
HAL Id: hal-01330595
https://ifp.hal.science/hal-01330595

Submitted on 11 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lapped transforms and hidden Markov models for
seismic data filtering

Laurent Duval, Caroline Chaux

To cite this version:
Laurent Duval, Caroline Chaux. Lapped transforms and hidden Markov models for seismic data
filtering. International Journal of Wavelets, Multiresolution, and Information Processing, 2004, 2 (4),
pp.455-476. �10.1142/S0219691304000676�. �hal-01330595�

https://ifp.hal.science/hal-01330595
https://hal.archives-ouvertes.fr


August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
International Journal of Wavelets, Multiresolution and Information Pro
essing

 World S
ienti�
 Publishing Company
Lapped transforms and hidden Markov models for seismi
 data �ltering�Laurent DUVALTe
hnology, Computer S
ien
e and Applied Mathemati
s Department,Institut Fran�
ais du P�etrole,92500 Rueil-Malmaison Cedex, Fran
elaurent.duval�ifp.frCaroline CHAUXInstitut G. Monge, Universit�e de Marne-la-Vall�ee77454 Marne-la-Vall�ee, Fran
e
aroline.
haux�univ-mlv.frRe
eived (Day Month Year)Revised (Day Month Year)Communi
ated by (xxxxxxxxxx)Seismi
 exploration provides information about the ground substru
tures. Seismi
 im-ages are generally 
orrupted by several noise sour
es. Hen
e, eÆ
ient denoising pro
e-dures are required to improve the dete
tion of essential geologi
al information. Waveletbases provide sparse representation for a wide 
lass of signals and images. This propertymakes them good 
andidates for eÆ
ient �ltering tools, allowing the separation of signaland noise 
oeÆ
ients. Re
ent works have improved their performan
e by modelling theintra- and inter-s
ale 
oeÆ
ient dependen
ies using hidden Markov models, sin
e imagefeatures tend to 
luster and persist in the wavelet domain. This work fo
uses on the useof lapped transforms asso
iated with hidden Markov modelling. Lapped transforms aretraditionally viewed as blo
k-transforms, 
omposed of M pass-band �lters. Seismi
 datapresent os
illatory patterns and lapped transforms os
illatory bases have demonstratedgood performan
es for seismi
 data 
ompression. A dyadi
 like representation of lappedtransform 
oeÆ
ient is possible, allowing a wavelet-like modelling of 
oeÆ
ients depen-den
ies. We show that the proposed �ltering algorithm often outperforms the waveletperforman
e both obje
tively (in terms of SNR) and subje
tively: lapped transform bet-ter preserve the os
illatory features present in seismi
 data at low to moderate noiselevels.Keywords: seismi
 data �ltering; lapped transforms; hidden Markov models.AMS Subje
t Classi�
ation: 22E46, 53C35, 57S20�This work has been partly presented to the Wavelets and Statisti
s Conferen
e, Sep. 4{7, 2003,Grenoble, Fran
e. 1
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2 L. Duval, C. Chaux1. Introdu
tionSeismi
 exploration aims at providing information about the ground substru
tures.This information is addressed indire
tly by disturban
es, arti�
ially 
reated byseismi
 energy sour
es. The disturban
es propagate through the ground, wheregeophysi
al strata re
e
t the spreading wave front. Portions of the re
e
ted (orrefra
ted) waves are then 
olle
ted by sensors, often situated near the ground sur-fa
e. The one-dimensional signal a
quired by a single sensor is 
alled a seismi
tra
e. In the simplest 
onvolutive earth model, a tra
e is a time-based signal 
om-posed of the generated disturban
e 
onvolved with the re
e
tion 
oeÆ
ients at thestrata interfa
es. Seismi
 pro
essing is the task of inferring substru
tures lo
ationand properties from the 
olle
ted signals, with the help of geologi
al models. Seis-mi
 signals generally de
rease in energy as the wave front propagates deeper andare s
attered by subsurfa
e heterogeneities. The signals are also 
orrupted by sev-eral noise sour
es that redu
e the possibility to dete
t essential information su
h asstrata or faults. Seismi
 data �ltering is thus a prominent task in seismi
 pro
essing,espe
ially as exploration aims at imaging deeper targets, in geologi
ally disturbedzones.Although the term wavelet(from the Fren
h ondelette, or little wave1) was orig-inally used in seismi
 for the short support dira
 shaped disturban
e, wavelets havere-emerged only re
ently in geophysi
s as eÆ
ient 
ompression2 and noise �lteringtools3.1.1. Related workDue to the large volumes of seismi
 data, the dis
rete wavelet transform (DWT) hasgenerally been preferred to its 
ontinuous integral 
ounterpart. Some authors havenevertheless remarked that, although seismi
 tra
es usually appear as naturallymade of physi
al wavelets, seismi
 images are sometimes more eÆ
iently representedby other short lo
al bases. It as been shown in the 
ontext of 
ompression withlapped transforms4 (LT) seen as �lter banks or with the Lo
al Cosine Transform5(LCT). These short lo
al bases are believed to be more eÆ
ient at 
apturing seismi
os
illatory patterns, whi
h bear some similarities with textures in natural images.A 
omparison of various lo
al 
osine transforms for image 
ompression is given in6.Going ba
k to about more than 15 years of developments, the dis
rete wavelettransform provides sparse bases for natural signal and images. As a 
onsequen
e,numerous DWT-based algorithms have been proposed in the past years for eÆ
ientsignal and image statisti
al analysis. For instan
e, wavelet-domain thresholding orshrinkage is known to provide asymptoti
ally optimal performan
e7 in the 
ase ofgaussian additive noise. One of the key to noise �ltering is to transform the signaland the noise to a domain where their statisti
s are modelled more eÆ
iently,via appropriate (often orthogonal) transforms. But it has been qui
kly remarkedthat a mere s
alar 
oeÆ
ient thresholding after transformation did not yield thebest results in pra
ti
al implementations. More spe
i�
ally, several authors have
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 data �ltering 3observed that wavelet de
ompositions exhibit two heuristi
 properties often termedas "
lustering" and "persisten
e": feature-related wavelet 
oeÆ
ients (near edgesor singularities) tend to 
luster lo
ally in a subband and to persist a
ross s
ales,through the 
lassi
al wavelet parent-
hild quad-tree stru
ture. Re
ently, algorithmsadopted tree-adapted subband-dependent shrinkage8;9. Also, sophisti
ated modelsof the joint statisti
s may be useful for 
apturing key-features in real-world images.Re
ent approa
hes rely on Markov random �elds. We refer to L. Rabiner10 and A.Willsky11 for an ri
h overview of their use in signal and image pro
essing.Re
ently, M. Crouse et al.12;13 have proposed a new framework based on thehidden Markov tree. Based on12, H. Choi et al.14 have proposed eÆ
ient imagedenoising15 as well as robust SAR segmentation16. HMM-based algorithms seemto take more advantage of the "
lustering" and "persisten
e" properties of wavelet
oeÆ
ients around image features. They yield an improved modelling of the 
oef-�
ients' statisti
al dependen
ies and their non Gaussian behavior. They have re-
ently been notably improved by their use in the 
ontext of texture segmentationwith dual-tree 
omplex wavelets17 and steerable pyramids18.1.2. Main 
ontributionWe propose in the present work to extend the use of hidden Markov models toa lapped transform domain for seismi
 data �ltering. This work has been partlypresented in19. LT are usually viewed as blo
k-transforms, 
omposed of M pass-band �lters. The superiority of lapped transforms over wavelets may 
ome fromadditional design 
exibility and short lo
al bases.Lapped transforms were generally not often used in 
ompression on denoisingalgorithms, due to the superiority of the inter-s
ale 
oeÆ
ient dependen
y obtainedfrom the wavelet dyadi
 de
omposition. Though, T. Tran et al.20 have demonstratedthat well-designed LT are able to improve on DWT for natural image 
ompression,in the Embedded Zero-tree framework21. In the 
ontext of denoising, the LT 
o-eÆ
ients are rearranged into an o
tave-like representation. The resulting "s
ales"bear the same 
lustering and persisten
e properties as in the wavelet representation.Moreover, LT design may enfor
e both orthogonality and linear-phase (in 
ontrastto non-Haar 1D wavelets), as well as attra
tive additional degrees of freedom indesign.The superiority of lapped transforms over wavelets may 
ome from these de-sign degrees of freedom and sharper frequen
y attenuation properties of the M�lters (potentially redu
ing aliasing e�e
ts a
ross the subbands). One other inter-esting feature is based on Z. Xiong et al.22: the dyadi
 remapping property. Whenthe number of 
hannels M is a power of 2, the transformed 
oeÆ
ients may berearranged into an o
tave-like representation. Experiments demonstrate that theresulting "s
ales" still bear interesting 
lustering and persisten
e properties, whilekeeping superior os
illatory pattern preservation.As a 
onsequen
e, we propose here to use hidden Markov models with lapped
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4 L. Duval, C. Chauxtransforms, relying on12;15. Spe
ial 
are is taken in the design of the LT used, toassess the anisotropi
 shape of some seismi
 surveys.In the following, we �rst address the philosophy behind the re
ently developedwavelet-domain hidden Markov models in Se
tion 2. Then, we fo
us on the 
ombi-nation of lapped transforms and hidden Markov models in Se
tion 3, where lappedtransforms design and properties are reviewed, as well as the dyadi
 representationof blo
k transforms. Se
tion 4 brie
y des
ribes properties of seismi
 data with anemphasis on their os
illatory nature. Obje
tive and subje
tive denoising results aredis
ussed in Se
tion 5. Finally, we draw some 
on
lusions on the proposed lappedtransform based hidden Markov model denoising algorithm, as well as possible im-provements.2. Wavelet-Domain Hidden Markov ModelsUnder the additive noise assumption, an image x and its noisy observation xn areusually written as xn(i; j) = x(i; j) + n(i; j) ; (2.1)where n is a random noise. The joint probability density fun
tion of the familyof images that x belongs to is often unattainable. Based on wavelet approximatede
orrelation, simpler models have been proposed for 
oeÆ
ient modelling. Thesimplest independent Gaussian models generally obtain improvements from residualinter-
oeÆ
ients dependen
ies.M. Crouse et al.12 have re
ently proposed a new framework for statisti
al signalpro
essing, based on wavelet-domain hidden Markov models (WD-HMM).Let wj;k denote a wavelet 
oeÆ
ient at level j, 1 � j � J , with j = 1 
orre-sponding to the 
oarsest wavelet s
ale. The marginal pdf for the asso
iated randomvariableW is modelled as a Gaussian mixture of NS 
omponents. In the frameworkof hidden Markov models23, a dis
rete hidden state Sj;k is asso
iated to ea
h wj;kwith a probability mass fun
tion P (Sj;k = s) given for ea
h state s, 1 � s � NS .While the values wj;k are observed, the value of the state S is generally unknown.Depending on the a
tual state s the 
oeÆ
ient, the 
onditional pdf of W givenS = s is given by fW jS(wjS = s), modelled as a Gaussian distribution, des
ribedin Eq. 2.2: gs(w;�sj;k; �sj;k) = 1p2��sj;k exp0�� w � �sj;k�sj;k !21A (2.2)where �x and �2x are the mean and the varian
e of g. The pdf of W is given by:pW (wj;k) = NSXs=1 P (Sj;k = s)fW jS(wjS = s) : (2.3)Based on heuristi
s developed for image 
ompression21, the most widely usedmodel 
onsiders a two-state HMM, where the wavelet 
oeÆ
ients are 
onsidered as
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 data �ltering 5belonging to either a large L or small S state depending on whether the 
oeÆ
ientis lo
ated near a dis
ontinuity or not. The asso
iated probabilities pL = p1j (thesupers
ript 1 referring to the root node) and pS = 1 � p1j possess large and smallvarian
es respe
tively. Sin
e the 
oeÆ
ients w are obtained by pass-band or high-pass �lters, they are assumed to have zero mean. The model 
an be further redu
edby 
onsidering that the varian
es are 
onstant a
ross ea
h s
ale j, for a given states. As a 
onsequen
e, Eq. 2.3 results in the following marginal distribution:pW (wj;k) = Xs2fL;Sg psgs(0; �sj;:) : (2.4)The HMT (hidden Markov tree) model is often des
ribed as a quad-tree stru
-tured probabilisti
 graph that 
aptures the statisti
al properties of the wavelettransform of images. The HMT materializes the 
ross-s
ale link between the hiddenstates. It draws inspiration from zero-tree or hierar
hi
al trees image 
ompressionsystems21;24. An illustration of an HMT is depi
ted in Figure 1.

Fig. 1. Diagram of a hidden Markov tree in a quad-tree. White dots represent hidden stateswith arrows as dependen
ies, bla
k dots the transformed 
oeÆ
ients. The bla
k dot on the toprepresents a parent 
oeÆ
ient with its four 
hildren.The persisten
e property is modelled by a markovian dependen
y between par-ent and 
hildren hidden states at 
onse
utive s
ales. A state Sj asso
iated withthe 
hild 
oeÆ
ient wj;k at s
ale j depends only on the state S�(j) of its parent
oeÆ
ient w�(j) at s
ale j � 1. The transition probabilities between the two statess1 (parent) and s2 (
hild) 
an be des
ribed by the transition matrix �j , given by:�s1!s2j;�(j) = pSj jS�(j) (Sj = s2jS�(j) = s1); s1; s2 2 fL;Sg: (2.5)The WD-HMT is 
ompletely de�ned by the set � of model parameters:� = fp1j ; �2; : : : ; �J ; �sj;:g; 1 � j � J; s 2 fL;Sg: (2.6)The resulting statisti
al model is able to 
apture eÆ
iently the joint parent-
hildand the marginal distributions of the transformed 
oeÆ
ients. There exists eÆ
ient
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tation Maximization algorithms for �tting a HMT using the Minimum LengthDes
ription 
riterion. We refer to12;15;25 for details on the implementation of hiddenMarkov trees.3. Lapped transforms and HMT models3.1. Generalities on Lapped Transforms

Fig. 2. Blo
k diagram of a M-
hannel maximally de
imated �lter bank (Hk(z): analysis andFk(z) : synthesis).The Lapped Orthogonal Transform26 (LOT) has been developed to over
omeannoying blo
king artifa
ts arising from non overlapping blo
k transforms su
h asthe Dis
rete Cosine Transform. More generally, lapped transforms are de�ned aslinear phase paraunitary �lter banks (FB). Figure 2 shows a typi
al M -
hannelmaximally de
imated �lter bank. The kth analysis and synthesis subband �ltersare denoted by Hk(z) and Fk(z), respe
tively. The �lter bank may be eÆ
ientlyrepresented by its polyphase form by E(z) (type-I analysis polyphase matrix) andR(z) (type-II synthesis polyphase matrix), de�ned by:[H0(z)H1(z) : : : HM�1(z)℄T = E(zM ) �1 z�1 : : : z1�M�T : (3.7)and [F0(z)F1(z) : : : FM�1(z)℄ = �z1�M z2�M : : : 1�R(zM ): (3.8)The analysis and the synthesis M -band FB polyphase matri
es R(z) and E(z)(represented in Fig. 3) provide perfe
t re
onstru
tion with zero delay if and only if:R(z)E(z) = IM ; (3.9)where IM is the identity matrix27. LT may be parameterized through eÆ
ient lat-ti
e stru
tures for 
ost-driven optimization. We refer to 26;27;20 for a 
omprehensiveoverview on lapped transforms. If we restri
t ourselves to a subset of lapped trans-forms with:
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Fig. 3. Blo
k diagram of the M-
hannel maximally de
imated �lter bank from Fig. 2 withpolyphase implementation.� an even number M of 
hannels;� FIR �lters with linear phase and length L multiple of M (L = KM);a large 
lass of LT, 
alled Generalized Lapped Biorthogonal Transforms (GLBT)may be rewritten in the following form: let Ui and Vi be invertible matri
es, �i andW de�ned for i 2 1; : : : ; n as: �i = �Ui 00 Vi � ; (3.10)W = � I II �I � ; (3.11)�(z) = � I II z�1I � ; (3.12)K0 = �0W ; andKi(z) = 12�iW�(z)W : (3.13)Then the analysis polyphase matrix 
an be fa
tored as:E(z) = 0YK�1Ki (z) ; (3.14)with an appropriate 
hoi
e of invertible matri
es Ui and Vi. The inverse synthesispolyphase matrix follows by element-wise inversion of matri
es in Formula 3.10{3.13.3.2. Lapped transform optimizationThe degrees of freedom in the design of lapped transforms reside in the invertiblematri
es Ui and Vi. It is well known that the Givens de
omposition splits any given
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t of M(M � 2)=8 elementaryrotations 28 . In addition, every invertible matrix U 
an be fa
tored into the produ
tUlU�Ur, where Ul and Ur are two orthogonal matri
es and U� is a diagonal matrixwith non-negative elements �i. Su
h a de
omposition is summarized in Figure 4for a 4� 4 invertible matrix.

Fig. 4. Givens de
omposition of an 4� 4 invertible matrix U .Sparse transforms are generally desired for signal denoising. It is also desirableto design transforms with redu
ed aliasing in the transform domain. Transforms
an be obtained using un
onstrained non-linear optimization of a weighted sumof popular 
ost 
riteria for 
ompression: generalized 
oding gain G
, stop-bandattenuation for the analysis and synthesis �lter bank Aasb and Assb, DC leakageAd
 and attenuation at mirror frequen
ies Amf, detailed in Equations 3.15{3.19.G
 = 10 log"M�1Yi=0 ��xi�x kFik2�2#�1=M ; (3.15)Aasb = M�1Xi=0 Z!2
i ��Hi �ej!���2 d! ; (3.16)Assb = M�1Xi=0 Z!2
i ��Fi �ej!���2 d! ; (3.17)Ad
 = ������ M�1Xi=2;4;::: L�1Xj=0 Hi (j)������ ; (3.18)Amf = M�1Xi=0 ��Hi �ej!i���2 : (3.19)We refer to20 for details on LT optimization. It was shown in4 that a lappedtransform optimization allowed superior seismi
 data 
ompression results, as 
om-pared to wavelet 
oding, as proposed by P. Donoho et al.2. Sin
e seismi
 imagesgenerally exhibit anisotropi
 features (
f. Se
tion 4), it is desirable to use di�erenttransforms for the horizontal and the verti
al dimensions of the image. In this work,we use the traditional AR(1) intersample auto
orrelation 
oeÆ
ient � model in the
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oding gain and the other 
ost 
riteria. Di�erent � areestimated for di�erent types of seismi
 data, in both the horizontal and verti
aldire
tion.3.3. Dyadi
 remapping of Lapped TransformsSin
e hidden Markov tree models are based on a quad-tree stru
ture, their use in alapped transform framework requires a similar arrangement for the LT 
oeÆ
ients.A LT proje
ts signals onto M equally spa
ed frequen
y bands, in 
ontrast to theo
tave-band wavelet representation. Fortunately, su
h a arrangement is possible ifthe number of 
hannels M is a power of 2 (typi
ally 8 or 16). The transformed
oeÆ
ients bear an o
tave-like grouping, with J = log2M de
omposition levels22.In one dimension, for one group of M transformed 
oeÆ
ients, the DC 
omponent(
orresponding to the average of the signal 
oeÆ
ients) is assigned to the lowers
ale subband. Then, from low to high frequen
ies, the kth subband is formedrespe
tively from the next group of 2k=2 
oeÆ
ients. The J + 1 groups are thenasso
iated with respe
t to the blo
k position in the signal. Figure 5 illustrates thedyadi
 rearrangement for two 
onse
utive blo
ks of M = 8 
oeÆ
ients. The twoblo
ks of 8 = 23 
oeÆ
ients (dots on top of Figure 5) are rearranged into J +1 = 4groups and yield a three-level de
omposition (dots on bottom of Figure 5). In two

Fig. 5. Dyadi
 rearrangement of 1D LT 
oeÆ
ients: (Top) blo
k-transform with uniform frequen
ypartition, (Bottom) o
tave-like representation.dimensions, the re-mapping from a four 
hannel blo
k transform to a two leveldyadi
 transform is depi
ted in Fig. 6. The right-hand side image is made of 8� 8sub-blo
ks. Ea
h sub-blo
k gathers 4 � 4 
oeÆ
ients (see the top left sub-blo
k),where the bla
k squares represent the DC 
omponents. In a fashion similar to the1D 
ase, all the 64 DC 
oeÆ
ients are grouped into a 8�8 square (top left of the left-hand side image) representing the low-pass 
omponent of the dyadi
 representation.Arrows between 
oeÆ
ients link re
ipro
al lo
ations of 
oeÆ
ients in the dyadi
 andthe blo
k grouping s
heme. On
e wavelet and LT 
oeÆ
ients share similar grouping,similar denoising algorithms may be applied to both domains.
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Fig. 6. Dyadi
 equivalen
e between 2D wavelet and LT 
oeÆ
ients: (Left) two-level o
tave-likerepresentation, (Right) four-
hannel blo
k-transform with uniform frequen
y partition.4. Generalities on Seismi
 DataSeismi
 exploration aims at providing information about the ground substru
tures.This information is indire
tly addressed by disturban
es, arti�
ially 
reated byseismi
 energy sour
es. The disturban
es propagate through the ground, wheregeophysi
al strata re
e
t the spreading wave front. Portions of the re
e
ted (or re-fra
ted) waves are then 
olle
ted by sensors (geophones, represented by squares inFig. 7), often situated near the ground surfa
e. The one-dimensional signal a
quiredby a single sensor is 
alled a seismi
 tra
e. In the simplest 
onvolutive earth model,a tra
e is a time-based signal made of the generated disturban
e 
onvolved with there
e
tion 
oeÆ
ients at the strata interfa
es. The re
e
tion and a
quisition of seis-mi
 signals is represented on Figure 7. Disturban
es provoked by the seismi
 sour
e(depi
ted by triangles on Fig. 7) propagate along the ray-paths (represented bydashed lines). Ea
h lo
ation on the re
e
tor is illuminated by several propagationsbetween 
ouples of sour
e and re
eptor.Seismi
 pro
essing is the task of inferring substru
ture lo
ation and proper-ties from the 
olle
ted signals, with the help of geologi
al models. Seismi
 signalsgenerally de
rease in energy as the wave front propagates deeper and is s
atteredby subsurfa
e heterogeneities. The signals are also 
orrupted several noise sour
esthat redu
e the possibility to dete
t essential information su
h as strata or faults.Seismi
 data �ltering is thus a prominent task in seismi
 pro
essing, espe
ially asexploration aims at imaging deeper targets, in geologi
ally disturbed zones. We re-fer to the book by �O. Yilmaz29 for a 
omprehensive survey on seismi
 pro
essing.In this work, lapped transform based HMT �ltering is applied on the two dimen-sional seismi
 image represented in 8. It has been tailored to 512�512 samples. Theleft panel represents ea
h signal sample as a pixel, similarly to traditional images.The right panel displays ea
h 
olumn as a wiggle plot. The later is often used ingeophysi
s to emphases on layers. It is obtained through the pro
essing of a 
olle
-
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Ground surface

mirror point

raypath

source

geophone

Legend:

Reflector

Fig. 7. Seismi
 a
quisition for one horizontal layer and three di�erent shot points.

Fig. 8. Example of sta
ked seismi
 data in 
lassi
al image form (left) and with a wiggle plot (right).tion of seismi
 tra
es. The horizontal dire
tion 
orresponds to the spatial extend ofthe seismi
 survey. The verti
al dire
tion 
oarsely re
e
ts the 
ombined responseof several seismi
 tra
es sharing 
ommon re
e
tion lo
ation on geologi
al strata.
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12 L. Duval, C. ChauxFigure 8 thus provides a se
tion of the ground substru
ture. The verti
al dire
tionis a fun
tion of time, sin
e it depends on the time of arrival of the wave front toea
h sensor. It is not 
orre
ted with the velo
ity in ea
h strata, and thus does notprovide dire
tly information on the depth of the substru
tures. Figure 9 depi
ts the�rst verti
al tra
e obtained from Figure 8. The os
illatory behavior of seismi
 data
learly appears from Figure 9. It justi�es the use of transforms 
apable of 
aptur-ing these os
illations. The 
rossings appearing on the seismi
 image are zones ofinterest, whi
h shall not be blurred by denoising pro
edures. The de
omposition
oeÆ
ients magnitude for the 30-tap orthogonal Coi
et and a 32-tap lapped trans-form, for one verti
al signal, are depi
ted in Figure 10, from the low-pass to thehigh-pass subband (left to right). Figure 11 displays the same 
oeÆ
ients, sortedby de
reasing magnitude. We remark that the smallest 
oeÆ
ients (on the righthand side) with the Lapped Transform are substantially smaller than that of thewavelet (dotted blue). This behavior illustrates how a lapped transform yields asparser de
omposition, with generally less large and more small 
oeÆ
ients. Thesparsity of the transform is illustrated in 2D in 12{14.
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Fig. 9. First seismi
 tra
e (verti
al dire
tion) from Fig. 8.5. Experimental results5.1. Comments on the dyadi
 remappingFigures 12{14 illustrate the e�e
ts of de
omposition on the seismi
 data. The trans-formed 
oeÆ
ients 
k are res
aled by a geometri
al fa
tor following sign(
k)j
k j�for display purposes.
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Lapped transform coefficientsFig. 10. Wavelet and lapped transform 
oeÆ
ients obtained from the de
omposition of the signalfrom Fig. 9.
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Fig. 11. Wavelet and lapped transform 
oeÆ
ients from Fig. 10, sorted in de
reasing order.Figure 12 represents the de
omposition with a 30-tap orthogonal Coi
et �lterbank. The top left 
orner is the low-pass approximation of the image. The othersubbands exhibit the horizontal and diagonal stru
tures of the data in the highestfrequen
y bands. Almost no features are present in the verti
al subbands, due tothe dire
tions present in the image. They exhibit mostly in
oherent 
oeÆ
ients due
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k-wise de
omposition of seismi
 data (seethe diagram on the right of Fig. 6). The transformed 
oeÆ
ients are rearranged inFigure 14. Compared to Figure 12, this representation exhibits less high magnitude
oeÆ
ients (bright dots), yielding a sparser de
omposition. The anisotropi
 
ontentof the seismi
 image suggests that separate models 
an be used for the horizontal,diagonal and verti
al subbands of the wavelet tree, in 
ontrast to what is observedin natural images, for instan
e in M. Do et al.18, where it is suggested that wavelet
oeÆ
ients at the same s
ale and lo
ation but di�erent orientations should be tiedup together to have the same hidden state.

Fig. 12. Dyadi
 representation of seismi
 data from Fig. 8 obtained from a three-level waveletde
omposition (Coi
et 30-tap �lters).5.2. Choi
e of the lapped transformThe experimental results presented here have been obtained with an eight-
hannel32-tap orthogonal lapped transform. Its basis ve
tors are represented in Figure 15.This stru
ture have been optimized using the 
ost fun
tions des
ribed in Se
tion 3.2.Di�erent AR(1) models are derived from the horizontal and verti
al dire
tions of theseismi
 data, to a

ount for the di�erent 
orrelation dependen
ies in both dire
tions.An eight-
hannel lapped transform yields a three-level dyadi
 after remapping. Theresulting low-pass approximation is further de
omposed by a wavelet transform.Results are 
ompared in Se
tion 5 with a wavelet de
omposition at the same level.The same wavelet is used in both 
ases.
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Fig. 13. Blo
k representation of seismi
 data from Fig. 8 obtained from a eight-
hannel lappedtransform.

Fig. 14. Dyadi
 representation of seismi
 data from Fig. 8 obtained from a eight-
hannel lappedtransform (Fig. 13 after dyadi
 remapping).5.3. ResultsThe denoising results are addressed in both the obje
tive and subje
tive sense.Obje
tive results are des
ribed in terms of signal-to-noise ratio (SNR): let sk, snk ,
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Fig. 15. Basis ve
tors for an eight-
hannel 32-tap orthogonal lapped transform .sdk be the samples of the original, the noisy and the denoised data respe
tively.SNR = 20 log10 Xk s2k(sk � sdk)2! : (5.20)Table 1. Obje
tive denoising results 
omparison at var-ious initial signal-to-noise levels in dB.Noisy data Wavelet (Coif 30)(a) LT (8� 32)(b)21.9 30.1 29.924.4 31.7 32.126.0 32.7 33.229.1 34.8 35.334.0 38.3 39.040.0 42.4 43.243.0 44.6 45.4Note: Table notesaTwo-
hannel 30-tap Coi
et �lter bankbEight-
hannel 32-tap orthogonal lapped transformThe original data is 
orrupted by gaussian white noise at various levels. Table 1gathers SNR results after denoising for both the wavelet and the lapped transformHMT noise removal. We should mention that denoising results typi
ally vary within�0:1 dB with di�erent noise realizations at the same varian
e. Both HMT-basedalgorithms provide up to 8 dB improvement at low SNRs. This gap de
reases asthe SNR in
reases. Lapped transform based denoising exhibits a slight superiorityin terms of signal-to-noise ratio, whi
h does not ex
eed 1.0 dB with this data.
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tive results also are of spe
i�
 importan
e for seismi
 data quality as-sessment. It is parti
ularly important that denoising does not blur the ground sub-stru
ture. Therefore, it is useful to 
arefully observe the denoised data, as well asthe noise removed by the �ltering pro
edure, as illustrated in Figures 16{19. Ea
h�gure represents the denoised data sdk (left panel) and the removed noise (or dif-feren
e se
tion), i.e. snk � sdk, on the right panel. The major requirements are thatfeatures remain 
lear in the denoised image and that the di�eren
e se
tion exhibitsas few stru
tured noise as possible.Figures 16{17 display the denoised images with an initial moderate 40 dB noise.Clearer stru
ture preservation is apparent at the top of the seismi
 se
tion afterlapped transform denoising: the utmost top alignments on the seismi
 image haveapparently merged after wavelet denoising. This feature is more pronoun
ed (more
oherent on neighboring tra
es) on the wavelet denoised di�eren
e se
tion. We
on
lude that at moderate SNRs, lapped transforms generally preserve seismi
 in-formation better that wavelets, while obje
tive measures do not di�er by more than1 dB.Seismi
 features preservation is 
learer at lower SNRs, as illustrated in Figures18{19. Oversmoothing is observed after wavelet denoising on the left of 19, espe
iallyat the bottom of the image. Crest and valley alignments in the wiggles align lessevidently than in the LT 
ase. Di�eren
e se
tions from Figures 18{19 (right handside) 
learly show that a lot more of stru
tured information is removed with wavelet,as 
ompared to lapped transform denoising. Similar observations were derived ontexture preservation in natural images30. Textures and seismi
 seem to share similaros
illatory 
ontent, giving an advantage on lapped transform de
omposition overwavelet bases for denoising.6. Con
lusions and dis
ussionWe propose to extend the use of hidden Markov models to a lapped transformdomain for seismi
 data �ltering. Lapped transforms are 
onverted to a dyadi
like representation, to a

ount for inter-s
ale 
oeÆ
ient dependen
ies. Due to theos
illatory nature of seismi
 data, os
illatory proje
tion bases yield sparer de
om-position of the data. Moreover, lapped transform enjoy improved design degreesof freedom. They allow to design data adapted transforms. Sharper attenuationbetween the �lter frequen
y bands also redu
es aliasing e�e
ts in the frequen
ydomain. We show that lapped transform based denoising generally outperformswavelet denoising using an obje
tive SNR measure. More important, we demon-strate that lapped transforms better preserve seismi
 information (subje
tively),sin
e they 
ause less blurring than wavelet and the removed noise 
ontains less
oherent geologi
 stru
tures.For fair 
omparison, we used the same de
omposition level for the wavelet andthe lapped transform. Sin
e the de
omposition is limited with the LT, dependingon the number of 
hannels, it is further split by applying a wavelet de
omposition
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Fig. 16. Seismi
 image (left) and di�eren
e se
tion (right) with lapped transform based HMTdenoising at 40.0 dB.to the low-pass subband. Future works will fo
us on a better 
ontrol of the low-pass approximation image, possibly by a hierar
hi
al lapped transform with shortersupport, to redu
e edge artifa
ts on the smaller approximation. Improvement isalso possible with the use of more involved dire
tional transforms or shift-invariantimplementation, sin
e the lapped transforms used in this work are maximally de
-imated.A
knowledgmentThe �rst author would like to thank H. Elloumi for programming some of the �lterbank routines used in this work.Referen
es1. P. Goupillaud, A. Grossmann, and J. Morlet. Cy
le-o
tave and related transforms inseismi
 signal analysis. Geoexploration, 23:85{102, 1984/85.2. P. L. Donoho, R. A. Ergas, R. S. Polzer, and J. D. Villasenor. Compression opti-



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
Lapped transforms and hidden Markov models for seismi
 data �ltering 19

Fig. 17. Seismi
 image (left) and di�eren
e se
tion (right) with wavelet based HMT denoising at40.0 dB.mization by multidimensional wavelet transforms and data dependent quantization.In Annual International Meeting, volume 2, page 2042. So
. of Expl. Geophysi
ists,1996. Exp. abstra
ts.3. N. Saito. Simultaneous noise suppression and signal 
ompression using a library of or-thogonal bases and the minimum des
ription length 
riterion. In E. Foufoula-Georgiuand P. Kumar, editors, Wavelets in Geophysi
s, pages 299{324. A
ademi
 Press, In
.,1994.4. L. C. Duval, T. Q. Nguyen, and T. D. Tran. On progressive seismi
 data 
ompressionusing GenLOT. In Pro
. 33rd Conf. on Information S
ien
es and Systems, Mar. 1999.5. A. Averbu
h, R. Coifman, F. Meyer, J.-O. Stromberg, and A. Vassiliou. Low bit-rateeÆ
ient 
ompression for seismi
 data. IEEE Trans. on Image Pro
., pages 1801{1814,De
. 2001.6. F. G. Meyer. Image 
omparison with adaptive lo
al 
osines: A 
omparative study.IEEE Trans. Image Pro
essing, 11(6):616{629, 2002.7. D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. on Inform. Theory,41(3):613{627, May 1995.8. S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denois-ing and 
ompression. IEEE Trans. on Image Pro
., 9(9):1532{1546, Sep. 2000.



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
20 L. Duval, C. Chaux

Fig. 18. Seismi
 image (left) and di�eren
e se
tion (right) with lapped transform based HMTdenoising at 23.1 dB.9. S. Walker and Y.-J. Chen. Image denoising using tree-based wavelet subband 
orre-lations and shrinkage. Opt. Eng., 39(11):2900{2908, November 2000.10. Lawren
e R. Rabiner. A tutorial on Hidden Markov Models and sele
ted appli
ationsin spee
h re
ognition. Pro
. IEEE, 77(2):257{286, Feb. 1989.11. A. Willsky. Multiresolution Markov models for signal and image pro
essing. Pro
.IEEE, 90(8):1396{1458, August 2002.12. M. Crouse, R. Nowak, and R. Baraniuk. Wavelet-based signal pro
essing using hiddenMarkov models. IEEE Trans. on Signal Pro
., 46(4):886{902, April 1998.13. Robert D. Nowak. Multis
ale hidden Markov models for bayesian image analysis.Te
hni
al Report MSU-ENGR-004-98, Mi
higan State University, 1998.14. H. Choi, J. Romberg, R. Baraniuk, and N. Kingbury. Hidden Markov tree modelingof 
omplex wavelet tranforms. In Pro
. Int. Conf. on A
oust., Spee
h and Sig. Pro
.,2000.15. J. Romberg, H. Choi, and R. Baraniuk. Bayesian tree-stru
tured image modelingusing wavelet-domain hidden Markov models. In Pro
. SPIE Te
hni
al Conferen
eon Mathemati
al Modeling, Bayesian Estimation, and Inverse Problems, pages 31{44,1999.16. V. Venkata
halam, H. Choi, and R. Baraniuk. Multis
ale SAR image segmenta-



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
Lapped transforms and hidden Markov models for seismi
 data �ltering 21

Fig. 19. Seismi
 image (left) and di�eren
e se
tion (right) with wavelet based HMT denoising at23.1 dB.tion using wavelet-domain hidden Markov tree models. In Pro
. SPIE Symposiumon Aerospa
e/Defense Sensing, Simulation, and Controls, Algorithms for Syntheti
Aperture Radar Imagery VII, 2000.17. J. H. Won, K. Pyun, and R. M. Gray. Hidden Markov multiresolution texture seg-mentation using 
omplex wavelets. In Pro
. Int. Conf. on Tele
ommuni
ations, pages1624{1630, 2003.18. M. N. Do and M. Vetterli. Rotation invariant texture 
hara
terization and retrievalusing steerable wavelet-domain hidden Markov models. IEEE Trans. on Multimedia,De
. 2002.19. L. Duval and C. Chaux. Seismi
 data �ltering with lapped transforms and hiddenMarkov models. In Pro
. Wavelet and Statisti
s, 2003. Abstra
ts.20. T. D. Tran, R. L. de Queiroz, and T. Q. Nguyen. Linear phase perfe
t re
onstru
tion�lter bank: latti
e stru
ture, design, and appli
ation in image 
oding. IEEE Trans.on Signal Pro
., 48:133{147, January 2000.21. Jerome M. Shapiro. Embedded image 
oding using zerotrees of wavelet 
oeÆ
ients.IEEE Trans. on Signal Pro
., 41:3445{3462, De
. 1993.22. Z. Xiong, O. Guleryuz, and Mi
hael T. Or
hard. A DCT-based embedded image
oder. IEEE Signal Pro
essing Letters, November 1996.



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
22 L. Duval, C. Chaux23. Pierre Br�emaud. Markov 
hains, Gibbs �elds, Monte Carlo simulation and queues.Springer Verlag, 1999.24. A. Said and W. A. Pearlman. A new fast/eÆ
ient image 
ode
 based on Set Parti-tioning in Hierar
hi
al Trees. IEEE Trans. on Cir
. and Syst. for Video Te
hnology,6:243{250, June 1996.25. J.-B. Durand and P. Gon�
alv�es. Statisti
al inferen
e for hidden Markov tree modelsand appli
ation to wavelet trees. Te
hni
al Report N 4248, INRIA, Sept. 2001.26. Henrique S. Malvar. Signal Pro
essing with Lapped Transforms. Arte
h House, 1992.27. G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press,Wellesley, MA, 1996.28. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1985.29. �0zdogan Yilmaz. Seismi
 data analysis. So
iety of Exploration Geophysi
ists, 2ndedition, 2001.30. L. Duval and T. Q. Nguyen. Lapped transform domain using hidden Markov trees.In Pro
. Int. Conf. on Image Pro
essing, 2003.


