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Abstract

The ¢, /¢, ratio regularization function has shown good performamceadtrieving sparse signals in a
number of recent works, in the context of blind deconvolutimdeed, it benefits from a scale invariance
property much desirable in the blind context. However, théls function raises some difficulties
when solving the nonconvex and nonsmooth minimization lerab resulting from the use of such
a penalty term in current restoration methods. In this paper propose a new penalty based on a
smooth approximation to thé; /¢, function. In addition, we develop a proximal-based aldonitto
solve variational problems involving this function and weride theoretical convergence results. We
demonstrate the effectiveness of our method through a cosopawith a recent alternating optimization

strategy dealing with the exaét/¢» term, on an application to seismic data blind deconvolution
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Fig. 1. Unknown seismic signal (top), blurred/noisy observation (bottom).

I. INTRODUCTION

Many experimental settings are modeled as inverse probléhey resort to estimating an unknown

signalz € RY from observationg) € RY, through the measurement process:
y=h+xT+w, 1)

an illustration of which is provided in Fi@l 1. Herg,c R® represents an impulse response (e.g. a linear
sensor response or a “blur” convolutive point spread fumdti+ denotes a discrete-time convolution
operator (with appropriate boundary processing), and R” is a realization of a random variable
modeling an additive noise. Standard approaches, such aseWiéering and its statistical extensions
[1], aim at minimizing criteria based on the squared Euclidearm ¢3). However, the use of the sole
least squares data fidelity term is prone to noise sensitaity the addition of arf3 regularization
often leads to over-smoothed estimates. The deconvolutimolgm becomes blind, even more ill-posed,
when the blur kernek is unknown, and needs to be estimated as well as the targetl siyplications
include communications (equalization or channel estiomt{Z], nondestructive testin@l[3], geophysics
[4]-[6], image processing [7]=[10], medical imaging anchm#e sensing [11]. Blind deconvolution, being
an underdetermined problem, often requires additionabthgses. A usual approach seeks estimates
(z, ﬁ) e RN x R of (z,h) as minimizers of the sum of a data fidelity term and additioegltarization
terms on the signal and on the blur kernel. Such regularizdtinctions account for a priori assumptions
one imposes on original sought objects, like sparsity, amslie the stability of the solution. Blind
deconvolution is subject to scaling ambiguity, and suggestle-invariant contrast functions [12], [13].

A decade ago, a Taxicab-Euclidean norm ratig/{,) arose as a sparseness measure [14]-[17], used in
NMF (Nonlinear Matrix Factorization) [18]. Earlier menti®iof a one-norm/two-norm ratio deconvolution
appeared in geophysics _[19]. It has since been used to agnstnarp images through wavelet frame
coefficients [[20], or for sparse recovery [21]. Such a reguddion term is moreover suggested [inl[22]
to avoid common pitfalls in blind sparse deconvolution.

Recently, [23] proposed an alternating minimization alipon to deal with thel; /¢» regularization
function. Its originality consists of transforming tife/¢2 nonconvex regularization term into a convex
£1 regularization function. This is done in a reweighted fashioy fixing the denominatot, from the
previous iterate. An iterative shrinkage-thresholdingpaithm finally solves the remaining regularized

problem. Although the convergence of this approach has eethldeeply investigated, it appears to
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be quite efficient in practice. More recently, [24] proposedcaled gradient projection algorithm for
minimizing a smooth approximation of thig /¢» function, however limited to the case when the sparse
signal to retrieve takes nonnegative values. We generthligédea to a parametrized Smoothed One-Over-
Two (SOOQOT) penalty for signed, real data. We present a nofielaxft method based on recent results in
nonconvex optimization combining an alternating minini@a strategy with a forward-backward iteration
[25], [26]. Moreover, we accelerate the convergence of tmarghm by using a Majorize-Minimize (MM)
approach([26]£[28]. Sectidn]ll introduces the minimizatigmoblem. Sectiof Il describes the proposed
method and provides convergence results. The algorithnomeaihce, compared with [23], is discussed

in Section IV for seismic data blind deconvolution. Some cosidns are drawn in Secti¢n V.

[I. OPTIMIZATION MODEL
A. Optimization tools

Our minimization strategy relies on two optimization piples. LetU € RM*M pe a symmetric
positive definite (SPD) matrix. Firstly, we define ti&weighted proximity operator [29, Sec. XV.4],
[30] of a proper, lower semicontinuous, convex function R —] — oo, +00] at z € RM, relative to
the metric induced by/, and denoted byrox; ,(z), as the unique minimizer af + %H -—z||?,, where
|.|lv denotes the weighted Euclidean norm, iz € RM) |z(|y = (:TU=z) 2 \WhenU is equal tol,;,
the identity matrix ofR™ >, thenprox;,, ,, reduces to the original definition of the proximity operator
in [31]. We refer to [[32]-[34] for additional details on piiaxty operators. Secondly, we introduce the

Majoration-Minimization (MM) principle:
Definition 1. Let¢: RM — R be a differentiable function. Lete R . Let us define, for every ¢ R,
1
q(2,2) = ((2) + (2' = 2) TV((2) + §HZ' = zllE 2y

whereU (z) € RM*M is an SPD matrix. Theri/(z) satisfies the majoration condition fgrat z if ¢(-, z)

is a quadratic majorant of the functioq at z, i.e., for everyz’ € RM, ¢(2/) < ¢(#/, 2).

If function ¢ has anL-Lipschitzian gradient on a convex subgetC RM, with L > 0, i.e., for every
(2,2') € C?, |V¢(2) — V((2)| < L||z — #/|, then, for everyz € C, a quadratic majorant of at z is
trivially obtained by takingU(z) = L1y;.
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B. Proposed criterion

From now on, definitions and properties apply for every (z,)1<,<y € RY andh € R, unless
otherwise stated. We propose to define an estin(tﬁté) of (z,h) as a minimizer of the following
penalized criterion:

F(xvh) :p(x,h)—}—g(x,h)—l—go(x), (2)

where p(x, h) = %Hh x x — y||? is the least-squares objective functignintroduces additional a priori
information on the sought objects, and models the One-Over-Two norm ratio non-convex penalty
function [35], defined as the quotient 6f(z) = - |x,,| and fy(z) = (Zivzl :p%)l/z. The resulting
regularization term is both nonconvex and nonsmooth, sofithding a minimizer ofF" is a challenging
task.

The smooth approximations @ and/,, /1, (sometimes called hybrid;-¢> or hyperbolic penalty)

and/s ,, are defined as follows with parametric constafatsn):

lale) = i (Vaz+a2-a), toy(x) =

n=1

N
Z x2 +n?.
n=1

Note that/; and/, are recovered forr = n = 0. We thus propose to replace the nonsmooth functigh,

by a manageable smooth approximation. More precisely, waanthe following surrogate function:

la(z) + ﬁ) ’

o () 3)

p(z) = Alog (

with (X, 3, a,n) €]0, +oo[*.

Thelog function both makes the penalty easier to handle and, thrdsgoncavity, tends to strengthen
the sparsity promoting effect of thig /¢» function. F' corresponds to the Lagrangian function associated
with the minimization ofp 4+ g under the constraint
s (M

for some positive constart Owing to the monotonicity of thing function, [4) is equivalent t¢¢; (x)+

) < log(0). (@)

B)/l2.n(x) <49, which, according td_ {3), can be interpreted as a smoothoappation of an¢; /¢, upper
bound constraint, fof small enough. Finally, remark that lengthy but straightfamvcalculations allowed
us to prove thap has a Lipschitzian gradient on any bounded convex subsef'gfwhich is a desirable

property for deriving an efficient algorithm to minimizel (2 the following, we assume that can be
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split as
g(w,h) :gl<x)+92(h)a (5)

whereg; andg, are (non-necessarily smooth) proper, lower semicontisuocenvex functions, continuous

on their domain. Moreover, we denote by

f(xvh) :p(I,h)+(p(I), (6)

the smooth part of the criterion, and, f(z, k) € RY (resp.Vaf(z,h) € R®) the partial gradient off

with respect to its first (resp. second) argument computed:,dt).

[1l. PROPOSED ALTERNATING OPTIMIZATION METHOD
A. Proposed SOOT algorithm

To minimize [2), one can exploit the block-variable struetof F' by using an alternating forward-
backward algorithm[[25],[126]/[36]=[38]. At each iteratid: € N, this algorithm updates” (resp.r*)
with a gradient step orf (-, h*) (resp. f(z*+1,-)) followed by a proximity step om; (resp.gs).

We use this alternating minimization method combined withVéM strategy, as described in [26]. For
every(z, h) € RN x R, let us assume the existence of SPD matride6e, h) € RV*YN and Ay (x, h) €
R5*S such thatd, (z, h) (resp.Ax(x, h)) satisfies the majoration condition fg-, ») atz (resp.f(z,-)
ath). Then, the SOOT algorithm for the minimization bf (2) is désed in Algorithm[1. Note that PALM

Algorithm 1 SOOT algorithm.

For everyk € N, let J, € N*, I, € N* and |et(7]z€’j)0§jgjk_1 and(fy}’f’i)oggk_l be positive sequences.
Initialize with 20 € dom g; and® € dom gs.

Iterations:
Fork=0,1,...

:L’k’o _ l‘k, hk,O — hk,

Tk = ki — T Ay (2RI RRYTIV f (289 RR),
k,j+1 I

It = PYOX(yh3y-1.4, (ak3,h*),gs (w ’]) ’

2R — Rk
Fori=0,..., I — 1
Pk = R — i A (ah T, BB A f (R R,

ki+l _ ) Tk,
_kh L TOROR T Ak k) g <h ) :
RF+L = pk I,

algorithm [25] is recovered as a special caségiif= I, = 1 and, at each iteration, the Lipschitz constant
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of Vif(-, h*) (resp.Vaof(zFT1,.)) is substituted ford; (z*0, h¥) (resp.As(zF*1, h¥0)). However, recent
works on variable metric strategies [26], [28] show thatuke of more judicious preconditioning matrices
can significantly accelerate the convergence of the algorikn example of such matrices is proposed in
Section Il[-B. Moreover, we show in our experimental part ginactical interest in terms of convergence
speed of taking the number of inner 100(% )ren OF (Ji)ren greater than one.

The convergence of Algorithin 1 can be derived from the gemesallts established in [26]:

Proposition 1. Let (2*),en and (h*)en be sequences generated by Algorithm 1. Assume that:

1) There exist{v,7) €0, +oo[? such that, for allk € N,

(Vi €{0,....Jx—1}) vIy =A™ 0" 2 vly,

(Vie{0,..., I, —1}) vlg =< Ag(z* hb) <71g.

2) Step-size$ys)reno<j<s. 1 and (77" )keno<i<r, 1 are chosen in the intervay, 2 — 7] wherey
and# are some given positive real constants.
3) g is a semi-algebraic functi(ﬂ!.
Then, the sequende*, h¥),cn converges to a critical pointz, z) of (@). Moreover, (F (", hF)), cn 18
a nonincreasing sequence convergingHor, ﬁ).

B. Construction of the quadratic majorants

The numerical efficiency of the SOOT algorithm relies on the usquadratic majorants providing
tight approximations to the criterion and whose curvatuegrives are simple to compute. The following
proposition allows us to propose SPD matricksand A, for building majorizing approximations of

with respect tar and h.
Proposition 2. For every(z,h) € RY x R®, let

9IA
A h) = | Li(h — |1 — A
1o, h) < () + 77) N+fl,a($

/42($,h)1:<L2($)IS,

1semi-algebraicity is a property satisfied by a wide class of functions, whigsins that their graph is a finite union of sets
defined by a finite number of polynomial inequalities. In particular, it is Batior the SOOT penalty, for standard numerical
implementations of théog function.
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where

Auo ) = Ding (a2 +02)) ). @)

and Li(h) (resp. Ly(x)) is a Lipschitz constant fok 1 p(-, h) (resp. Vap(z, -))H Then, Ai(z, h) (resp.
As(x, h)) satisfies the majoration condition fgfi(-, k) at = (resp. f(z,-) at h).

Proof. Let us decompose = ¢1 + 2 With ¢ (z) = Alog (¢1.4(z) + B) andga(z) = —Alog (L2, (x)).
It then suffices to prove that, for everye RY,

(i) Ay, (2) = mflem (x) satisfies the majoration condition fgr, at x,
(i) @2 has au-Lipschitzian gradient, with: = 2.

On the one hand, setting(z) = ¢ (z) + 3, we have[[39]
1
r(@) < 7(@) + (@ = 2) V(@) + Sl =2l )

for everyz’ € RY, where A,  (x) is given by [T).

On the other hand, for everfy, v) €]0, +o00[?,
logvglogu—l—g—l:logu—l—ﬁ. (9)
u u

By takingv = 7(2’) > 0 andu = 7(x) > 0, and by combining[(8) and}(9), we obtain

/ ]‘ /
(2 —2)"Vr(z) + §($ — )

Thus, Statement (i) is proved by remarking thap; (z) = %Vr(:p) and Ay, (z) = ==

the other hand, the Hessian @f is given by

2 s A
l5.() 03 (@)

Noting that/3, (x) = ||z||* + »?, and applying the triangular inequality yield

VQQDQ({L‘) IN .

27|z A

Vs ()| <
| I< e +me TP

= x([l=),

wherey: u € [0, +00[— A%. The derivative ofy is given, for everyu € [0, +oo|, by

X0 = A s 0 = 30,

2Such Lipschitz constants are straightforward to derive sinéea quadratic cost.
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thusy is an increasing function 0, n/+/3] and a decreasing function &m/v/3, +oo], andsup,¢o, 4oo[ X (1) =
x (n/v/3) = g2. Hence, the proof of Statement (il

IV. APPLICATION TO SEISMIC DATA DECONVOLUTION
A. Problem statement

As some of the earliest mentions 6f/¢, deconvolution appeared in geophysics![19], blind seismic
deconvolution (or inversiorn_[40]/ [41]) is a natural applion. The sparse seismic sigral of length
N = 784, on the top of Figl.ll is composed of a sequence of spikes termmany reflection coefficients
[42]. This reflectivity series indicates, in reflection seisogy at normal incidence, the travel time of
seismic waves between two seismic reflectors, and the amplibfithe seismic events reflected back to
the sensor. The observed seismic trgcdisplayed in Fig[fl-bottom follows Modell(1). In this context
the blurh is related to the generated seismic source. We use here gphaadRicker” seismic wavelet
(or Mexican hat[[4B]) of size5 = 41 (Fig.[3-bottom) with a frequency spectrum concentrated betw
10 and 40 Hz. The additive noisev is a realization of a zero-mean white Gaussian noise witfanee
o2. Since the reflectivity series is sparse, but limited in araght we choose; as the indicator function
of the convex hypercubBr,in, Tmax]” . Similarly, as the seismic wavelet possesses finite engsgig
equal to the indicator function of the sét= {h € [Amin, hmax]” | [|2]] < 6}, whered > 0, and hyin

(resp.hmax) i the minimum (resp. maximum) value bf

B. Numerical results

Fig. [@ presents the variations of the reconstruction timeséoonds, with respect to the number of
inner-loopsJ, = J, with I, = 1 and noise leveb = 0.03. The reconstruction time corresponds to the
stopping criterion||z* — zF~1|| < v/N x 107%. One can observe that the best compromise in terms of
convergence speed is obtained for an intermediate numbenei-loops, namely/ = 71. Note that the

quality of the reconstruction is stable for each choice/of

Fig. 2. Reconstruction time for different numbers of inner-loops= J (average over thirty noise realizations).

We gather comparisons of the SOOT algorithm with![23] in Tdblevhere the same initializa-
tion strategy has been used for both algorithm$:is a constant-valued signal such that’|| <
max{|Tmin|, [max|}, andh? is a centered Gaussian filter, such thétc C. Results presented in this table,

for each noise level, are averaged over two hundred noise realizations. Theaegation parameters
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of [23] and (), o, 8,1) €]0, +oo[* of (3) are adjusted so as to minimize thenorm between the original
and the reconstructed signals. We also set, for ekegyN, J, = 71 and [, = 1. If both methods vyield
tremendous improvements 3 and/; norms, the SOOT algorithm exhibits better results, for alkao
levels, for bothz and h estimates, especially in terms 6f norm. Interestingly, the SOOT algorithm is
also significantly faster in this application.

The performance is further assessed by subjective results $60.03. Fig.[3-top shows the residual
error of the sparse signal estimation- z, for a given noise realization, whefieis estimated with[[23]
in (a), and with SOQT in (b). It appears, in this example, thaterror is smaller using SOOT algorithm.

The estimated blur kernels look similar for both methods, iaplayed in Fig[B-bottom.

] Noise level §) [ 0.01]0.02]0.03]

: 7> (x10 %) | 7.14 | 7.35| 7.68

Observation error =~ 16=2y1> g5 [ 3.44 | 4.09

23 | (107 [123[166] L84

Sianal error 7, (x10°%) [ 3.79] 4.69| 5.30

9 soor |2 (x107%) | 1.09| 163 1.83

7, (x10°9) | 3.42 | 430 | 4.85

23 | (<107 [188[251]321

Kermel error 7, (x10°%) | 1.44 | 1.96 | 2.53

soor |2 (x107) [ 162 | 226] 2.93

7 (x10°?) | 1.22 [ 1.77| 2.31

. 23] 106 | 61 | 56

Time (s.) SO0T 56 | 22 | 18
TABLE 1

COMPARISON BETWEEN[23] AND SOOTFORT AND h ESTIMATES (INTEL(R) XEON(R) CPU E5-2609%2@2.5GH
USING MATLAB 8).

Fig. 3. Top: signal estimation errar—z with estimates given by [23] (a) and SOOT (b). Bottom: Original blar(continuous
thin blue), estimated with SOOT (continuous thick black) and [23] (dashed thick green).

V. CONCLUSION

The proposed SOQOT algorithm for minimizing &r/¢, penalized criterion has been demonstrated to
be quite effective in a blind deconvolution application aismic reflectivity data. In addition, one of
its advantages is that it offers theoretically guarantesa/ergence. In future works, its use should be
investigated for a broader class of application areas, vherm ratios are beneficial: adaptive filtering
[44], compression[[45], sparse system identificationl [46Rrse recovery [21], or cardinality-penalized
clustering [[47]. The application of the method using a nowlgaiic data fidelity term, in association with

more sophisticated preconditioning matrices, is also ohnirgerest.
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