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Optimal Eco-Driving Control
Energy-Efficient Driving of Road Vehicles as an Optimal Control

Problem

A. Sciarretta, G. De Nunzio, and L. Leon Ojeda

June 10, 2015

Transportation is responsible for a substantial fraction of worldwide en-
ergy consumption and greenhouse gas emissions. It is the largest sector
after energy production. However, while emissions from other sectors are
generally decreasing, those from transportation have increased since 1990.
Reducing the impact of transportation is a task that is inherently associ-
ated with the improvement of energy efficiency, particularly for passenger
cars that contribute to almost half of the whole sector.

At least three energy conversion steps are relevant for a comprehensive
analysis of energy efficiency of passenger cars. As illustrated in Figure 1, in
a first step (“grid-to-tank”), energy carriers that are available at stationary
distribution nodes are converted to an energy carrier that is suitable for
onboard storage, such as gasoline or electricity. This energy is then con-
verted by the propulsion system to mechanical energy aimed at propelling
the vehicle (“tank-to-wheels”). In the third energy conversion step (“wheel-
to-meters”), this mechanical energy is ultimately converted into the kinetic
and potential energy required by the displacement. Unfortunately, all of
these conversion processes cause substantial energy losses.

Tank-to-wheels efficiency may be improved by several approaches, both
at the component level and at the system control level [1]. Methods to
improve grid-to-tank efficiency by choosing the appropriate charging slots
and profiles are currently being studied for electric vehicles [2]. This arti-
cle focuses only on wheel-to-meters efficiency, which is influenced by vehicle
parameters (such as weight, aerodynamic drag, rolling friction) and the driv-
ing profiles followed by the vehicle. As Table 1 shows, the latter play an
important role in determining energy losses. The approach of improving
wheel-to-meters efficiency by “controlling” the driving profile reveals its po-
tential when considering that it does not require structural changes to the
system.
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The adoption of an energy-aware driving style is the goal of “eco-driving”
training courses. These courses are typically based on a few heuristic guide-
lines, for instance, anticipate traffic flow, avoid braking, shift up early, switch
off the engine at short stops [3]. In addition, software tools and systems that
help the driver (or replace the driver) in performing eco-driving have also
emerged. A possible classification of existing eco-driving systems is [4]:

1. Pre-trip systems, besides giving generic advice on eco-driving, are in-
tegrated within navigation systems guiding the driver on the most
energy-efficient route.

2. In-trip systems are part of the broader category of advanced driver-
assistance systems (ADAS) and are further classified as (2.a) online
assessment systems, which provide feedback advice based on current
performance, (2.b) online advice systems, which give a predictive, feed-
forward advice, based on upcoming events, and (2.c) predictive cruise
controllers, where automatic driving is performed. As a main inter-
face, the majority of systems (2.a) and (2.b) use visual displays while
audible and haptic gas pedal are applied in only a few solutions.

3. After the trip, post-trip systems attempt to increase the driver’s moti-
vation for eco-driving by displaying encouraging results and generating
summaries and statistics that can be compared to other drivers.

Most current approaches are based on heuristic rules of thumb or good
practices that are associated with an energy-efficient drive [5]. Moreover,
only a few are predictive, that is, based on estimations of future external
conditions, while the rest are solely based on current driving information,
typically extracted from vehicle’s network data. Even more rudimentary
concepts, essentially consisting of alerts based on the acceleration sensor of
smartphones, are typically found among mobile application software labelled
“eco-drive.”

However, several concepts are emerging that attempt at implementing
eco-driving in a more rigorous framework, and are the subject of this article.
In these concepts, eco-driving is regarded as an optimal control problem
where the drive commands minimize the energy consumption for a given
trip.

In this article, a general formulation of an optimal control problem is
presented that covers, with little or no adjustements, several distinct sce-
narios. To start with, powertrain modeling is reviewed, then the optimal
control problem formulation is presented. Some solution techniques are de-
scribed and typical optimization results are presented. The article finally
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discusses some experimental implementations of the ideas presented. While
the article is generally aimed at reviewing and reorganizing published mate-
rial, some original contributions are indeed presented, namely, an analytical
solution of the optimal eco-driving problem for hybrid-electric vehicles and
a parametric optimization method for conventional vehicles.

Context and Scenarios

Although the practical application of optimal control theory to the driv-
ing profiles of passenger cars is quite recent, it is interesting that in many
respects this problem is similar to the century-old Goddard problem of min-
imizing the fuel consumption of a rocket in vertical flight for a given summit
altitude [6]. This problem and its numerous variants have been long stud-
ied [7–9] and still are, since they have become a classical benchmark example
in optimal control due to the characteristic control behavior in connection
with a relatively simple model structure [10]. In fact, early works already
had shown that the optimal flight profiles consist of three thrust regimes.
Singular regimes, for which the thrust is neither zero nor equal to its maxi-
mum value, were found.

In addition, optimal running profiles for off-road vehicles [11] or road
vehicles running on prescribed routes, such as trains [12], busses [13] or race
cars [14, 15] have been extensively studied as well. In such scenarios, the
driving conditions are reasonably well known in advance, and optimal speed
profiles can be calculated offline with an acceptable confidence and possi-
bly implemented in an open-loop or state-feedback controller. In contrast,
passenger cars and other vehicles on open roads experience a wide range of
driving conditions, most of which are unknown in advance. Likely for such
reasons, the application of energy-optimal drive control to such scenarios
has been thoroughly investigated only in the last two decades [16].

Several studies [17–22] focus on applications on highways, with high
average speeds and varying road slopes. The trip destination is known from
a navigation system, together with route information including altitude and
vehicle positioning. The speed profile is regulated to anticipate altitude
variations, however traffic and vehicle stop or starts only play a small role
in this approach.

An emerging litterature [3,23–28] treats urban driving, where the vehicle
trajectory is constrained by the infrastructure (road signs and signals) and
other vehicles (traffic). These constraints are predictable to some extent
through the use of appropriate sensors, and have a major impact on the
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calculation of the optimal vehicle trajectories.
Urban conditions are also characterized by infrastructure constraints

that are variable with time, as it is the case of traffic lights. Such cir-
cumstance has inspired works aiming at optimizing the approach to a traffic
light that transmits information on its status [29], or the “green-waving”
between sequences of communicating traffic lights [30–35]. Besides energy
economy of each single vehicle, fluidification of traffic can be regarded as an
indirect optimization objective in such scenario.

Yet a different scenario is the energy-efficient cruise control, where the
vehicle has to be driven in the most efficient way while keeping its speed
within a certain band that is variable according to the leading vehicle’s
behavior [36–38]. Additionally, safety concerns impose inter-vehicle distance
constraints.

Powertrains and Their Modeling

The concept of drive control applies to internal-combustion-engine-powered
vehicles (ICEV) and particularly to ICE-powered trucks, electric vehicles
(EV), and hybrid-electric vehicles (HEV). Other types of vehicles, such as
hydraulic-hybrid vehicles, are promising for energy-optimal drive control due
to their typical application fields (for instance, delivery vehicles) [39].

For all types of powertrain, the energy demand at the wheels is

Edem =

∫ t

0
v(t)Fw(t)dt, (1)

where v is the vehicle’s speed and Fw is the traction force transmitted by
the powertrain to the wheels. The vehicle’s longitudinal dynamics are

m
dv(t)

dt
= Fw(t)− Fres(t)− Fb(t), (2)

where m includes the effect of the inertia of the rotating parts (wheels,
engine, motor), which is possibly varying with time, and Fb is the mechanical
brake force. The resistance force is calculated as

Fres(t) =
1

2
ρacdAfv(t)

2 + crmg +mg sin(α(s(t))), (3)

where ρa is the air density, cd is the aerodynamic drag coefficient, Af is the
vehicle’s frontal area, cr is the rolling resistance coefficient, g is the gravity
acceleration, α is the road slope angle, and s is the vehicle’s position along
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the route. Alternatively, Fres can be represented as a polynomial function
of v(t).

In a model covering at least ICEVs, EVs, and parallel HEVs (see “Vehicle
Powertrain Architectures” for a classification of HEV configurations), the
powertrain force results from the combination of the engine torque and the
motor torque,

Fw(t) =
Tnη

sign (Tn(t))
t

rw
, Tn := (Tm(t)γm + Te(t)γe(t)) , (4)

where Te is the engine torque, Tm is the motor torque, rw is the wheel
radius, γe and γm are the transmission ratio of the engine and the motor,
respectively, and ηt is the transmission efficiency (that depends on the gear
ratio used, although this dependency is often neglected). Models of ICEVs
and EVs can be considered as particular cases of (4) with Tm(t) ≡ 0 and
Te(t) ≡ 0, respectively.

Assuming that a discrete transmission (gearbox) is used, γe includes both
the gearbox and the final drive, and varies with the gear selected either by
the driver (manual transmissions) or by the transmission controller (auto-
matic transmissions). In the latter case, the gear ratio is the result of a gear
shift law that can be expressed as a map

γe(t) = Γ(v(t), Fw(t)). (5)

In the rest of the article, a fixed transmission ratio γm is considered, repre-
senting simple reductor gears of EVs. Note that (4) implies a discontinuous
derivative of Fw with respect to Tn at Tn = 0 (coasting operation), which
separates a traction operation (Tn > 0) from a braking operation (Tn < 0).

Engine and motor speeds, ωe and ωm, are related to the vehicle’s speed
through their respective transmission ratios

ωe(t) =
γe(t)

rw
v(t) and ωm(t) =

γm
rw

v(t). (6)

In contrast with Edem, the consumption of the onboard stored energy,
Etank, depends on the nature of the powertrain.

Internal Combustion Engine Vehicles

In ICEVs, Etank =
∫ t

0 Pfdt, where Pf is the fuel power consumed by the
engine. This quantity can be modeled under a steady-state approximation
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using tabulated data (“engine map”) as a function of engine torque and
rotational speed

Pf (t) = Pf (Te(t), ωe(t)). (7)

When v = 0 (vehicle stopped) or γe = 0 (neutral gear engaged), the fuel
consumption at idle must be considered [18]. For online implementation,
approximate closed-form expressions are used instead of (7), for instance,
polynomial expressions [3,18,19,34,40] or the affine-in-torque Willans model
[20, 34]

Pf (t) =
Te(t)ωe(t) + Pf,0(ωe(t))

e(ωe(t))
, (8)

defined by the speed-dependent parameters e (indicated efficiency, that is,
the efficiency of the combustion process alone) and Pf,0 (idle losses).

Electric Vehicles

In EVs, Etank =
∫ t

0 Pbdt, where Pb is the electrochemical power drained from
or supplied to the battery.

Electric power supplied to or generated by the motor, including its con-
trol electronics, Pm, is usually tabulated (“motor map”) as a function of
motor torque and rotational speed

Pm(t) = Pm(Tm(t), ωm(t)). (9)

For online implementation, approximate closed-form expressions are used
instead of (9). For instance, dc motor equations inspire the model [24, 25,
28, 41]

Pm(t) = b2Tm(t)2 + b1Tm(t)v(t) + b′1Tm(t) + b0v(t) + b′0, (10)

where the bi’s are tunable parameters. Even simpler representations, for
instance constant motoring and generating efficiency, have also been adopted
in eco-driving studies [20, 32].

The battery power is calculated by modeling the battery electrochem-
istry as an equivalent electric circuit, with an ideal voltage source Ub0 and
an internal resistance Rb in series,

Pb(t) =
U2
b0

2Rb

− Ub0

√

U2
b0 − 4Pm(t)Rb

4R2
b

. (11)

The difference between Pb and Pm is due to inner battery losses; in eco-
driving studies these effects are sometimes further simplified to a constant
efficiency model or neglected [20, 32, 41].
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Hybrid-Electric Vehicles

To model a HEV, models of the engine, the electric machine, and the battery
presented in the previous sections still apply. These models lead to the
calculation of fuel power Pf and battery electrochemical power Pb, and the
resulting energy consumption.

Route and Traffic Information

An insight into the model equations of the previous section reveals that the
knowledge of the road slope α plays a key role in energy consumption min-
imization. The road slope is usually provided as a function of the vehicle
location by some sort of geographic information system (GIS). The vehi-
cle positioning is retrieved or assumed to be retrieved by global navigation
satellite systems. More accurate data can be provided by online estimation
of road slope of frequently traveled roads [42].

A similar key role is played by the knowledge of the vehicle mass. While
mass is typically constant or slightly variable when considering passenger
cars, for some applications such as buses, garbage trucks, or delivery trucks
this parameter may be time dependent and thus has to be estimated. The
literature presents many online vehicle mass estimators [43].

Establishment of constraints to the optimization problem requires ad-
ditional pieces of information about the route. One example is top speed
limits, which are either available from GIS or detected through onboard cam-
eras and processing algorithms. Similarly, knowledge of road curvature can
enforce speed limitations due to maximal centrifugal acceleration [20, 26].

A different class of constraints is imposed by traffic, that is, by the
leading vehicle on the route. The traffic-dictated speed limit is not just a
function of the distance along the route but essentially a poorly predictable
disturbance. Average speed of traffic flow ahead might be provided by real-
time traffic reporting or traffic congestion maps. The specific knowledge of
the leading vehicle speed requires the use of dedicated sensors such as the
radar sensors used for adaptive cruise control (ACC).

Another constraint to vehicle trajectories may be imposed by traffic
lights, depending on the scenario considered. The information on traffic-
light state can be provided by infrastructure-to-vehicle (I2V) communica-
tion, that is, dedicated short-range communication (DSRC) technologies
[29,30,33]. The bidirectional scenario, that is, with vehicle-to-infrastructure
(V2I) facilities, has been studied as well [44].

Independent studies [27] have shown that there is a correlation between
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stochastic events such as traffic or traffic lights, the route segment, the
average speed, and the time during the day. Therefore, statistical tools
(“energetic maps”) can be adopted as an alternative to ACC, V2I, or I2V
communication to forecast those events in an online context [28].

Optimal Control Problem Formulation

Energy-optimal drive control under several scenarios (acceleration, decelera-
tion, driving between stops, approaching traffic lights, cruise within a speed
band) [3] can be treated in a similar way by defining an eco-driving optimal
control problem (ED-OCP).

Optimization Horizon

The main objective of the ED-OCP is to minimize fuel or energy consump-
tion over a certain horizon. This horizon can be expressed in terms of time or
distance. In highway, green-waving, and cruise control scenarios, time hori-
zon tf is typically related to the telemetric preview length [19,23,31,36,38].
In other cases, the time horizon can be obtained from the distance horizon
or other trip information by means of average speed, either desired by the
driver or imposed by the traffic [20, 41]. In simple traffic-light scenarios, tf
might be the time to the next green period [29].

The spatial horizon sf may represent the overall trip length, particularly
in highway-oriented applications [18, 20–22, 26], as well as in green-waving
scenarios, but only if single intersections are marked by interior point con-
straints [33,34] (see below). In traffic-light scenarios, sf is the distance to the
intersection [3, 29, 30, 35]. For EVs, sf can be set as the estimated distance
to the next recharge station [27].

Both final time and distance are usually assigned to given horizons. Oth-
erwise, when final time is prescribed, final distance can be free [31,36,38] or
maximized [19, 41]. Conversely, when the final distance is to be prescribed,
final time can be free [21, 22, 26, 34], constrained in a time window [30], or
minimized [17,18,27,33], depending on the scenario considered. In any cases,
final speed can be either free or prescribed.

Objective Function

Given the energy-oriented nature of the drive controller, a natural choice for
the objective function of the ED-OCP is the energy consumption over the
horizon chosen, where the energy consumption rate Ptank coincides with Pf
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(the fuel power) for ICEVs and HEVs, while Ptank = Pb (the battery power)
for EVs. Simpler formulations take the power at the wheels, or even purely
kinematic terms [30, 31, 33] as the running cost. In addition, trip time may
be minimized or trip distance maximized, as discussed below.

For highway scenarios, additional terms are sometimes appended to the
objective function to penalize deviations from a reference average speed
[17, 21], vehicle acceleration [18], or gear shifts [19]. Drivability and aging
can be also appended to the objective functions [21, 26].

Control

The argument of minimization are the control laws applied to drive the ve-
hicle. For all types of powertrains, at least two control inputs exist: Fw and
Fb. Being mutually exclusive, these control inputs may be arranged in a sin-
gle variable. Equivalent to wheel force are other variables sometimes chosen
as control inputs, such as acceleration, fuel quantity, or motor voltage.

An alternative formulation is to set a desired or target speed as a control
input [17, 27], where it is assumed that the driver regulates the pedals to
achieve the target speed.

For ICEVs and HEVs with automatic gearboxes, also γe might be present
as a control input [3,18,21,26,45]. Clutch control is another possible discrete
control [3] but it can conveniently be lumped either with the gear control
input or with the engine control input [21].

Additional degrees of freedoms exist in HEVs. For instance, in parallel
HEVs, an additional control input represents either the engine torque (in
addition to wheel torque or force) [21, 45] or, equivalently, the torque split
ratio between the engine and the motor [23].

State Dynamics

In most formulations, a minimal set of system state variables includes vehicle
speed and position. The former dynamics is given by (2)

v̇(t) =
Fw(t)

m
−

1

2m
ρacdAfv(t)

2 − crg − g sin(α(s(t)))−
Fb(t)

m
, v(0) = vi,

(12)
while the spatial dynamics are

ṡ(t) = v(t), s(0) = 0. (13)
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Equation (13) allows transforming a time-based ED-OCP into a position-
based ED-OCP via the transformation

d

dt
=

1

v

d

ds
. (14)

Depending on the degree of refinement of the model used, in some ap-
proaches additional dynamics are considered, such as engine speed [17] or
gear ratio [18, 21, 26].

For HEVs, an intrinsic additional state is the energy remaining in the
battery, ξ. Its state dynamics are

ξ̇(t) = Pb(t), ξ(0) = ξi. (15)

Equivalent formulations are in terms of battery state of charge (SoC), which
is related to the battery energy by constant or weakly-varying parameters [1].
In some formulations for EVs, SoC is a state variable and it is constrained
at the end of the trip [27].

Control Constraints

Control inputs Te and Tm are bounded by limits T{e,m},max(v(t)) and T{e,m},min(v(t))
that are typically varying with the vehicle speed, since both IC engines and
electric motors have torque max/min curves that are functions of their re-
spective rotational speeds. In addition to these limits, traffic-constrained
force or torque may be considered [23]. Force or acceleration rate can be
also bounded [36].

The brake control input Fb defined here as a positive quantity, see (2),
is bounded between 0 and the maximal brake effort Fb,max.

When the gear is selected by the drive controller, γmax(t) and γmin(t)
are actually functions of the gear engaged, thus explaining why in some
approaches [18] the gear itself is a state variable.

State Constraints

State variables are subject to inequality constraints. For the vehicle speed,

vmin(t, s(t)) ≤ v(t) ≤ vmax(t, s(t)), (16)

where the quantity vmax is the most restrictive of several possible contribu-
tions, including top speed limit and subjective maximal speed allowed. A
variable vmax(t, s(t)) can be also used to describe traffic lights, by setting it
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to zero when the signal is red [32]. The variable quantity vmin is particularly
relevant for highway scenarios [18,19,41,45] and for cruise scenarios [3,33,38].

A different class of state constraints concerns the position. In multi-
vehicle scenarios, s(t) may be constrained by the inter-vehicle distance with
a leading vehicle, characterized by multiple parameters [31,37,38]. Alterna-
tively, cumulative inter-vehicle distance may be transferred to the objective
function [36].

When relevant, the battery energy ξ(t) or SoC is also limited in an
admissible window depending on the battery technology.

Terminal Constraints

Terminal constraints concern the final values of time, position, and speed.
For the former two, see section “Objective Function.” Terminal speed is
typically free in some scenarios such as highway driving [17–19, 41], cruise
[3,36,38], green-waving between traffic lights [29–31,33], or race circuits [14].
In other situations, it is constrained, more or less “rigidly,” to be around a
prescribed value vf .

When a HEV is considered, an additional constraint concerns the final
SoC or battery energy. The latter is prescribed to match the initial value
in charge-sustaining hybrids, or a target minimal value in plug-in hybrids.
However, when multiple segments are considered (urban-type scenarios),
this constraint applies only at the end of the last segment.

Hard constraints can be replaced by “soft” constraints that are adjoint
to the cost function as terminal penalty terms. Final position, final speed,
and SoC can be penalized in this way [21,27, 32].

Interior Constraints

Equality (pointwise) constraints on both speed and position are typical of
green-waving and urban displacement scenarios [34]. These constraints can
be applied directly, for instance, s(tb,j) = sb,j , or enforced by appropriately
setting the state boundaries described in section “State Constraints,” for
instance, vmin(tb,j , sb,j) = vmax(tb,j , sb,j) = vb,j , where tb,j and sb,j , j =
1, . . . , nb are the time instants and positions at which the speed is imposed
(by traffic lights or other events).

In these cases, an alternative approach to interior constraints consists
of separating the trip into nb correlated segments for which nb correlated
OCPs apply, each of which is characterized by its own temporal and spatial
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horizon, as well as by its own initial and terminal conditions

tf,j = tb,j − tb,j−1, sf,j = sb,j − sb,j−1, vf,j = vi,j+1 = vb,j . (17)

with tb,0 = sb,0 = 0, vb,0 = vi, vb,nb
= vf . The energy consumption of the

whole trip is the sum of the energy consumption of each segment.
Segments are identified either by (i) changes in road characteristics, such

as top speed limits or slope, or by (ii) driver- or traffic-induced events, such
as planned stops, intersections, traffic lights, or traffic queues. All these
segment identifiers are called breakpoints in the rest of this article [24,25,28];
see Figure 2.

ED-OCP Formulation Summary

With the considerations above, a general formulation of ED-OCP separated
into nb subproblems for each single segment can be expressed as follows
(the segment-counting subscript j is omitted for simplicity). Find u(t) :=
{Te(t), Tm(t), Fb(t)} such that

min
u∈U(x(t))

J =

∫ tf

0
g(u, x(τ))dτ, (18)

with x := {s, v, ξ}, g(·) = Ptank given by (8) or (10)–(11), subject to

ẋ(t) = f(u(t), x(t)), (19)

with f(·) given by (12)–(13),

vmin(t, s(t)) ≤ v(t) ≤ vmax(t, s(t)), 0 < s(t) < sf , ξmin < ξ(t) < ξmax,
(20)

v(0) = vi, s(0) = 0, (21)

and
v(tf ) = vf , s(tf ) = sf . (22)

As for the SoC, it is bounded at the beginning and the end of the trip, thus
(21) and (22) are completed with ξ(0) = ξi for j = 1 and ξ(tf ) = ξf for
j = nb, respectively.

Offline Solutions

Two contexts for solving the ED-OCP are recognizable, namely, offline and
online. An offline solution assumes that all road characteristics and position-
dependent constraints are known in advance. In contrast, an online solution
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is a real-time-capable solution that makes use of predictions and estima-
tions that are typically available on a vehicle immersed in its environment.
Another difference is in computation time, since online solutions must be
compatible with real-time execution.

In the following sections, the three solution methods for offline opti-
mization that are the most relevant for automotive engineers are discussed,
namely, Pontryagin’s minimum principle (PMP), dynamic programming
(DP), and analytical solutions. Fully parametric solutions [36, 38], genetic
algorithmes [46], and semi-heuristic approaches, including the parametric
optimization [29, 30] and the optimal tracking [31] of assumed speed pro-
files, are not discussed further.

Pontryagin’s Minimum Principle

Pontryagin’s minimum principle [47] is the basis for the analytical solutions
described below. The optimal solution of the ED-OCP is calculated after
having defined the Hamiltonian function as

H(u, x, λ) = g(u, x) + λT f(u, x), (23)

with λ being a vector adjoint to the state vector x. Let u∗(t) be an op-
timal control policy and x∗(t), λ∗(t) the resulting state and adjoint state
trajectories, respectively. Then

ẋ∗(t) =
∂H

∂λ
(x∗(t), u∗(t), λ∗(t)), x∗(0) = x0, x∗(tf ) = xf , (24)

λ̇∗(t) = −
∂H

∂x
(x∗(t), u∗(t), λ(t)∗), (25)

u∗(t) = argmin
u∈U

H(x∗(t), u, λ(t)∗). (26)

Note that (26) is the formulation of the “minimum principle” [48]. When
H is linear in the control variables, the optimal solution requires the control
variables to be at one point or another of the boundary of the feasible
control region U (“bang-bang” control) [47]. In such circumstances, the
function σ = ∂H/∂u is called the “switching function” because a change of
its sign makes the corrisponding control variable switch from one point on
the boundary of U to another point on the boundary. The case where σ ≡ 0
in a finite interval results in a singular arc.

The system of differential equations (25) is not easily solved because
the initial conditions on the adjoint vector λ∗ are not given. Instead, the
state vector x∗ is subject to boundary conditions both at the initial time
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and at the final time. This problem is a two-point boundary-value problem
(TPBVP), which may be solved using time-consuming multiple shooting al-
gorithms [41]. Moreover, state constraints introduce additional unknowns
(jump conditions) that have to be determined as well. Overall, numerically
solving of the TPBVP is sensitive to the shooting algorithm adopted and
thus its direct use is rather inpractical both for offline and online applica-
tions.

Dynamic Programming

Numerical offline methods such as dynamic programming and Dijkstra-
like algorithms [41] are widely used to solve the ED-OCP. In particular,
DP [49, 50] is applied both with time as the independent variable with tf
fixed and, in position domain, with sf fixed [3, 18, 21, 24–28, 33, 35, 37]. DP
solves a discretized version of the ED-OCP (18)–(22), therefore it requires a
discretization of the independent variable into N steps, together with a dis-
cretization of the state and control spaces. Using the forward Euler scheme
with a 1 s time step, the discretized ED-OCP can be formulated as

min
uk∈U

J =
N
∑

k=1

gk(uk, xk), (27)

subject to state dynamics,

xk+1 = fk(uk, xk), (28)

with state and control constraints obtained from (20)–(22).
For ICEs and EVs, the control space is limited to u = {Fw, Fb} and the

state space to x = {s, v}. However, since the computation time of the DP
solution grows exponentially with the number of states, it is desirable to fur-
ther reduce the size of the problem when possible. A state reduction can be
performed when perturbations and constraints depend on time, or position,
but not on both. This case applies to highway and urban scenarios without
traffic lights, where perturbations (for instance, distance-depending slopes)
and constraints (for instance, top speed limits when not variable according
to the traffic congestion and/or air pollution) depend on position but not
explicitly on time. In such scenarios, position can be used as the indepen-
dent variable using the transformation (14), and speed as the only state
variable. The constraint on the final position is fulfilled by construction.
Final time constraint, however, has to be enforced separately. For that, an
additional tunable term is added to the cost function as a terminal cost
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β · tf [18, 24, 37]. If the position space is discretized in N steps, sk = k∆s,
k = 0, . . . , N , tf =

∑

∆tk, and ∆tk = ∆s/v̄k, with

v̄k =
vk + vk+1

2
, (29)

the penalty term can be transferred to the running cost that becomes

gk(uk, xk) = (Ptank(uk, v̄k) + β)
∆s

v̄k
. (30)

To determine the right value of the tunable coefficient β, a root-finding
method is used to drive the final time error to zero [18, 24, 37].

The minimal cost to reach the final state from a given state xk is the
cost-to-go function Jk(xk),

Jk(xk) = min
uk∈Uk(xk)

{gk(uk, xk)+Jk+1(fk(uk, xk))}, k = 1, . . . , N −1. (31)

The DP algorithm paradigm now states that, if u∗k(xk) minimizes the right-
hand side of (31) for each xk and k, the control policy {u∗1, . . . , u

∗
N} is opti-

mal. Starting at k = N − 1 with an inialization of JN = gN (xN ) and going
backwards, the minimal cost-to-go can recursively be calculated for each xk
and k, which leads to the optimal state trajectory and the optimal control
policy.

Bi-level Optimization

For HEVs, a third state variable would be necessary, that is, SoC ξ. As
an alternative to simultaneous optimization, a bi-level approach allows a
reduction of computation time [45]. In this approach, the optimal control
policy u is found by decoupling its components. In the outer loop the speed
trajectory is optimized with respect to the control vector u(1) := {Fw, Fb}
only, thus as for an ICE or an EV. The running cost of this subproblem is
found by solving a second subproblem (inner loop), where the power split
is optimized (u(2) := {Tm}) for a given state and wheel force, while Te is
found from (4). An overview of the algorithm is given in Figure 3.

In a convenient embodiement of the method [45], the inner loop can
be performed with the PMP-based technique known in the HEV control
literature as equivalent consumption minimization strategy (ECMS) [1]. The
Hamiltonian of this subproblem is defined as

H(Tm, u(1), v) = Pf (Tm, u(1), v) + λξ · Pb(Tm, u(1), v). (32)
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The costate adjoint to the SoC, λξ, is found such that it enforces the con-
straint over the final SoC (22). Hence, the powertrain torque provided by
the motor is a function of only vehicle speed and vehicle acceleration,

T ∗
m(u(1), v) = argmin

Tm

H(Tm, u(1), v). (33)

As a consequence, the fuel consumption is dependent on only those two
variables and is denoted as P ∗

f (u
(1), v).

In the outer loop, DP is used with the position as the independent vari-
able and the running cost

gk(uk, xk) =
(

P ∗
f (Fw,k, v̄k) + β

) ∆s

v̄k
. (34)

As described above, the coefficient β is tuned in an iterative process as to
enforce the constraint over final time.

Analytical Solutions

Analytical solutions avoid sensitivity problems of PMP and are more suitable
than DP for online solving of the ED-OCP due to reduced computation time.
These techniques are still based on equations (23)–(26), which are solved in
a closed form. For this purpose, they require a sufficiently simple modeling
of the system (that is, functions g and f , as well as constraints).

Analytical solutions have been derived for EVs [28], FCEVs [14], ICEVs
[19, 22], also with regenerative braking capability [51], and HEVs [23]. To
illustrate various solution approaches, each powertrain is separately treated
in the following sections.

Analytical Solutions for Electric Vehicles

The modeling assumptions used here, representing both battery EVs and
fuel cell EVs, are: (i) α = constant, (ii) Fres = mgcr + mg sin(α), (iii)
b0 = b′0 = b′1 = 0, (iv) Rb = 0, (v) u = {Tm, Fb}, (vi) Tm,min = constant,
Tm,max = constant.

Under these assumptions, the state function is

f(u(t), x(t)) =

(

ṡ
v̇

)

=

(

v

h1Tmη
sign(Tm(t))
t − d0 − w

)

, (35)

where

h1 :=
γm
mrw

, d0 :=
Fres

m
, w :=

Fb

m
. (36)
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The running cost function g is

g = b1Tmv + b2T
2
m. (37)

The Hamiltonian is

H = b1Tmv + b2T
2
m + λv(h1Tmη

sign(Tm(t))
t − d0 − w) + λsv, (38)

where λv and λs are the two adjoint states. The application of PMP yields
the control law (for simplicity, the asterisk is omitted except from the opti-
mal control inputs)

T ∗
m(t) =







min(Tm,max, T
+
m(t)) if T+

m(t) > 0, T−
m(t) > 0,

0 if T+
m(t) < 0, T−

m(t) > 0,
max(Tm,min, T

−
m(t)) if T+

m(t) < 0, T−
m(t) < 0,

(39)

where T+
m(t) := −

1

2b2
(b1v(t) + h1ηtλv(t)), T

−
m(t) := −

1

2b2

(

b1v(t) +
h1λv(t)

ηt

)

,

and

w∗(t) =

{

0 if λv(t) < 0,
W if λv(t) > 0.

(40)

The adjoint dynamics are

λ̇v(t) = −b1T
∗
m(t)− λs(t), λ̇s(t) = 0. (41)

The analytical solution (39)–(40) shows that there are six possible optimal
modes of operation:

• Maximal Acceleration (SA): T+
m > Tm,max, T

−
m > 0, λv < 0,

• Acceleration (A): 0 < T+
m < Tm,max, T

−
m > 0, λv < 0,

• Coasting (C): T+
m < 0, T−

m > 0, λv < 0,

• Deceleration (D): T−
m < 0, Tm,min < T−

m < 0, λv < 0,

• Maximal Deceleration (SD): T+
m < 0, T−

m < Tm,min, λv < 0,

• Braking (B): T+
m < 0, T−

m < Tm,min, λv > 0,

while the mode λv > 0, T−
m > Tm,min would be physically counter-intuitive.

Note that mode C appears due the presence of the term η
sign(Tm)
t in the

Hamiltonian function and, for the same reason, mode A is distinguished
from mode D.
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The particular sequence that builds up the optimal solution depends
on the boundary conditions. Assuming a sequence, for instance, SA-A-C-
D-SD-B, see Figure 4, the calculation of the optimal velocity and position
trajectories can be performed in a sequential fashion.

Start with unknown λv(0), λs, and integrate (39)–(41) for each phase of
the sequence. Switching times between phases ti, i = 1, . . . , 5 are defined
by the switching conditions T+

m(t1) = Tm,max, T+
m(t2) = 0, T−

m(t3) = 0,
T−
m(t4) = Tm,min, λv(t5) = 0. Then impose the two terminal conditions

vf (tf ) = vf and s(tf ) = sf and obtain two equations f1(λv(0), λs) = 0 and
f2(λv(0), λs) = 0 in the two unknown initial conditions. It turns out that the
former equation is affine in the variable λv(0). By solving and replacing this
variable in the latter equation, a tenth-order polynomial equation f3(λs) = 0
is obtained, which has only one physically meaningful solution.

If further simplifications are assumed, that is: (i) ηt = 1, (ii) W = 0
(no friction braking), then T+

m(t) ≡ T−
m(t) and the three-phase solution

presented in [14] (for variable α) is obtained. If, additionally, (iii) Tm,max =
−Tm,min → ∞, then there is only one phase left. The resulting control
trajectory T ∗

m(t) can be explicitly calculated and it appears to be an affine
function of time, while the optimal trajectory v∗(t) is a quadratic function
of time [28, 52]

v∗(t) = v0 −
4vit

tf
−

2vf t

tf
−

6sf t
2

t3f
+

6sf t

t2f
+

3vit
2

t2f
+

3vf t
2

t2f
. (42)

Analytical Solutions for Internal Combustion Engine Vehicles

The modeling assumptions used here are: (i) ηt = 1, (ii) γe(t) = γ =
constant, (iii) α = constant, (iv) Fres(t) = f0+f1v(t), (v) Pf,0(t) = ωe(t)Tf,0,
(vi) e = constant, (vii) u = {Te, Fb}.

Under these assumptions, the state function is

f(u(t), x(t)) =

(

ṡ
v̇

)

=

(

v
h1Te − d0 − d1v − w

)

, (43)

where h1 and w are defined as in (36), while d0 :=
f0
m

and d1 :=
f1
m
. From (8)

and (18), the cost function is composed of two terms, with the latter being
proportional to the integral of ωe. Since this quantity is assigned to be equal
to sf , the second term of the cost function is a constant. Consequently, the
relevant running cost g is

g =
Te

e
ωe = a1Tev, (44)
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with a1 :=
γ

rwe
. The Hamiltonian is

H = a1Tev + λv(h1Te − d0 − d1v − w) + λsv, (45)

where λv and λs are the two adjoint states. The application of PMP yields
the engine control law

T ∗
e (t) =







Te,max(v(t)) if σ(t) < 0,
Tσ if σ(t) = 0,
Te,min(v(t)) if σ(t) > 0,

(46)

where the switching function σ(t) := ∂H/∂Te = a1v(t) + h1λv(t), Tσ is the
optimal torque in the singular case, and

w∗(t) =

{

0 if λv(t) < 0,
W if λv(t) > 0,

(47)

where W := Fb,max/m. The adjoint dynamics are

λ̇v(t) = −a1T
∗
e (t) + d1λv(t)− λs(t), λ̇s(t) = 0. (48)

From the conditions σ = 0 and σ̇ = 0 that define a singular arc, such arc is
shown to be a constant-speed trajectory [53]. Consequently, Tσ is constant
on a singular arc. Therefore, the analytical solution (46)–(47) shows that
there are four possible optimal modes of operation:

• Acceleration (A): σ < 0, λv < 0,

• Constant Speed (C): σ = 0, λv < 0,

• Deceleration (coasting, D): σ > 0, λv < 0,

• Braking (B): σ > 0, λv > 0.

For small values of d1, it can be shown that both σ and λ are affine functions
of time and thus can have at most one sign switch. Therefore, only four basic
sequences of control modes are possible: A-C-D-B, A-C-A, D-C-D-B or D-
C-A. The particular sequence that builds up the optimal solution depends
on the boundary conditions. For example, the sequence A-C-D-B is likely
to be optimal when both vi and vf are small or zero; see Figure 5.

Contrarily to the EV case, the sequential integration of (43), (46)–(48)
as a function of the unknown initial values λv(0) and λs(0) is not possible
since a singular arc (C) always appears in the optimal sequence. However,
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the ED-OCP can be reduced into a parametric optimization problem, where
the correct sequence of control modes and the switching times between these
modes, ti, i = 1, . . . , 3 are to be found. For three-phase mode sequences the
two switching times t1 and t2 are fully defined by the terminal conditions
v(tf ) = vf , s(tf ) = sf . For four-phase mode sequences one degree of freedom
among the three switching times is left. This degree of freedom is found in
such a way to minimize the fuel consumption.

The parametric optimization method can be extended to consider less
restrictive assumptions than those listed above, for instance, variable gear
ratio or engine torque limits variable with speed. A possible embodiment is
presented in “Parametric Optimization Method for ICEVs”.

Analytical Solutions for Hybrid Vehicles

The modeling assumptions used here (parallel hybrid) are: (i) ηt = 1, (ii)
γe(t) = γm = γ = const, (iii) α = constant, (iv) Fres(t) = f0 + f1v(t), (v)
Pf,0(t) = ωe(t)Tf,0, (vi) e = constant, (vii) b0 = b′0 = b′1 = 0, (viii) Rb = 0,
(ix) u = {Te, Tm, Fb}.

Under these assumptions, the state function is

f(u(t), x(t)) =





ṡ
v̇

ξ̇



 =





v
h1(Tm + Te)− d0 −−d1v − w

−b1vTm − b2T
2
m



 , (49)

while, similarly to the ICEV case, the running cost is

g = a1Tev, (50)

with the usual definition of the parameters. The Hamiltonian is

H = a1Tev+λv(h1(Tm+Te)−d0−d1v−w)+λsv−λξ(b1vTm+b2T
2
m). (51)

The application of PMP yields the control law

T ∗
m(t) =







Tm,max(v(t)) if T o
m(t) > Tm,max(v(t)),

T o
m(t) if Tm,min(v(t)) ≤ T o

m(t) ≤ Tm,max(v(t)),
Tm,min(v(t)) if T o

m(t) < Tm,min(v(t)),
(52)

where T o
m(t) :=

(h1λv(t)− b1λξ(t)v(t))

2b2λξ(t)
,

T ∗
e (t) =







Te,max(v(t)) if σ(t) < 0,
Tσ if σ(t) = 0,
Te,min(v(t)) if σ(t) > 0,

(53)
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where σ(t) := a1v(t) + h1λv(t), and

w∗(t) =

{

0 if λv(t) < 0,
W if λv(t) > 0.

(54)

The adjoint dynamics are

λ̇v(t) = −a1Te(t)−a1Tm(t)+d1λv(t)+λs−b1Tm(t)(1−λξ), λ̇s(t) = 0, λ̇ξ(t) = 0.
(55)

Similarly to the ICEV case, from the conditions σ = 0 and σ̇ = 0, the
singular arc is shown to be a constant-speed trajectory. Additionally, the
condition λv > 0 implies that T o

m < 0 and σ > 0. Therefore, the solution
(52)–(55) shows that there are several possible optimal modes of operation,
including:

• Maximal hybrid acceleration (AH), σ < 0, λv < 0, T o
m ≥ Tm,max,

• Maximal electric acceleration (AE), σ > 0, λv < 0, T o
m ≥ Tm,max,

• Maximal regenerative braking (DE), σ > 0, λv < 0, T o
m ≤ Tm,min,

• Maximal hybrid recharge (RH), σ < 0, λv < 0, T o
m ≤ Tm,min,

• Braking and regenerative braking (B), σ > 0, λv > 0, T o
m ≤ Tm,min,

• Optimum hybrid operation (H), σ < 0, λv < 0, Tm,min ≤ T o
m ≤

Tm,max,

• Optimum electric operation (E), σ > 0, λv < 0, Tm,min ≤ T o
m ≤

Tm,max,

• Constant speed (C), σ = 0, λv < 0.

Two additional modes, the coasting mode (D) and the full ICE mode (A),
appear when assumption (i) is relaxed. Conversely, if the further simplifi-
cation b2 = 0 is assumed, the bang-bang solution of [23] is obtained, where
only the first five modes are possible.

Example Simulation Results

Three examples of offline-calculated solutions of the ED-OCP are presented
in this section. DP results are analyzed first and then compared with analyt-
ical solutions. While the former are based on accurate tabulated models for
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the engine (7), the motor (9), and the transmission (5), analytical solutions
are based on the simplified equations presented in the corresponding sec-
tions above. Consequently, differences in evaluating fuel consumption arise
and are presented below.

Figure 6 shows position, speed, motor torque, and battery energy for an
EV, as calculated with a DP algorithm for two sets of boundary conditions.
The first case (sf = 200 m, tf = 24 s) shows the six phases described
above (SA-A-C-D-SD-B). The solution for the second case (sf = 100 m,
tf ≈ 12 s) shows a longer phase SA and virtually no phases C and D.
Similar results are obtained with the sequential method presented above. A
comprehensive comparison between DP, the sequential analytical solution,
and the quadratic explicit solution is presented in [28], where it is shown
that the average error in predicting the minimal energy consumption over
the range df =50–500 m and df/tf = 10–50 km/h (with vi = vf = α = 0)
is less than 1% with the sequential method, and about 5% with the explicit
method.

Example offline solutions for an ICEV are given in Figures 7–8, which
show position, speed, engine torque, and fuel energy, as calculated with a
DP algorithm for four sets of boundary conditions. The first case (sf = 250
m, tf ≈ 30 s) shows the mode sequence A-C-D-B. The second case (sf = 150
m, tf = 18 s) has no phase C. In the third case (sf = 250 m, tf ≈ 26 s), the
sequence is A-C-A. In the fourth case (sf = 250 m, tf = 30 s), the sequence
is D-C-D. Note the torque discontinuities during A and D phases due to gear
changes. Since the analytical solution (46)–(47) assumes constant gear, the
differences between DP and the analytical solution tend to be larger than in
the EV case (more than 15% for a typical midsized car). However, using the
parametric optimization method presented in the “Parametric Optimization
Method for ICEVs,” differences are reduced to less than 2% (Figure 9).

An example offline solution for an HEV is shown in Figure 10 in terms
of vehicle speed and torque from engine and motor, as calculated with DP
for a sequence of seven segments between two vehicle stops. The figure
shows various mode sequences for distinct segments, namely, AH-C-D (first
segment), AH-C-D-B (second, fourth, and sixth segment), AH-C-B (third
and seventh segment), and AH-D-B (fifth segment).
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Online Application and Known Experimental

Results

Only a few of the approaches presented above have been experimentally
demonstrated by an onboard implementation. While the demonstrated
systems will probably be incorporated in fully automated driving applica-
tions [54], so far all of them interact with a human driver (online assessment
systems, online advice systems) or have been tested as a replacement of
conventional cruise controllers (predictive cruise controllers). To the best
knowledge of the authors, none of the former approaches tries to include the
driver’s dynamics into the ED-OCP. In contrast, it is either assumed that
the driver will follow (in online advice systems) or that he/she would have
followed (in online assessment systems) the optimal speed profiles calculated.

Online Assessment

The analytical solution method has been experimentally demonstrated for
EVs [28]. The methods used are either the explicit solution (42) or the
complete six-phase analytical solution implemented with the aid of a neural
network, with an input vector I = {tf , sf , vi, vf} and an output vector
O = {t1, . . . , t5}, where the ti are the switching times between subsequent
phases.

This implementation is part of a generic online assessment system (see
classification of ADAS in the first section of this article) that is operational
for EVs and ICEs [55]. For the latter, the parametric optimization technique
detailed in the “Parametric Optimization Method for ICEVs” is adopted.
While the structure of the solution is calculated using the simplifying as-
sumptions outlined in the “Analytical Solutions” section, the parametric
optimization method allows more realistic models to calculate the correct
sequence of control modes and the respective switching times.

An optimization run is performed at each breakpoint detected, that is,
after each segment completed by the driver. The system then provides an
“eco-driving” score, defined as

EDS := 10

(

2−
Eb

E∗
b

)

, (56)

where Eb is the actual battery energy consumed during the segment, while
E∗

b is the optimum calculated.
The driver is then expected to learn from subsequent scores obtained.

Tests conducted on a Peugeot EV have shown a reduction of 14% in energy
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consumption, an increase of 6% in the score, with only a slight decrease
(2%) of the average speed; see Figure 11 and [28].

Online Advice and Predictive Cruise Control

Online advice EDS and predictive cruise controllers have been demonstrated
based on online solving of a DP [17, 18, 26] or a parametric optimization
algorithm [20]. These approaches are suitable for highway or extra-urban
scenarios due to long trip duration and low control frequency. Numerical
improvements to standard DP techniques are essential in this respect [56].

Tests conducted on a Scania tractor on a highway route have shown
overall fuel consumption reductions up to 6% (depending on the set cruise
speed), with time increase lower than 2% [18]. The approach has been
demonstrated also for two Porsche cars on an extra-urban route, resulting
in 24% and 10% reduction of the fuel consumption, respectively, with a
reduction of the average speed below 2% in both cases [26]. Tests of a similar
concept on a chassis dynamometer have shown an average fuel consumption
reduction of about 5% [20].

Conclusions

This article has presented a general formulation of energy-efficient driving
of road vehicles as an optimal control problem. Several scenarios have been
considered in the general framework and the most-adopted solution tech-
niques have been presented. The article also presents some advancements
in real-time computing of the optimal speed profiles, particularly for ICEVs
and HEVs. For ICEVs, a parametric optimization technique inspired by
the analytical solution of a simplified version of the ED-OCP has been illus-
trated. For HEVs, a bi-level algorithm that tries to decouple energy-optimal
drive control from hybrid energy-management control has been presented.
The article has also discussed a few experimental results published. As this
section shows, experimental demonstration of the “optimal in-trip advice”
concept seems to be limited so far to highway and extra-urban scenarios,
mainly as an extension of a cruise control system. For urban-like situations,
only the “optimal in-trip assessment” has been demonstrated.

Future research will be focused on the robustification of online calcu-
lations for all types of powertrains, and the generalization of the optimal
in-trip advice to all possible scenarios, including urban driving. Interactions
with the infrastructure will be integrated in the system. In particular, opti-
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mal approach to traffic lights and green waving will be made possible thanks
to a dedicated vehicle-to-infrastructure communication.
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Sidebar 1: Vehicle Powertrain Architectures

Considering the onboard energy sources and power converters, modern
road vehicles can be classified as internal combustion engine vehicles
(ICEVs), electric vehicles (EVs), and hybrid-electric vehicles (HEVs).
Other architectures that are emerging, for instance, hybrid-hydraulic
vehicles, are not considered here. A general layout of an ICEV and
an EV are shown in Figure S1, referring to the powertrain subsystems
relavant to this article. A typical engine map, described by equation
(7), is shown in Figure S2. A typical motor map, described by equation
(9), is shown in Figure S3.

HEVs can be further classified as parallel, series, or series-parallel (or
power-split, or combined) hybrids. All these types have one engine and
one electric source, most often an electrochemical battery. Additionally,
parallel HEVs have an electric machine mechanically coupled with the
engine. Series HEVs have two electric machines, one mechanically cou-
pled with the wheels and the other (generator) mechanically coupled
with the engine only, both are electrically coupled with the battery.
Finally, series-parallel HEVs have two electric machines, both mechan-
ically coupled with the wheels and the engine, and electrically coupled
with the battery. The three general layouts are shown in Figure S4.
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Sidebar 2: Parametric Optimization Method

for ICEVs

The parametric optimization method implies the preliminary solving of
the law of motion (2)–(4) for the modes A (Te = Te,max(v), Fb = 0),
D (Te = Te,min(v), Fb = 0), and B (Te = Te,min(v), Fb = mW ), with
γ(t) variable according to the law (5). Consequently, speed trajectories
vA(τ), vD(τ), and vB(τ) are calculated such that vk(0) = 0, together
with related trajectories of position sk(τ) =

∫ τ

0 vk(τ)dτ and fuel con-
sumed Ef,k, for each k = {A,D,B}.

For a three-phase sequence, for instance, A-C-A, the optimal speed
profile is defined by six parameters: τ{1,...,4}, vσ,∆t, which are related
to the switching times by the relationships t1 = τ2−τ1 and t2 = t1+∆t;
see Figure S5. With the four sequence-depending boundary conditions
vA(τ1) = vi, vA(τ4) = vf , sA(τ4)−sA(τ3)+sA(τ2)−sA(τ1)+vσ∆t = sf ,
τ4 − τ3 + τ2 − τ1 +∆t = tf and the two additional conditions vA(τ2) =
vA(τ3) = vσ, the six parameters can be calculated and the optimal
speed profile accordingly.

For a four-phase sequence, for instance, A-C-D-B, the optimal speed
profile is defined by eight parameters: {τ{1,...,6}, vσ,∆t}, which are
related to the switching times by the relationships t1 = τ2 − τ1,
t2 = t1 +∆t, and t3 = t2 + τ4 − τ3; see Figure S6. The four boundary
conditions vA(τ1) = vi, vB(τ6) = vf , sB(τ6)−sB(τ5)+sD(τ4)−sD(τ3)+
sA(τ2)− sA(τ1) + vσ∆t = sf , τ6 − τ5 + τ4 − τ3 + τ2 − τ1 +∆t = tf and
the additional conditions vB(τ5) = vD(τ4) and vA(τ2) = vσ = vD(τ3)
add up to seven conditions. Hence, a degree of freedom is remaining.
The latter is chosen in such a way to minimize the function

Ef = Ef,A(τ2)−Ef,A(τ1)+Ef,D(τ3)−Ef,D(τ4)+Ef,B(τ5)−Ef,B(τ6)+∆tPf,σ

(57)
subejct to the constraints above. The quantity Pf,σ is the fuel power for
the engine operating point corresponding to a constant vehicle speed
vσ.

To summarize, the ED-OCP is reduced to a one-dimensional parametric
optimization for the complete four-mode sequence. For speed profiles
of three-mode basic sequences, there is even no optimization necessary
at all. In this case, the velocity trajectory is given by the mission con-
straints only.
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The online algorithm used in the online assessment system presented
in this article operates as follows; see Figure S7. In a first step, the
vehicle parameters are set, including information input by the user
concerning the vehicle weight, the type of engine, its rated power, and
swept volume. Other data, such as the fuel map, are extrapolated from
typical engines by scaling with respect to the size. Best-efficiency torque
curves are calculated from the fuel map. From such information, the
speed, position, and fuel trajectories for the three modes A, D, and B
are preliminarly calculated as described above.

During the online use, the identification of the boundary conditions of
the actual segment (vi, vf , tf , sf ) allow a reduction of the number of
mode sequences admissible. When several sequences are still possible,
the rest of the algorithm is repeated and the results are compared to
find the optimal mode sequence. For three-mode sequences, constraints
are directly enforced and all switching times are calculated. For four-
mode sequences, the degree of freedom, chosen as to be the switching
time t3 (or τ5), is found by finding the minimum of the function (57).
The search limits are t3,min such that vB(τ5,min) = vσ and t3,max = tf .
Within these boundaries, the function Ef (t3) is a unimodal in most
practical situations and thus the internal halving algorithm, a direct
search method, has been selected to find its minimum.
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Table 1: Relative influence of vehicle parameters and driving profiles on the
wheel-to-meters energy efficiency of a typical full-size passenger car. Sensi-
tivity is defined as the percent reduction of energy consumption per percent
reduction of the considered variable. The calculation method is detailed and
illustrated in [1].

Vehicle parameter Sensitivity [–]

Weight 0.7
Rolling friction 0.35
Aerodynamics 0.3

Driving profile parameter Sensitivity [–]

Mean square speed 0.6
Mean acceleration 0.35
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Figure 6: DP trajectories for an EV, sf = 200 m, tf = 24 s (top), sf = 100
m, tf ≈ 12 s (bottom), vi = vf = α = 0. From top to bottom, the figures
show position s, speed v, torque at the wheels Tw := rwFw, and battery
energy consumption Eb as a function of time. Labels to the wheel torque
refer to the control modes introduced in the main text.
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Figure 7: DP trajectories for an ICEV, sf = 250 m, tf ≈ 30 s (top), sf = 150
m, tf = 18 s (bottom), vi = vf = α = 0. From top to bottom, the figures
show position s, speed v, torque at the wheels Tw := rwFw, and fuel energy
consumption Ef as a function of time. Labels to the wheel torque refer to
the control modes introduced in the main text.
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Figure 8: DP trajectories for an ICEV, vi = 20 km/h, vf = 45 km/h,
tf ≈ 26 s (top), vi = 45 km/h, vf = 5 km/h, tf = 30 s (bottom), sf = 250
m, α = 0. From top to bottom, the figures show position s, speed v, torque
at the wheels Tw := rwFw, and fuel energy consumption Ef as a function
of time. Labels to the wheel torque refer to the control modes introduced in
the main text.
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Figure S3: Typical efficiency map of an EV electric motor. The figure shows
equal efficiency contours (labelled), as well as maximal torque curve Tm,max.
When specific data are not available, second quadrant, that is, negative
torque values (generating mode) may be estimated by mirroring the first
quadrant.
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Figure S4: General layout of a parallel HEV (top), a series HEV (middle),
and a series-parallel HEV (bottom). Blue bold lines between subsystems
represent mechanical power, orange bold lines represent electrical power.
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Figure S5: Graphical illustration of the parametric optimization method
in the case of a three-phase optimal trajectory. Upper plot shows the speed
trajectory with the switching times t1, t2 and the singular arc vσ. Lower plots
show the trajectory vA(τ) together with the characteristic times τ1, . . . , τ4.
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Figure S6: Graphical illustration of the parametric optimization method
in the case of a four-phase optimal trajectory. Upper plot shows the speed
trajectory with the switching times t1, . . . , t3 and the singular arc vσ. Lower
plots show the trajectories vA(τ), vD(τ), and vB(τ) together with the char-
acteristic times τ1, . . . , τ6.
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Figure S7: Flowchart of the parametric optimization algorithm for ICEVs.
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