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Lapped transforms and hidden Markov models for seismi data �ltering�Laurent DUVALTehnology, Computer Siene and Applied Mathematis Department,Institut Fran�ais du P�etrole,92500 Rueil-Malmaison Cedex, Franelaurent.duval�ifp.frCaroline CHAUXInstitut G. Monge, Universit�e de Marne-la-Vall�ee77454 Marne-la-Vall�ee, Franearoline.haux�univ-mlv.frReeived (Day Month Year)Revised (Day Month Year)Communiated by (xxxxxxxxxx)Seismi exploration provides information about the ground substrutures. Seismi im-ages are generally orrupted by several noise soures. Hene, eÆient denoising proe-dures are required to improve the detetion of essential geologial information. Waveletbases provide sparse representation for a wide lass of signals and images. This propertymakes them good andidates for eÆient �ltering tools, allowing the separation of signaland noise oeÆients. Reent works have improved their performane by modelling theintra- and inter-sale oeÆient dependenies using hidden Markov models, sine imagefeatures tend to luster and persist in the wavelet domain. This work fouses on the useof lapped transforms assoiated with hidden Markov modelling. Lapped transforms aretraditionally viewed as blok-transforms, omposed of M pass-band �lters. Seismi datapresent osillatory patterns and lapped transforms osillatory bases have demonstratedgood performanes for seismi data ompression. A dyadi like representation of lappedtransform oeÆient is possible, allowing a wavelet-like modelling of oeÆients depen-denies. We show that the proposed �ltering algorithm often outperforms the waveletperformane both objetively (in terms of SNR) and subjetively: lapped transform bet-ter preserve the osillatory features present in seismi data at low to moderate noiselevels.Keywords: seismi data �ltering; lapped transforms; hidden Markov models.AMS Subjet Classi�ation: 22E46, 53C35, 57S20�This work has been partly presented to the Wavelets and Statistis Conferene, Sep. 4{7, 2003,Grenoble, Frane. 1
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2 L. Duval, C. Chaux1. IntrodutionSeismi exploration aims at providing information about the ground substrutures.This information is addressed indiretly by disturbanes, arti�ially reated byseismi energy soures. The disturbanes propagate through the ground, wheregeophysial strata reet the spreading wave front. Portions of the reeted (orrefrated) waves are then olleted by sensors, often situated near the ground sur-fae. The one-dimensional signal aquired by a single sensor is alled a seismitrae. In the simplest onvolutive earth model, a trae is a time-based signal om-posed of the generated disturbane onvolved with the reetion oeÆients at thestrata interfaes. Seismi proessing is the task of inferring substrutures loationand properties from the olleted signals, with the help of geologial models. Seis-mi signals generally derease in energy as the wave front propagates deeper andare sattered by subsurfae heterogeneities. The signals are also orrupted by sev-eral noise soures that redue the possibility to detet essential information suh asstrata or faults. Seismi data �ltering is thus a prominent task in seismi proessing,espeially as exploration aims at imaging deeper targets, in geologially disturbedzones.Although the term wavelet(from the Frenh ondelette, or little wave1) was orig-inally used in seismi for the short support dira shaped disturbane, wavelets havere-emerged only reently in geophysis as eÆient ompression2 and noise �lteringtools3.1.1. Related workDue to the large volumes of seismi data, the disrete wavelet transform (DWT) hasgenerally been preferred to its ontinuous integral ounterpart. Some authors havenevertheless remarked that, although seismi traes usually appear as naturallymade of physial wavelets, seismi images are sometimes more eÆiently representedby other short loal bases. It as been shown in the ontext of ompression withlapped transforms4 (LT) seen as �lter banks or with the Loal Cosine Transform5(LCT). These short loal bases are believed to be more eÆient at apturing seismiosillatory patterns, whih bear some similarities with textures in natural images.A omparison of various loal osine transforms for image ompression is given in6.Going bak to about more than 15 years of developments, the disrete wavelettransform provides sparse bases for natural signal and images. As a onsequene,numerous DWT-based algorithms have been proposed in the past years for eÆientsignal and image statistial analysis. For instane, wavelet-domain thresholding orshrinkage is known to provide asymptotially optimal performane7 in the ase ofgaussian additive noise. One of the key to noise �ltering is to transform the signaland the noise to a domain where their statistis are modelled more eÆiently,via appropriate (often orthogonal) transforms. But it has been quikly remarkedthat a mere salar oeÆient thresholding after transformation did not yield thebest results in pratial implementations. More spei�ally, several authors have
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Lapped transforms and hidden Markov models for seismi data �ltering 3observed that wavelet deompositions exhibit two heuristi properties often termedas "lustering" and "persistene": feature-related wavelet oeÆients (near edgesor singularities) tend to luster loally in a subband and to persist aross sales,through the lassial wavelet parent-hild quad-tree struture. Reently, algorithmsadopted tree-adapted subband-dependent shrinkage8;9. Also, sophistiated modelsof the joint statistis may be useful for apturing key-features in real-world images.Reent approahes rely on Markov random �elds. We refer to L. Rabiner10 and A.Willsky11 for an rih overview of their use in signal and image proessing.Reently, M. Crouse et al.12;13 have proposed a new framework based on thehidden Markov tree. Based on12, H. Choi et al.14 have proposed eÆient imagedenoising15 as well as robust SAR segmentation16. HMM-based algorithms seemto take more advantage of the "lustering" and "persistene" properties of waveletoeÆients around image features. They yield an improved modelling of the oef-�ients' statistial dependenies and their non Gaussian behavior. They have re-ently been notably improved by their use in the ontext of texture segmentationwith dual-tree omplex wavelets17 and steerable pyramids18.1.2. Main ontributionWe propose in the present work to extend the use of hidden Markov models toa lapped transform domain for seismi data �ltering. This work has been partlypresented in19. LT are usually viewed as blok-transforms, omposed of M pass-band �lters. The superiority of lapped transforms over wavelets may ome fromadditional design exibility and short loal bases.Lapped transforms were generally not often used in ompression on denoisingalgorithms, due to the superiority of the inter-sale oeÆient dependeny obtainedfrom the wavelet dyadi deomposition. Though, T. Tran et al.20 have demonstratedthat well-designed LT are able to improve on DWT for natural image ompression,in the Embedded Zero-tree framework21. In the ontext of denoising, the LT o-eÆients are rearranged into an otave-like representation. The resulting "sales"bear the same lustering and persistene properties as in the wavelet representation.Moreover, LT design may enfore both orthogonality and linear-phase (in ontrastto non-Haar 1D wavelets), as well as attrative additional degrees of freedom indesign.The superiority of lapped transforms over wavelets may ome from these de-sign degrees of freedom and sharper frequeny attenuation properties of the M�lters (potentially reduing aliasing e�ets aross the subbands). One other inter-esting feature is based on Z. Xiong et al.22: the dyadi remapping property. Whenthe number of hannels M is a power of 2, the transformed oeÆients may berearranged into an otave-like representation. Experiments demonstrate that theresulting "sales" still bear interesting lustering and persistene properties, whilekeeping superior osillatory pattern preservation.As a onsequene, we propose here to use hidden Markov models with lapped
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4 L. Duval, C. Chauxtransforms, relying on12;15. Speial are is taken in the design of the LT used, toassess the anisotropi shape of some seismi surveys.In the following, we �rst address the philosophy behind the reently developedwavelet-domain hidden Markov models in Setion 2. Then, we fous on the ombi-nation of lapped transforms and hidden Markov models in Setion 3, where lappedtransforms design and properties are reviewed, as well as the dyadi representationof blok transforms. Setion 4 briey desribes properties of seismi data with anemphasis on their osillatory nature. Objetive and subjetive denoising results aredisussed in Setion 5. Finally, we draw some onlusions on the proposed lappedtransform based hidden Markov model denoising algorithm, as well as possible im-provements.2. Wavelet-Domain Hidden Markov ModelsUnder the additive noise assumption, an image x and its noisy observation xn areusually written as xn(i; j) = x(i; j) + n(i; j) ; (2.1)where n is a random noise. The joint probability density funtion of the familyof images that x belongs to is often unattainable. Based on wavelet approximatedeorrelation, simpler models have been proposed for oeÆient modelling. Thesimplest independent Gaussian models generally obtain improvements from residualinter-oeÆients dependenies.M. Crouse et al.12 have reently proposed a new framework for statistial signalproessing, based on wavelet-domain hidden Markov models (WD-HMM).Let wj;k denote a wavelet oeÆient at level j, 1 � j � J , with j = 1 orre-sponding to the oarsest wavelet sale. The marginal pdf for the assoiated randomvariableW is modelled as a Gaussian mixture of NS omponents. In the frameworkof hidden Markov models23, a disrete hidden state Sj;k is assoiated to eah wj;kwith a probability mass funtion P (Sj;k = s) given for eah state s, 1 � s � NS .While the values wj;k are observed, the value of the state S is generally unknown.Depending on the atual state s the oeÆient, the onditional pdf of W givenS = s is given by fW jS(wjS = s), modelled as a Gaussian distribution, desribedin Eq. 2.2: gs(w;�sj;k; �sj;k) = 1p2��sj;k exp0�� w � �sj;k�sj;k !21A (2.2)where �x and �2x are the mean and the variane of g. The pdf of W is given by:pW (wj;k) = NSXs=1 P (Sj;k = s)fW jS(wjS = s) : (2.3)Based on heuristis developed for image ompression21, the most widely usedmodel onsiders a two-state HMM, where the wavelet oeÆients are onsidered as
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Lapped transforms and hidden Markov models for seismi data �ltering 5belonging to either a large L or small S state depending on whether the oeÆientis loated near a disontinuity or not. The assoiated probabilities pL = p1j (thesupersript 1 referring to the root node) and pS = 1 � p1j possess large and smallvarianes respetively. Sine the oeÆients w are obtained by pass-band or high-pass �lters, they are assumed to have zero mean. The model an be further reduedby onsidering that the varianes are onstant aross eah sale j, for a given states. As a onsequene, Eq. 2.3 results in the following marginal distribution:pW (wj;k) = Xs2fL;Sg psgs(0; �sj;:) : (2.4)The HMT (hidden Markov tree) model is often desribed as a quad-tree stru-tured probabilisti graph that aptures the statistial properties of the wavelettransform of images. The HMT materializes the ross-sale link between the hiddenstates. It draws inspiration from zero-tree or hierarhial trees image ompressionsystems21;24. An illustration of an HMT is depited in Figure 1.

Fig. 1. Diagram of a hidden Markov tree in a quad-tree. White dots represent hidden stateswith arrows as dependenies, blak dots the transformed oeÆients. The blak dot on the toprepresents a parent oeÆient with its four hildren.The persistene property is modelled by a markovian dependeny between par-ent and hildren hidden states at onseutive sales. A state Sj assoiated withthe hild oeÆient wj;k at sale j depends only on the state S�(j) of its parentoeÆient w�(j) at sale j � 1. The transition probabilities between the two statess1 (parent) and s2 (hild) an be desribed by the transition matrix �j , given by:�s1!s2j;�(j) = pSj jS�(j) (Sj = s2jS�(j) = s1); s1; s2 2 fL;Sg: (2.5)The WD-HMT is ompletely de�ned by the set � of model parameters:� = fp1j ; �2; : : : ; �J ; �sj;:g; 1 � j � J; s 2 fL;Sg: (2.6)The resulting statistial model is able to apture eÆiently the joint parent-hildand the marginal distributions of the transformed oeÆients. There exists eÆient
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6 L. Duval, C. ChauxExpetation Maximization algorithms for �tting a HMT using the Minimum LengthDesription riterion. We refer to12;15;25 for details on the implementation of hiddenMarkov trees.3. Lapped transforms and HMT models3.1. Generalities on Lapped Transforms

Fig. 2. Blok diagram of a M-hannel maximally deimated �lter bank (Hk(z): analysis andFk(z) : synthesis).The Lapped Orthogonal Transform26 (LOT) has been developed to overomeannoying bloking artifats arising from non overlapping blok transforms suh asthe Disrete Cosine Transform. More generally, lapped transforms are de�ned aslinear phase paraunitary �lter banks (FB). Figure 2 shows a typial M -hannelmaximally deimated �lter bank. The kth analysis and synthesis subband �ltersare denoted by Hk(z) and Fk(z), respetively. The �lter bank may be eÆientlyrepresented by its polyphase form by E(z) (type-I analysis polyphase matrix) andR(z) (type-II synthesis polyphase matrix), de�ned by:[H0(z)H1(z) : : : HM�1(z)℄T = E(zM ) �1 z�1 : : : z1�M�T : (3.7)and [F0(z)F1(z) : : : FM�1(z)℄ = �z1�M z2�M : : : 1�R(zM ): (3.8)The analysis and the synthesis M -band FB polyphase matries R(z) and E(z)(represented in Fig. 3) provide perfet reonstrution with zero delay if and only if:R(z)E(z) = IM ; (3.9)where IM is the identity matrix27. LT may be parameterized through eÆient lat-tie strutures for ost-driven optimization. We refer to 26;27;20 for a omprehensiveoverview on lapped transforms. If we restrit ourselves to a subset of lapped trans-forms with:
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Lapped transforms and hidden Markov models for seismi data �ltering 7

Fig. 3. Blok diagram of the M-hannel maximally deimated �lter bank from Fig. 2 withpolyphase implementation.� an even number M of hannels;� FIR �lters with linear phase and length L multiple of M (L = KM);a large lass of LT, alled Generalized Lapped Biorthogonal Transforms (GLBT)may be rewritten in the following form: let Ui and Vi be invertible matries, �i andW de�ned for i 2 1; : : : ; n as: �i = �Ui 00 Vi � ; (3.10)W = � I II �I � ; (3.11)�(z) = � I II z�1I � ; (3.12)K0 = �0W ; andKi(z) = 12�iW�(z)W : (3.13)Then the analysis polyphase matrix an be fatored as:E(z) = 0YK�1Ki (z) ; (3.14)with an appropriate hoie of invertible matries Ui and Vi. The inverse synthesispolyphase matrix follows by element-wise inversion of matries in Formula 3.10{3.13.3.2. Lapped transform optimizationThe degrees of freedom in the design of lapped transforms reside in the invertiblematries Ui and Vi. It is well known that the Givens deomposition splits any given
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8 L. Duval, C. Chauxorthogonal matrix of size M=2 �M=2 in a produt of M(M � 2)=8 elementaryrotations 28 . In addition, every invertible matrix U an be fatored into the produtUlU�Ur, where Ul and Ur are two orthogonal matries and U� is a diagonal matrixwith non-negative elements �i. Suh a deomposition is summarized in Figure 4for a 4� 4 invertible matrix.

Fig. 4. Givens deomposition of an 4� 4 invertible matrix U .Sparse transforms are generally desired for signal denoising. It is also desirableto design transforms with redued aliasing in the transform domain. Transformsan be obtained using unonstrained non-linear optimization of a weighted sumof popular ost riteria for ompression: generalized oding gain G, stop-bandattenuation for the analysis and synthesis �lter bank Aasb and Assb, DC leakageAd and attenuation at mirror frequenies Amf, detailed in Equations 3.15{3.19.G = 10 log"M�1Yi=0 ��xi�x kFik2�2#�1=M ; (3.15)Aasb = M�1Xi=0 Z!2
i ��Hi �ej!���2 d! ; (3.16)Assb = M�1Xi=0 Z!2
i ��Fi �ej!���2 d! ; (3.17)Ad = ������ M�1Xi=2;4;::: L�1Xj=0 Hi (j)������ ; (3.18)Amf = M�1Xi=0 ��Hi �ej!i���2 : (3.19)We refer to20 for details on LT optimization. It was shown in4 that a lappedtransform optimization allowed superior seismi data ompression results, as om-pared to wavelet oding, as proposed by P. Donoho et al.2. Sine seismi imagesgenerally exhibit anisotropi features (f. Setion 4), it is desirable to use di�erenttransforms for the horizontal and the vertial dimensions of the image. In this work,we use the traditional AR(1) intersample autoorrelation oeÆient � model in the
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Lapped transforms and hidden Markov models for seismi data �ltering 9joint optimization of the oding gain and the other ost riteria. Di�erent � areestimated for di�erent types of seismi data, in both the horizontal and vertialdiretion.3.3. Dyadi remapping of Lapped TransformsSine hidden Markov tree models are based on a quad-tree struture, their use in alapped transform framework requires a similar arrangement for the LT oeÆients.A LT projets signals onto M equally spaed frequeny bands, in ontrast to theotave-band wavelet representation. Fortunately, suh a arrangement is possible ifthe number of hannels M is a power of 2 (typially 8 or 16). The transformedoeÆients bear an otave-like grouping, with J = log2M deomposition levels22.In one dimension, for one group of M transformed oeÆients, the DC omponent(orresponding to the average of the signal oeÆients) is assigned to the lowersale subband. Then, from low to high frequenies, the kth subband is formedrespetively from the next group of 2k=2 oeÆients. The J + 1 groups are thenassoiated with respet to the blok position in the signal. Figure 5 illustrates thedyadi rearrangement for two onseutive bloks of M = 8 oeÆients. The twobloks of 8 = 23 oeÆients (dots on top of Figure 5) are rearranged into J +1 = 4groups and yield a three-level deomposition (dots on bottom of Figure 5). In two

Fig. 5. Dyadi rearrangement of 1D LT oeÆients: (Top) blok-transform with uniform frequenypartition, (Bottom) otave-like representation.dimensions, the re-mapping from a four hannel blok transform to a two leveldyadi transform is depited in Fig. 6. The right-hand side image is made of 8� 8sub-bloks. Eah sub-blok gathers 4 � 4 oeÆients (see the top left sub-blok),where the blak squares represent the DC omponents. In a fashion similar to the1D ase, all the 64 DC oeÆients are grouped into a 8�8 square (top left of the left-hand side image) representing the low-pass omponent of the dyadi representation.Arrows between oeÆients link reiproal loations of oeÆients in the dyadi andthe blok grouping sheme. One wavelet and LT oeÆients share similar grouping,similar denoising algorithms may be applied to both domains.
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Fig. 6. Dyadi equivalene between 2D wavelet and LT oeÆients: (Left) two-level otave-likerepresentation, (Right) four-hannel blok-transform with uniform frequeny partition.4. Generalities on Seismi DataSeismi exploration aims at providing information about the ground substrutures.This information is indiretly addressed by disturbanes, arti�ially reated byseismi energy soures. The disturbanes propagate through the ground, wheregeophysial strata reet the spreading wave front. Portions of the reeted (or re-frated) waves are then olleted by sensors (geophones, represented by squares inFig. 7), often situated near the ground surfae. The one-dimensional signal aquiredby a single sensor is alled a seismi trae. In the simplest onvolutive earth model,a trae is a time-based signal made of the generated disturbane onvolved with thereetion oeÆients at the strata interfaes. The reetion and aquisition of seis-mi signals is represented on Figure 7. Disturbanes provoked by the seismi soure(depited by triangles on Fig. 7) propagate along the ray-paths (represented bydashed lines). Eah loation on the reetor is illuminated by several propagationsbetween ouples of soure and reeptor.Seismi proessing is the task of inferring substruture loation and proper-ties from the olleted signals, with the help of geologial models. Seismi signalsgenerally derease in energy as the wave front propagates deeper and is satteredby subsurfae heterogeneities. The signals are also orrupted several noise souresthat redue the possibility to detet essential information suh as strata or faults.Seismi data �ltering is thus a prominent task in seismi proessing, espeially asexploration aims at imaging deeper targets, in geologially disturbed zones. We re-fer to the book by �O. Yilmaz29 for a omprehensive survey on seismi proessing.In this work, lapped transform based HMT �ltering is applied on the two dimen-sional seismi image represented in 8. It has been tailored to 512�512 samples. Theleft panel represents eah signal sample as a pixel, similarly to traditional images.The right panel displays eah olumn as a wiggle plot. The later is often used ingeophysis to emphases on layers. It is obtained through the proessing of a olle-
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Fig. 7. Seismi aquisition for one horizontal layer and three di�erent shot points.

Fig. 8. Example of staked seismi data in lassial image form (left) and with a wiggle plot (right).tion of seismi traes. The horizontal diretion orresponds to the spatial extend ofthe seismi survey. The vertial diretion oarsely reets the ombined responseof several seismi traes sharing ommon reetion loation on geologial strata.
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12 L. Duval, C. ChauxFigure 8 thus provides a setion of the ground substruture. The vertial diretionis a funtion of time, sine it depends on the time of arrival of the wave front toeah sensor. It is not orreted with the veloity in eah strata, and thus does notprovide diretly information on the depth of the substrutures. Figure 9 depits the�rst vertial trae obtained from Figure 8. The osillatory behavior of seismi datalearly appears from Figure 9. It justi�es the use of transforms apable of aptur-ing these osillations. The rossings appearing on the seismi image are zones ofinterest, whih shall not be blurred by denoising proedures. The deompositionoeÆients magnitude for the 30-tap orthogonal Coiet and a 32-tap lapped trans-form, for one vertial signal, are depited in Figure 10, from the low-pass to thehigh-pass subband (left to right). Figure 11 displays the same oeÆients, sortedby dereasing magnitude. We remark that the smallest oeÆients (on the righthand side) with the Lapped Transform are substantially smaller than that of thewavelet (dotted blue). This behavior illustrates how a lapped transform yields asparser deomposition, with generally less large and more small oeÆients. Thesparsity of the transform is illustrated in 2D in 12{14.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

3

x 10
6

Time (s)

A
m

pl
itu

de

Fig. 9. First seismi trae (vertial diretion) from Fig. 8.5. Experimental results5.1. Comments on the dyadi remappingFigures 12{14 illustrate the e�ets of deomposition on the seismi data. The trans-formed oeÆients k are resaled by a geometrial fator following sign(k)jk j�for display purposes.
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Fig. 11. Wavelet and lapped transform oeÆients from Fig. 10, sorted in dereasing order.Figure 12 represents the deomposition with a 30-tap orthogonal Coiet �lterbank. The top left orner is the low-pass approximation of the image. The othersubbands exhibit the horizontal and diagonal strutures of the data in the highestfrequeny bands. Almost no features are present in the vertial subbands, due tothe diretions present in the image. They exhibit mostly inoherent oeÆients due
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14 L. Duval, C. Chauxto the noise. Figure 13 represents the blok-wise deomposition of seismi data (seethe diagram on the right of Fig. 6). The transformed oeÆients are rearranged inFigure 14. Compared to Figure 12, this representation exhibits less high magnitudeoeÆients (bright dots), yielding a sparser deomposition. The anisotropi ontentof the seismi image suggests that separate models an be used for the horizontal,diagonal and vertial subbands of the wavelet tree, in ontrast to what is observedin natural images, for instane in M. Do et al.18, where it is suggested that waveletoeÆients at the same sale and loation but di�erent orientations should be tiedup together to have the same hidden state.

Fig. 12. Dyadi representation of seismi data from Fig. 8 obtained from a three-level waveletdeomposition (Coiet 30-tap �lters).5.2. Choie of the lapped transformThe experimental results presented here have been obtained with an eight-hannel32-tap orthogonal lapped transform. Its basis vetors are represented in Figure 15.This struture have been optimized using the ost funtions desribed in Setion 3.2.Di�erent AR(1) models are derived from the horizontal and vertial diretions of theseismi data, to aount for the di�erent orrelation dependenies in both diretions.An eight-hannel lapped transform yields a three-level dyadi after remapping. Theresulting low-pass approximation is further deomposed by a wavelet transform.Results are ompared in Setion 5 with a wavelet deomposition at the same level.The same wavelet is used in both ases.
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Fig. 13. Blok representation of seismi data from Fig. 8 obtained from a eight-hannel lappedtransform.

Fig. 14. Dyadi representation of seismi data from Fig. 8 obtained from a eight-hannel lappedtransform (Fig. 13 after dyadi remapping).5.3. ResultsThe denoising results are addressed in both the objetive and subjetive sense.Objetive results are desribed in terms of signal-to-noise ratio (SNR): let sk, snk ,
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Fig. 15. Basis vetors for an eight-hannel 32-tap orthogonal lapped transform .sdk be the samples of the original, the noisy and the denoised data respetively.SNR = 20 log10 Xk s2k(sk � sdk)2! : (5.20)Table 1. Objetive denoising results omparison at var-ious initial signal-to-noise levels in dB.Noisy data Wavelet (Coif 30)(a) LT (8� 32)(b)21.9 30.1 29.924.4 31.7 32.126.0 32.7 33.229.1 34.8 35.334.0 38.3 39.040.0 42.4 43.243.0 44.6 45.4Note: Table notesaTwo-hannel 30-tap Coiet �lter bankbEight-hannel 32-tap orthogonal lapped transformThe original data is orrupted by gaussian white noise at various levels. Table 1gathers SNR results after denoising for both the wavelet and the lapped transformHMT noise removal. We should mention that denoising results typially vary within�0:1 dB with di�erent noise realizations at the same variane. Both HMT-basedalgorithms provide up to 8 dB improvement at low SNRs. This gap dereases asthe SNR inreases. Lapped transform based denoising exhibits a slight superiorityin terms of signal-to-noise ratio, whih does not exeed 1.0 dB with this data.
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Lapped transforms and hidden Markov models for seismi data �ltering 17Subjetive results also are of spei� importane for seismi data quality as-sessment. It is partiularly important that denoising does not blur the ground sub-struture. Therefore, it is useful to arefully observe the denoised data, as well asthe noise removed by the �ltering proedure, as illustrated in Figures 16{19. Eah�gure represents the denoised data sdk (left panel) and the removed noise (or dif-ferene setion), i.e. snk � sdk, on the right panel. The major requirements are thatfeatures remain lear in the denoised image and that the di�erene setion exhibitsas few strutured noise as possible.Figures 16{17 display the denoised images with an initial moderate 40 dB noise.Clearer struture preservation is apparent at the top of the seismi setion afterlapped transform denoising: the utmost top alignments on the seismi image haveapparently merged after wavelet denoising. This feature is more pronouned (moreoherent on neighboring traes) on the wavelet denoised di�erene setion. Weonlude that at moderate SNRs, lapped transforms generally preserve seismi in-formation better that wavelets, while objetive measures do not di�er by more than1 dB.Seismi features preservation is learer at lower SNRs, as illustrated in Figures18{19. Oversmoothing is observed after wavelet denoising on the left of 19, espeiallyat the bottom of the image. Crest and valley alignments in the wiggles align lessevidently than in the LT ase. Di�erene setions from Figures 18{19 (right handside) learly show that a lot more of strutured information is removed with wavelet,as ompared to lapped transform denoising. Similar observations were derived ontexture preservation in natural images30. Textures and seismi seem to share similarosillatory ontent, giving an advantage on lapped transform deomposition overwavelet bases for denoising.6. Conlusions and disussionWe propose to extend the use of hidden Markov models to a lapped transformdomain for seismi data �ltering. Lapped transforms are onverted to a dyadilike representation, to aount for inter-sale oeÆient dependenies. Due to theosillatory nature of seismi data, osillatory projetion bases yield sparer deom-position of the data. Moreover, lapped transform enjoy improved design degreesof freedom. They allow to design data adapted transforms. Sharper attenuationbetween the �lter frequeny bands also redues aliasing e�ets in the frequenydomain. We show that lapped transform based denoising generally outperformswavelet denoising using an objetive SNR measure. More important, we demon-strate that lapped transforms better preserve seismi information (subjetively),sine they ause less blurring than wavelet and the removed noise ontains lessoherent geologi strutures.For fair omparison, we used the same deomposition level for the wavelet andthe lapped transform. Sine the deomposition is limited with the LT, dependingon the number of hannels, it is further split by applying a wavelet deomposition



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
18 L. Duval, C. Chaux

Fig. 16. Seismi image (left) and di�erene setion (right) with lapped transform based HMTdenoising at 40.0 dB.to the low-pass subband. Future works will fous on a better ontrol of the low-pass approximation image, possibly by a hierarhial lapped transform with shortersupport, to redue edge artifats on the smaller approximation. Improvement isalso possible with the use of more involved diretional transforms or shift-invariantimplementation, sine the lapped transforms used in this work are maximally de-imated.AknowledgmentThe �rst author would like to thank H. Elloumi for programming some of the �lterbank routines used in this work.Referenes1. P. Goupillaud, A. Grossmann, and J. Morlet. Cyle-otave and related transforms inseismi signal analysis. Geoexploration, 23:85{102, 1984/85.2. P. L. Donoho, R. A. Ergas, R. S. Polzer, and J. D. Villasenor. Compression opti-
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Fig. 17. Seismi image (left) and di�erene setion (right) with wavelet based HMT denoising at40.0 dB.mization by multidimensional wavelet transforms and data dependent quantization.In Annual International Meeting, volume 2, page 2042. So. of Expl. Geophysiists,1996. Exp. abstrats.3. N. Saito. Simultaneous noise suppression and signal ompression using a library of or-thogonal bases and the minimum desription length riterion. In E. Foufoula-Georgiuand P. Kumar, editors, Wavelets in Geophysis, pages 299{324. Aademi Press, In.,1994.4. L. C. Duval, T. Q. Nguyen, and T. D. Tran. On progressive seismi data ompressionusing GenLOT. In Pro. 33rd Conf. on Information Sienes and Systems, Mar. 1999.5. A. Averbuh, R. Coifman, F. Meyer, J.-O. Stromberg, and A. Vassiliou. Low bit-rateeÆient ompression for seismi data. IEEE Trans. on Image Pro., pages 1801{1814,De. 2001.6. F. G. Meyer. Image omparison with adaptive loal osines: A omparative study.IEEE Trans. Image Proessing, 11(6):616{629, 2002.7. D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. on Inform. Theory,41(3):613{627, May 1995.8. S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denois-ing and ompression. IEEE Trans. on Image Pro., 9(9):1532{1546, Sep. 2000.
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Fig. 19. Seismi image (left) and di�erene setion (right) with wavelet based HMT denoising at23.1 dB.tion using wavelet-domain hidden Markov tree models. In Pro. SPIE Symposiumon Aerospae/Defense Sensing, Simulation, and Controls, Algorithms for SynthetiAperture Radar Imagery VII, 2000.17. J. H. Won, K. Pyun, and R. M. Gray. Hidden Markov multiresolution texture seg-mentation using omplex wavelets. In Pro. Int. Conf. on Teleommuniations, pages1624{1630, 2003.18. M. N. Do and M. Vetterli. Rotation invariant texture haraterization and retrievalusing steerable wavelet-domain hidden Markov models. IEEE Trans. on Multimedia,De. 2002.19. L. Duval and C. Chaux. Seismi data �ltering with lapped transforms and hiddenMarkov models. In Pro. Wavelet and Statistis, 2003. Abstrats.20. T. D. Tran, R. L. de Queiroz, and T. Q. Nguyen. Linear phase perfet reonstrution�lter bank: lattie struture, design, and appliation in image oding. IEEE Trans.on Signal Pro., 48:133{147, January 2000.21. Jerome M. Shapiro. Embedded image oding using zerotrees of wavelet oeÆients.IEEE Trans. on Signal Pro., 41:3445{3462, De. 1993.22. Z. Xiong, O. Guleryuz, and Mihael T. Orhard. A DCT-based embedded imageoder. IEEE Signal Proessing Letters, November 1996.



August 13, 2004 17:38 WSPC/WS-IJWMIP ijwmip2004
22 L. Duval, C. Chaux23. Pierre Br�emaud. Markov hains, Gibbs �elds, Monte Carlo simulation and queues.Springer Verlag, 1999.24. A. Said and W. A. Pearlman. A new fast/eÆient image ode based on Set Parti-tioning in Hierarhial Trees. IEEE Trans. on Cir. and Syst. for Video Tehnology,6:243{250, June 1996.25. J.-B. Durand and P. Gon�alv�es. Statistial inferene for hidden Markov tree modelsand appliation to wavelet trees. Tehnial Report N 4248, INRIA, Sept. 2001.26. Henrique S. Malvar. Signal Proessing with Lapped Transforms. Arteh House, 1992.27. G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press,Wellesley, MA, 1996.28. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1985.29. �0zdogan Yilmaz. Seismi data analysis. Soiety of Exploration Geophysiists, 2ndedition, 2001.30. L. Duval and T. Q. Nguyen. Lapped transform domain using hidden Markov trees.In Pro. Int. Conf. on Image Proessing, 2003.


