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Abstract

Theℓ1/ℓ2 ratio regularization function has shown good performance for retrieving sparse signals in a

number of recent works, in the context of blind deconvolution. Indeed, it benefits from a scale invariance

property much desirable in the blind context. However, theℓ1/ℓ2 function raises some difficulties

when solving the nonconvex and nonsmooth minimization problems resulting from the use of such

a penalty term in current restoration methods. In this paper, we propose a new penalty based on a

smooth approximation to theℓ1/ℓ2 function. In addition, we develop a proximal-based algorithm to

solve variational problems involving this function and we derive theoretical convergence results. We

demonstrate the effectiveness of our method through a comparison with a recent alternating optimization

strategy dealing with the exactℓ1/ℓ2 term, on an application to seismic data blind deconvolution.
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Fig. 1. Unknown seismic signal̄x (top), blurred/noisy observationy (bottom).

I. I NTRODUCTION

Many experimental settings are modeled as inverse problems. They resort to estimating an unknown

signalx ∈ R
N from observationsy ∈ R

N , through the measurement process:

y = h ∗ x+ w , (1)

an illustration of which is provided in Fig. 1. Here,h ∈ R
S represents an impulse response (e.g. a linear

sensor response or a “blur” convolutive point spread function), ∗ denotes a discrete-time convolution

operator (with appropriate boundary processing), andw ∈ R
N is a realization of a random variable

modeling an additive noise. Standard approaches, such as Wiener filtering and its statistical extensions

[1], aim at minimizing criteria based on the squared Euclidean norm (ℓ22). However, the use of the sole

least squares data fidelity term is prone to noise sensitivityand the addition of anℓ22 regularization

often leads to over-smoothed estimates. The deconvolution problem becomes blind, even more ill-posed,

when the blur kernelh is unknown, and needs to be estimated as well as the target signal. Applications

include communications (equalization or channel estimation) [2], nondestructive testing [3], geophysics

[4]–[6], image processing [7]–[10], medical imaging and remote sensing [11]. Blind deconvolution, being

an underdetermined problem, often requires additional hypotheses. A usual approach seeks estimates

(x̂, ĥ) ∈ R
N ×R

S of (x, h) as minimizers of the sum of a data fidelity term and additional regularization

terms on the signal and on the blur kernel. Such regularization functions account for a priori assumptions

one imposes on original sought objects, like sparsity, and ensure the stability of the solution. Blind

deconvolution is subject to scaling ambiguity, and suggests scale-invariant contrast functions [12], [13].

A decade ago, a Taxicab-Euclidean norm ratio (ℓ1/ℓ2) arose as a sparseness measure [14]–[17], used in

NMF (Nonlinear Matrix Factorization) [18]. Earlier mentions of a one-norm/two-norm ratio deconvolution

appeared in geophysics [19]. It has since been used to constrain sharp images through wavelet frame

coefficients [20], or for sparse recovery [21]. Such a regularization term is moreover suggested in [22]

to avoid common pitfalls in blind sparse deconvolution.

Recently, [23] proposed an alternating minimization algorithm to deal with theℓ1/ℓ2 regularization

function. Its originality consists of transforming theℓ1/ℓ2 nonconvex regularization term into a convex

ℓ1 regularization function. This is done in a reweighted fashion, by fixing the denominatorℓ2 from the

previous iterate. An iterative shrinkage-thresholding algorithm finally solves the remainingℓ1 regularized

problem. Although the convergence of this approach has not been deeply investigated, it appears to

DRAFT



3

be quite efficient in practice. More recently, [24] proposed ascaled gradient projection algorithm for

minimizing a smooth approximation of theℓ1/ℓ2 function, however limited to the case when the sparse

signal to retrieve takes nonnegative values. We generalizethis idea to a parametrized Smoothed One-Over-

Two (SOOT) penalty for signed, real data. We present a novel efficient method based on recent results in

nonconvex optimization combining an alternating minimization strategy with a forward-backward iteration

[25], [26]. Moreover, we accelerate the convergence of our algorithm by using a Majorize-Minimize (MM)

approach [26]–[28]. Section II introduces the minimizationproblem. Section III describes the proposed

method and provides convergence results. The algorithm performance, compared with [23], is discussed

in Section IV for seismic data blind deconvolution. Some conclusions are drawn in Section V.

II. OPTIMIZATION MODEL

A. Optimization tools

Our minimization strategy relies on two optimization principles. LetU ∈ R
M×M be a symmetric

positive definite (SPD) matrix. Firstly, we define theU -weighted proximity operator [29, Sec. XV.4],

[30] of a proper, lower semicontinuous, convex functionψ : R
M →] −∞,+∞] at z ∈ R

M , relative to

the metric induced byU , and denoted byproxU,ψ(z), as the unique minimizer ofψ+ 1
2‖ · −z‖2U , where

‖.‖U denotes the weighted Euclidean norm, i.e.,(∀z ∈ R
M ) ‖z‖U =

(
z⊤Uz

)1/2
. WhenU is equal toIM ,

the identity matrix ofRM×M , thenproxIM ,ψ reduces to the original definition of the proximity operator

in [31]. We refer to [32]–[34] for additional details on proximity operators. Secondly, we introduce the

Majoration-Minimization (MM) principle:

Definition 1. Let ζ : R
M → R be a differentiable function. Letz ∈ R

M . Let us define, for everyz′ ∈ R
M ,

q(z′, z) = ζ(z) + (z′ − z)⊤∇ζ(z) + 1

2
‖z′ − z‖2U(z),

whereU(z) ∈ R
M×M is an SPD matrix. Then,U(z) satisfies the majoration condition forζ at z if q(·, z)

is a quadratic majorant of the functionζ at z, i.e., for everyz′ ∈ R
M , ζ(z′) ≤ q(z′, z).

If function ζ has anL-Lipschitzian gradient on a convex subsetC ⊂ R
M , with L > 0, i.e., for every

(z, z′) ∈ C2, ‖∇ζ(z) −∇ζ(z′)‖ ≤ L‖z − z′‖, then, for everyz ∈ C, a quadratic majorant ofζ at z is

trivially obtained by takingU(z) = L IM .
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B. Proposed criterion

From now on, definitions and properties apply for everyx = (xn)1≤n≤N ∈ R
N andh ∈ R

S , unless

otherwise stated. We propose to define an estimate(x̂, ĥ) of (x, h) as a minimizer of the following

penalized criterion:

F (x, h) = ρ(x, h) + g(x, h) + ϕ(x), (2)

whereρ(x, h) = 1
2‖h ∗ x − y‖2 is the least-squares objective function,g introduces additional a priori

information on the sought objects, andϕ models the One-Over-Two norm ratio non-convex penalty

function [35], defined as the quotient ofℓ1(x) =
∑N

n=1 |xn| and ℓ2(x) =
(∑N

n=1 x
2
n

)1/2
. The resulting

regularization term is both nonconvex and nonsmooth, so that finding a minimizer ofF is a challenging

task.

The smooth approximations ofℓ1 and ℓ2, ℓ1,α (sometimes called hybridℓ1-ℓ2 or hyperbolic penalty)

and ℓ2,η, are defined as follows with parametric constants(α, η):

ℓ1,α(x) =

N∑

n=1

(√
x2n + α2 − α

)
, ℓ2,η(x) =

√√√√
N∑

n=1

x2n + η2.

Note thatℓ1 andℓ2 are recovered forα = η = 0. We thus propose to replace the nonsmooth functionℓ1/ℓ2

by a manageable smooth approximation. More precisely, we employ the following surrogate function:

ϕ(x) = λ log

(
ℓ1,α(x) + β

ℓ2,η(x)

)
, (3)

with (λ, β, α, η) ∈]0,+∞[4.

The log function both makes the penalty easier to handle and, through its concavity, tends to strengthen

the sparsity promoting effect of theℓ1/ℓ2 function.F corresponds to the Lagrangian function associated

with the minimization ofρ+ g under the constraint

log

(
ℓ1,α(x) + β

ℓ2,η(x)

)
≤ log(ϑ), (4)

for some positive constantϑ. Owing to the monotonicity of thelog function, (4) is equivalent to(ℓ1,α(x)+

β)/ℓ2,η(x) ≤ ϑ, which, according to (3), can be interpreted as a smooth approximation of anℓ1/ℓ2 upper

bound constraint, forβ small enough. Finally, remark that lengthy but straightforward calculations allowed

us to prove thatϕ has a Lipschitzian gradient on any bounded convex subset ofR
N , which is a desirable

property for deriving an efficient algorithm to minimize (2).In the following, we assume thatg can be
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split as

g(x, h) = g1(x) + g2(h), (5)

whereg1 andg2 are (non-necessarily smooth) proper, lower semicontinuous, convex functions, continuous

on their domain. Moreover, we denote by

f(x, h) = ρ(x, h) + ϕ(x), (6)

the smooth part of the criterion, and∇1f(x, h) ∈ R
N (resp.∇2f(x, h) ∈ R

S) the partial gradient off

with respect to its first (resp. second) argument computed at(x, h).

III. PROPOSED ALTERNATING OPTIMIZATION METHOD

A. Proposed SOOT algorithm

To minimize (2), one can exploit the block-variable structure of F by using an alternating forward-

backward algorithm [25], [26], [36]–[38]. At each iteration k ∈ N, this algorithm updatesxk (resp.hk)

with a gradient step onf(·, hk) (resp.f(xk+1, ·)) followed by a proximity step ong1 (resp.g2).

We use this alternating minimization method combined with an MM strategy, as described in [26]. For

every(x, h) ∈ R
N ×R

S , let us assume the existence of SPD matricesA1(x, h) ∈ R
N×N andA2(x, h) ∈

R
S×S such thatA1(x, h) (resp.A2(x, h)) satisfies the majoration condition forf(·, h) at x (resp.f(x, ·)

ath). Then, the SOOT algorithm for the minimization of (2) is described in Algorithm 1. Note that PALM

Algorithm 1 SOOT algorithm.

For everyk ∈ N, let Jk ∈ N
∗, Ik ∈ N

∗ and let(γk,jx )0≤j≤Jk−1 and(γk,ih )0≤i≤Ik−1 be positive sequences.
Initialize with x0 ∈ dom g1 andh0 ∈ dom g2.
Iterations:
For k = 0, 1, . . .

xk,0 = xk, hk,0 = hk,
For j = 0, . . . , Jk − 1⌊
x̃k,j = xk,j − γk,jx A1(x

k,j , hk)−1∇1f(x
k,j , hk),

xk,j+1 = prox(γk,j
x )−1A1(xk,j ,hk),g1

(
x̃k,j

)
,

xk+1 = xk,Jk .
For i = 0, . . . , Ik − 1⌊
h̃k,i = hk,i − γk,ih A2(x

k+1, hk,i)−1∇2f(x
k+1, hk,i),

hk,i+1 = prox(γk,i

h )−1A2(xk+1,hk,i),g2

(
h̃k,i

)
,

hk+1 = hk,Ik .

algorithm [25] is recovered as a special case ifJk ≡ Ik ≡ 1 and, at each iteration, the Lipschitz constant
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of ∇1f(·, hk) (resp.∇2f(x
k+1, ·)) is substituted forA1(x

k,0, hk) (resp.A2(x
k+1, hk,0)). However, recent

works on variable metric strategies [26], [28] show that theuse of more judicious preconditioning matrices

can significantly accelerate the convergence of the algorithm. An example of such matrices is proposed in

Section III-B. Moreover, we show in our experimental part thepractical interest in terms of convergence

speed of taking the number of inner loops(Ik)k∈N or (Jk)k∈N greater than one.

The convergence of Algorithm 1 can be derived from the generalresults established in [26]:

Proposition 1. Let (xk)k∈N and (hk)k∈N be sequences generated by Algorithm 1. Assume that:

1) There exists(ν, ν) ∈]0,+∞[2 such that, for allk ∈ N,

(∀j ∈ {0, . . . , Jk − 1}) ν IN � A1(x
k,j , hk) � ν IN ,

(∀i ∈ {0, . . . , Ik − 1}) ν IS � A2(x
k+1, hk,i) � ν IS .

2) Step-sizes(γk,jx )k∈N,0≤j≤Jk−1 and (γk,ih )k∈N,0≤i≤Ik−1 are chosen in the interval[γ, 2− γ] whereγ

and γ are some given positive real constants.

3) g is a semi-algebraic function.1

Then, the sequence(xk, hk)k∈N converges to a critical point(x̂, ĥ) of (2). Moreover,
(
F (xk, hk)

)
k∈N

is

a nonincreasing sequence converging toF (x̂, ĥ).

B. Construction of the quadratic majorants

The numerical efficiency of the SOOT algorithm relies on the use of quadratic majorants providing

tight approximations to the criterion and whose curvature matrices are simple to compute. The following

proposition allows us to propose SPD matricesA1 andA2 for building majorizing approximations off

with respect tox andh.

Proposition 2. For every(x, h) ∈ R
N ×R

S , let

A1(x, h) =

(
L1(h) +

9λ

8η2

)
IN +

λ

ℓ1,α(x) + β
Aℓ1,α(x),

A2(x, h) = L2(x) IS ,

1Semi-algebraicity is a property satisfied by a wide class of functions, whichmeans that their graph is a finite union of sets
defined by a finite number of polynomial inequalities. In particular, it is satisfied for the SOOT penalty, for standard numerical
implementations of thelog function.
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where

Aℓ1,α(x) = Diag

((
(x2n + α2)−1/2

)
1≤n≤N

)
, (7)

and L1(h) (resp.L2(x)) is a Lipschitz constant for∇1ρ(·, h) (resp.∇2ρ(x, ·)).2 Then,A1(x, h) (resp.

A2(x, h)) satisfies the majoration condition forf(·, h) at x (resp.f(x, ·) at h).

Proof. Let us decomposeϕ = ϕ1 + ϕ2 with ϕ1(x) = λ log (ℓ1,α(x) + β) andϕ2(x) = −λ log (ℓ2,η(x)).
It then suffices to prove that, for everyx ∈ R

N ,

(i) Aϕ1
(x) = λ

ℓ1,α(x)+β
Aℓ1,α(x) satisfies the majoration condition forϕ1 at x,

(ii) ϕ2 has aµ-Lipschitzian gradient, withµ = 9λ
8η2 .

On the one hand, settingτ(x) = ℓ1,α(x) + β, we have [39]

τ(x′) ≤ τ(x) + (x′ − x)⊤∇τ(x) + 1

2
‖x′ − x‖2Aℓ1,α

(x), (8)

for everyx′ ∈ R
N , whereAℓ1,α(x) is given by (7).

On the other hand, for every(u, v) ∈]0,+∞[2,

log v ≤ log u+
v

u
− 1 = log u+

v − u

u
. (9)

By taking v = τ(x′) > 0 andu = τ(x) > 0, and by combining (8) and (9), we obtain

ϕ1(x
′) ≤ ϕ1(x) +

λ

τ(x)
(x′ − x)⊤∇τ(x) + 1

2
(x′ − x)⊤

λ

τ(x)
Aℓ1,α(x)(x

′ − x).

Thus, Statement (i) is proved by remarking that∇ϕ1(x) =
λ

τ(x)∇τ(x) andAϕ1
(x) = λ

τ(x)Aℓ1,α(x). On

the other hand, the Hessian ofϕ2 is given by

∇2ϕ2(x) =
2λ

ℓ42,η(x)
xx⊤ − λ

ℓ22,η(x)
IN .

Noting thatℓ22,η(x) = ‖x‖2 + η2, and applying the triangular inequality yield

‖∇2ϕ2(x)‖ ≤ 2λ‖x‖2
(‖x‖2 + η2)2

+
λ

‖x‖2 + η2
= χ(‖x‖),

whereχ : u ∈ [0,+∞[ 7→ λ 3u2+η2

(u2+η2)2 . The derivative ofχ is given, for everyu ∈ [0,+∞[, by

χ̇(u) = λ
2u

(u2 + η2)3
(η2 − 3u2),

2Such Lipschitz constants are straightforward to derive sinceρ is a quadratic cost.
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thusχ is an increasing function on[0, η/
√
3] and a decreasing function on]η/

√
3,+∞[, andsupu∈[0,+∞[ χ(u) =

χ
(
η/

√
3
)
= 9λ

8η2 . Hence, the proof of Statement (ii).�

IV. A PPLICATION TO SEISMIC DATA DECONVOLUTION

A. Problem statement

As some of the earliest mentions ofℓ1/ℓ2 deconvolution appeared in geophysics [19], blind seismic

deconvolution (or inversion [40], [41]) is a natural application. The sparse seismic signalx, of length

N = 784, on the top of Fig. 1 is composed of a sequence of spikes termed primary reflection coefficients

[42]. This reflectivity series indicates, in reflection seismology at normal incidence, the travel time of

seismic waves between two seismic reflectors, and the amplitude of the seismic events reflected back to

the sensor. The observed seismic tracey displayed in Fig. 1-bottom follows Model (1). In this context,

the blurh is related to the generated seismic source. We use here a band-pass “Ricker” seismic wavelet

(or Mexican hat [43]) of sizeS = 41 (Fig. 3-bottom) with a frequency spectrum concentrated between

10 and40Hz. The additive noisew is a realization of a zero-mean white Gaussian noise with variance

σ2. Since the reflectivity series is sparse, but limited in amplitude, we chooseg1 as the indicator function

of the convex hypercube[xmin, xmax]
N . Similarly, as the seismic wavelet possesses finite energy,g2 is

equal to the indicator function of the setC = {h ∈ [hmin, hmax]
S | ‖h‖ ≤ δ}, whereδ > 0, andhmin

(resp.hmax) is the minimum (resp. maximum) value ofh.

B. Numerical results

Fig. 2 presents the variations of the reconstruction time, inseconds, with respect to the number of

inner-loopsJk ≡ J , with Ik ≡ 1 and noise levelσ = 0.03. The reconstruction time corresponds to the

stopping criterion‖xk − xk−1‖ ≤
√
N × 10−6. One can observe that the best compromise in terms of

convergence speed is obtained for an intermediate number ofinner-loops, namelyJ = 71. Note that the

quality of the reconstruction is stable for each choice ofJ .

Fig. 2. Reconstruction time for different numbers of inner-loopsJk ≡ J (average over thirty noise realizations).

We gather comparisons of the SOOT algorithm with [23] in TableI, where the same initializa-

tion strategy has been used for both algorithms:x0 is a constant-valued signal such that‖x0‖ ≤
max{|xmin|, |xmax|}, andh0 is a centered Gaussian filter, such thath0 ∈ C. Results presented in this table,

for each noise levelσ, are averaged over two hundred noise realizations. The regularization parameters
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of [23] and(λ, α, β, η) ∈]0,+∞[4 of (3) are adjusted so as to minimize theℓ1 norm between the original

and the reconstructed signals. We also set, for everyk ∈ N, Jk = 71 andIk = 1. If both methods yield

tremendous improvements inℓ2 and ℓ1 norms, the SOOT algorithm exhibits better results, for all noise

levels, for bothx andh estimates, especially in terms ofℓ1 norm. Interestingly, the SOOT algorithm is

also significantly faster in this application.

The performance is further assessed by subjective results for σ = 0.03. Fig. 3-top shows the residual

error of the sparse signal estimationx− x̂, for a given noise realization, wherêx is estimated with [23]

in (a), and with SOOT in (b). It appears, in this example, that the error is smaller using SOOT algorithm.

The estimated blur kernels look similar for both methods, as displayed in Fig. 3-bottom.

Noise level (σ) 0.01 0.02 0.03

Observation error
ℓ2 (×10−2) 7.14 7.35 7.68
ℓ1 (×10−2) 2.85 3.44 4.09

Signal error
[23]

ℓ2 (×10−2) 1.23 1.66 1.84
ℓ1 (×10−3) 3.79 4.69 5.30

SOOT
ℓ2 (×10−2) 1.09 1.63 1.83
ℓ1 (×10−3) 3.42 4.30 4.85

Kernel error
[23]

ℓ2 (×10−2) 1.88 2.51 3.21
ℓ1 (×10−2) 1.44 1.96 2.53

SOOT
ℓ2 (×10−2) 1.62 2.26 2.93
ℓ1 (×10−2) 1.22 1.77 2.31

Time (s.)
[23] 106 61 56

SOOT 56 22 18
TABLE I

COMPARISON BETWEEN[23] AND SOOTFORx AND h ESTIMATES (INTEL(R) XEON(R) CPU E5-2609V2@2.5GHZ

USING MATLAB 8).

Fig. 3. Top: signal estimation errorx− x̂ with estimateŝx given by [23] (a) and SOOT (b). Bottom: Original blurh (continuous
thin blue), estimated̂h with SOOT (continuous thick black) and [23] (dashed thick green).

V. CONCLUSION

The proposed SOOT algorithm for minimizing anℓ1/ℓ2 penalized criterion has been demonstrated to

be quite effective in a blind deconvolution application on seismic reflectivity data. In addition, one of

its advantages is that it offers theoretically guaranteed convergence. In future works, its use should be

investigated for a broader class of application areas, where norm ratios are beneficial: adaptive filtering

[44], compression [45], sparse system identification [46], sparse recovery [21], or cardinality-penalized

clustering [47]. The application of the method using a nonquadratic data fidelity term, in association with

more sophisticated preconditioning matrices, is also of main interest.
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