for the two
layers are

Λl = diag
{

10−3, 10−3
}

in Ωl,

Λr = diag
{

10−2, 10−2
}

in Ωr

and Λ = I in Ω \ (Ωl ∪ Ωr). Also Figure 12a
shows two meshes, a non conforming coarse
mesh which is used with the reduced model
and a fine mesh corresponding to a fine 2-D
discretization of the fault which is used for the
full 2-D model.

For the permeability in the fault we introduce
the parameter ζ ∈ R+ which is the ratio of

the permeability in each layer of the fault to
the permeability of the closer cell in the porous
medium.

In Figure 13 we present the solutions for the
reduced model with the coarse mesh shown in
Figure 12b and for the full 2-D model with the
fine mesh shown in Figure 12c, for ζ = 10−2

and ζ = 104. For the case of a small value of ζ,
i.e. the fault behaves as a barrier, we can see
that the two solutions are similar qualitatively.
When the fault behaves like a channel, i.e. ζ =
104, we observe that all the small scales are lost
near the fault and they are “homogenized” in
a bigger cell. Anyway the model error is still
small in this case.

We performed some experiments varying ζ
from 10−6 up to 1010. We computed the er-
ror (32) for each value of ζ and we plotted
the results in Figure 14. We can see that the
maximum of the error is very small for each
value of ζ, even if we have an oscillation close
to ζ = 10−1. Moreover we notice two differ-

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

1e-06 0.0001 0.01 1 100 10000 1e+06 1e+08 1e+10

m
ax

K
∈
M
|e
rr

(K
)|
·1

0
3

ζ

Figure 14: Maximum of model error as a func-
tion of ζ.

ent plateaus for ζ smaller than 10−5 and bigger
than 105. We notice also that we commit at
most an error lower than the 7h, conforming
that the method is quite robust despite the fact
that the mesh in this test is really coarse.

5.3 Realistic experiment

We finally consider a problem in a realistic set-
ting. We consider the porous medium depicted
in Figure 15a with a T-shape fault presented
in Figure 15b and 15c. From these figures we

18



(a) With the RM.

1

1.2

p

0.91

1.1
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Figure 11: Fully immersed case: Model error between the reduced model solution on the coarse
mesh (Figure 8b) and the full 2-D model solution on the fine mesh (Figure 8c).
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Figure 12: Heterogeneous academic case: (a) computational domain with some of the data and
meshes. The coarse mesh (b) for the reduced model has 45 hexahedra outside the fault and 9
elements in the fault, while the fine mesh (c) corresponding to a fine 2-D discretization of the
fault has 6400 hexahedra. In blue is depicted Ωl and in red is depicted Ωr.
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Figure 13: Heterogeneous academic case: reduced model solutions on the coarse mesh (Figure
12b) and the full 2-D model solutions on the fine mesh (Figure 12c) for two values of ζ.
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(a) Different views of the computational domain.
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(b) Discretization of the first layer of the faults.
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(c) Discretization of the second layer of the faults.

Figure 15: Representation of the domain and the fault grid for both layers. We can notice
that the discretization is non-matching and we have a geometrical non-conformity. The colour
represents the different homogeneous strata.
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can see that the problem exhibits a geometri-
cal non-conformity close to the fault. Unlike
in the previous experiments, the faults here are
not planar surfaces. This situation produces
additional difficulties. Indeed, the two sides of
a fault are non-matching, i.e. their topologi-
cal structure differs, but also their geometric
realization differ as they can have gaps in be-
tween each other due to the discretization. In
particular, due to a precedent deposition and
movement of the sedimentary layers, because of
the fault, we have a different data distribution
on the two sides of the fault. We can however
use the DLRM using appropriate projections to
write the coupling conditions between the two
sides of the fault. Moreover, some faces of the
fault have only partial contact or even no con-
tact with the other side of the fault. These
faces or parts of faces are considered as bound-
ary faces.

We have the following bounds for the com-
putational domain Ω ⊂ (−1.37, 1.34) · 104m ×
(−25.6, 1.73) ·103m×(−4.11 ·103,−75.2)m and
a fault of thickness d = 50m. We denote by
∂Ωtop the top part of the boundary, by ∂Ωbott

the bottom part of the boundary and by

∂Ωrem = ∂Ω \ (∂Ωtop ∪ ∂Ωbott)

the rest of the boundary. Given t∗ and T the
initial and final times, we calculate p such that

cΦ
∂p

∂t
= ∇ · Λ

µ
∇p in Ω× (t∗, T ),

Λ∇p · n = 0 on ∂Ωrem × (t∗, T ),

p = 0 on ∂Ωtop × (t∗, T ),

p = p0 in Ω× {t∗} ,

where µ = 3.1 · 104Pa · s is the dynamic vis-
cosity, c is the compressibility and Φ the poros-
ity. Considering Figure 15a, we impose cΦ =
0.2 · 10−4Pa−1 in each of the black layer while
cΦ = 10−4Pa−1 in each of the white layer. The
initial and final times are t∗ = 0y and T = 2My
respectively. The initial solution p0 is the sta-
tionary solution of

−∇ · Λ

µ
∇p0 = 0 in Ω,

Λ∇p0 · n = 0 on ∂Ωrem,

Λ∇p0 · n = 0 on ∂Ωbott,

p0 = 0 on ∂Ωtop,

p0 = 20 on ∂Ωbott.

For the computation of p0 we consider the per-
meability in the fault cells equal to that of the
surrounding domain cell, while for the bottom
boundary condition of the fault we impose a
zero flow condition. We use an implicit Euler
scheme for the time discretization. The num-
ber of domain cells is 19152, while the fault is
discretized using 798 elements for each layer.

We consider different configurations of the
problem corresponding to different values of the
permeabilities of the porous medium and the
fault. In the first case we consider an homoge-
neous porous media with a permeability equal
to Λ = 10−17Im2. In this case we focus our
attention on how the fault modifies the solu-
tion globally when we consider different values
of its permeability. Figure 16 shows the initial

z
x

y

Figure 16: Initial solution for the homogeneous
case.

solution. As in the two following figures we rep-
resent the Darcy solution with grey arrows in
some of the cells close to the faults and with
green arrows elsewhere. Since the permeability
is constant we expect an almost linear solution
for the pressure and a constant velocity. The
solution respects the prevision.

We change now the permeability inside the
fault considering two different scenarios, the
fault is a barrier or the fault is a channel.
In the first case we impose a fault permeabil-
ity Λf = 10−19Im2 while in the second case
Λf = 10−15Im2. In Figure 17 we present the
solution for both cases. In Figure 17a the fault
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(a) The fault behaves like a barrier.
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y

(b) The fault behaves like a channel.
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Figure 17: Solution for t = 0.7My when the fault is a barrier or a channel for the flow.
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clearly behaves like a barrier. Indeed we do not
see any arrow that cross the fault and the Darcy
velocity tends to follow the fault geometry. Not
very far from the fault the flow is still vertical.
The pressure has an almost linear shape from
the bottom to the top of the domain. In the
second case, reported in Figure 17b, the fault
behaves like a conductive channel for the flow
of the surrounding domain. We clearly see that
the flow of the closer cells, represented by the
grey arrows, are directed to the fault since it
is easier for the flow to move inside the fault
than to stay outside. Some of the green arrows
close to the fault are pointing to the fault since
the influence of the fault is stronger than in the
previous case. The pressure is smaller for the
cells close to the fault than in the previous case.

We change now the permeability of the
porous medium to analyse the interaction be-
tween the heterogeneities and the fault. Con-
sidering Figure 15a, we impose as permeabil-
ity in each of the black layer Λ = 10−17Im2

while in each of the white layer Λ = 10−15Im2.
The black layers act as barriers while the lat-
ter are channels. The initial solution is repre-
sented in Figure 18. We can notice that far

z
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y

Figure 18: Initial solution for the heterogeneous
case.

from the fault the flow is almost upward, while
close to the fault and thanks to the non uni-
form strata deposition the solution is compli-
cated and not easily predictable. Since the so-
lution is much more complex than in the previ-
ous cases, as shown in Figure 18, we focus our
attention only on the red cells represented in
Figure 19. Thanks to the different layers the
flow can pass from one permeable layer to the
other following the fault or the less permeable

y

z

x

Figure 19: Set of cells where we focus our at-
tention.

layers. We consider three different test cases
changing the permeability in the fault. First of
all we impose the permeability in the fault cells
equal to that the neighbouring domain cell. In
this case the fault behaves like the surrounding
part of the domain. Figure 20a represents the
Darcy velocity only in the selected cells. In the
bottom part of the domain, thanks to the fault,
the flow can pass through the latter and starts
to move upward in the more permeable strata.
In the middle of the domain, since the barrier in
the left part of the domain is thinner than in the
right part the flow is concentrated there. In the
upper part of the domain the fluid moves from
the left part to the right part and vice versa.
In the second test case, represented in Figure
20b, we consider the fault as a barrier imposing
a small permeability Λf = 10−19Im2. We see
that the arrows never cross the fault and the
fluid moves only upward. Even considering the
big black strata the flow avoids to pass through
the fault. The Darcy velocity of the cells close
to the fault is parallel to the fault surface. The
last test considers a fault that behaves like a
channel. In fact we impose Λf = 10−13Im2 as
the permeability in the fault. Figure 20c shows
the Darcy velocity for t = 0.7My. The flow
goes directly into the fault since the arrows are
almost parallel to the layers and direct inward
to the fault. Finally the Darcy flow is stronger
close the fault and larger at the bottom of the
domain then at the top. To conclude, in Figure
21 we present the global solution, Darcy veloc-
ity and pressure, for the neutral, barrier and
for the channel. In these cases the solution is
much more involved and difficult to analyse in
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(a) The fault behaves like the surrounding medium.

z

yx

(b) The fault behaves like a barrier.
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(c) The fault behaves like a channel.

z

yx

Figure 20: Solution for t = 0.7My for different configurations of the fault. We use the same
colour for cells and arrows according to the cell permeability where the arrow origin is located,
like in Figure 15a. The scaling of the arrows in the three figures is different.
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(a) The fault behaves like the surrounding medium.
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(b) The fault behaves like a barrier.
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(c) The fault behaves like a channel.

Figure 21: Solution for t = 0.7My for different configurations of the fault.

Ω γ̂ ILU0

homo. barrier 1
homo. channel 3

hete. neutral 3
hete. barrier 2
hete. channel 5

Table 1: Average of the number of iterations
for different configurations.

detail. Anyway, especially for the barrier and
the channel, the behaviour of the fault seams
correct.

We have used an iterative scheme to solve
the linear system. The algorithm chosen is the
GMRES with tolerance on the stop criteria of
10−8 with ILU0 as preconditioner from PETSc
library [6]. In Table 1 are reported the num-
ber of iterations for different configuration of
the problem. We note that in all the case the
preconditioner performs well.

6 Conclusion

In this paper we have presented a novel approx-
imation of the double-layer reduced model to
describe the fault flows in a complex porous
medium. The reduced model is a reasonable
approximation when the thickness of a fault is
some order of magnitude smaller then its other
sizes. Moreover the choice of the hybrid fi-
nite volume method allows us to handle, in a
much robust and accurate way, different prob-
lem configurations. Particular attention is de-
voted to the analyses of the discrete equivalence
that ease the implementation of the reduced
model, for both the single-layer and double-
layer model, avoiding to introduce the tangen-
tial operators and to approximate the coupling
conditions. In the examples we have seen the
correctness of the reduced model compared to a
reference solution in several situations. Finally
a real geometry with realistic data is presented
to show the applicability to real problem. The
solution behaves as expected and no evidence
of serious problems is highlighted.
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A Appendix

A.1 Nomenclature

We present the main nomenclature of this work.
Some of the symbols are used only in one part
of the domain, we use a subscript to indicate
them. Some symbols for the numerical approx-
imation can be found in Definition 1.

N Dimension of the domain
i Index s.t. i ∈ {1, 2, f}
j Index s.t. j ∈ {1, 2}
Ω Computational domain
Ωf Fault domain
Ωfj Layer j of Ωf
γ̂ Fault centre
d Fault thickness
n Normal to γ̂
Tj Normal thickness of Ωfj
p Pressure field
u Darcy velocity
Λ Permeability matrix
λf,n Normal fault permeability
λf,τ Tangential fault permeability
q Source term
N Normal projection matrix
T Tangential projection matrix
p̂ Reduced pressure
û Reduced Darcy velocity

λ̂ Reduced tangential permeability
λγ̂ Reduced normal permeability
q̂ Reduced source term
ûn Interface Darcy velocity normal to γ̂
∇τ Tangential gradient to γ̂
∇τ · Tangential divergence to γ̂
∇D Discrete gradient
∇K Discrete cell gradient
RK,σ Stabilization term for ∇D

α Stabilization parameter
α̂ Reduced stabilization parameter
J·Kγ Jump operator across γ

{{·}}γ Mean operator across γ

A.2 The hybrid finite volume
scheme

The HFV scheme is a cell-centred finite volume
scheme, with unknowns on each edge and on
each cell of the computational grid, that gives
an approximation of conductive fluxes on non-
conforming grids. Its principle, using a finite
volume philosophy, is briefly recalled in this
section. A more detailed presentation can be
found in [16, 15]. The model problem is: find
the unknown p such that

−∇ · Λ∇p = q in Ω

p = 0 on ∂Ω
(33)

We consider the computational grid, approxi-
mation of Ω, defined as in Definition 1. Inte-
grating (33) over each control volume K ∈ M,
gives the following∑
σ∈EK

∫
σ

Λ∇p · nK,σdσ =

∫
K

qdx ∀K ∈M.

The flux
∫
σ

Λ∇p · nK,σdσ on each mesh edge
σ ∈ EK is approximated through a numerical
flux function FK,σ(p) which depends only on
the local unknowns related to K and EK . The
discrete approximation of (33) is given by∑

σ∈EK

FK,σ(p) =

∫
K

qdx ∀K ∈M. (34)

Since the previous system is defined cell-wise,
we require the continuity of the flux on all the
interior edges, imposing

FK,σ(p) + FL,σ(p) = 0 ∀σ ∈ Eint (35)

with Mσ = {K,L}. We express now the equa-
tions (34) and (35), introducing the test func-
tions v constant for each cell K ∈M as

〈p, v〉F =
∑
K∈M

vK

∫
K

qvKdx,
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Figure 22: Representation of the subdivision in cones for a matching pair of cells and for non-
matching cells.

where the bilinear form is defined as

〈p, v〉F :=
∑
K∈M

∑
σ∈EK

FK,σ(p) (vK − vσ) .

The HFV scheme is based on a suitable choice
of the discrete gradient ∇D p, approximation of
∇p, such that the following relation holds true

〈p, v〉F =
∑
K∈M

(Λ∇D p,∇D v)K .

The discrete gradient is chosen such that the
bilinear form is coercive, the matrix of the asso-
ciated linear system is symmetric definite pos-
itive and fulfil a suitable convergence property.
Following [16, 15] we introduce the cell gradient

∇Kp :=
1

|K|
∑
σ∈EK

|σ| (pσ − pK)nK,σ

and a cone stabilization term, zero for linear
solutions, which gives the definiteness property
for the discrete bilinear form:

RK,σp :=
β

dK,σ
[pσ − pK −∇Kp · (xσ − xK)] ,

with β = α
√
N and α a stabilization parameter

which can vary between each cell. If RK,σ is not
considered, the cell unknowns are not uniquely
defined and the corresponding linear system is
singular. Finally the discrete gradient ∇D p is
defined for each cone DK,σ ⊂ K as

∇D p|DK,σ := ∇Kp+RK,σpnK,σ.

It is shown that then, the bilinear form writes

〈p, v〉F =
∑
K∈M

|K|ΛK∇Kp · ∇Kv+ (36)

+
∑
σ∈EK

α2 |σ| dK,σ
d

RK,σpRK,σvnK,σ · ΛKnK,σ

It can be derived also a closed form for the dis-
crete flux FK,σ, which can be expressed as

FK,σ(p) =
∑
σ′∈EK

Aσσ
′

K (pK − pσ′) ,

with (Aσσ
′

K )σσ′∈EK a local symmetric and posi-
tive matrix. Its expression can be found in [16].

Remark 3. The extension of the HFV scheme
to a non-conforming grid is natural. Instead
of considering edges of the mesh, we consider
sub-edges, i.e. computed intersecting edges of
different cells, and then for the construction of
the discrete gradient the cones are built based
on the sub-edges. An example is reported in
Figure 22.

Finally the following lemma presents the
equivalence between the HFV scheme and the
classical TPFA scheme.

Lemma 1 (Lemma 2.1 [16]). If the discretiza-
tion of Ω satisfy the superadmissible condition

nK,σ = (xσ − xK) /dK,σ ∀K ∈M,∀σ ∈ EK

and Λ(x) = λ(x)I, with λ piece-wise constant
on M and choosing for each edge σ ∈ Eint

xσ =
dK,σxL + dL,σxK

dK,σ + dL,σ
with Mσ = {K,L}
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then the HFV scheme is equivalent to a two-
point scheme. The scheme is defined as follow∑

σ∈EK

FK,σ(p) =

∫
K

qdx

FK,σ =


λα |σ|

dK,σ + dL,σ
(pK − pL) if σ ∈ Eint

λK |σ|
dK,σ

pK if σ ∈ Eext

with Mσ = {K,L} and

λα =
λKλL(dK,σ + dL,σ)

λKdL,σ + λLdK,σ
.

Remark 4. An extension, presented in [13], of
the HFV scheme considers a stabilization pa-
rameter that is no more a scalar but a matrix.
The stabilization term in (36) becomes∑

K∈M

∑
σ,σ′∈EK

BK,σ,σ′SK,σpSK,σ′v,

with (BK,σ,σ′)σ,σ′∈EK a symmetric and positive
matrix for the cell K ∈M and

SK,σp := pσ − pK −∇Kp · (xσ − xK) .
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