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Image Analysis Using a Dual-Tree M -Band
Wavelet Transform

Caroline Chaux, Student Member, Laurent Duval, Member and
Jean-Christophe Pesquet, Senior Member, IEEE

Abstract— We propose a 2D generalization to the M -band case
of the dual-tree decomposition structure (initially proposed by
N. Kingsbury and further investigated by I. Selesnick) based
on a Hilbert pair of wavelets. We particularly address (i) the
construction of the dual basis and (ii) the resulting directional
analysis. We also revisit the necessary pre-processing stage in
the M -band case. While several reconstructions are possible
because of the redundancy of the representation, we propose
a new optimal signal reconstruction technique, which minimizes
potential estimation errors. The effectiveness of the proposed M -
band decomposition is demonstrated via denoising comparisons
on several image types (natural, texture, seismics), with various
M -band wavelets and thresholding strategies. Significant im-
provements in terms of both overall noise reduction and direction
preservation are observed.

Index Terms— Wavelets, M -band filter banks, Hilbert trans-
form, Dual-tree, Image denoising, Direction selection.

I. INTRODUCTION

The classical discrete wavelet transform (DWT) provides
a means of implementing a multiscale analysis, based on
a critically sampled filter bank with perfect reconstruction.
It has been shown to be very effective both theoretically
and practically [3] in the processing of certain classes of
signals, for instance piecewise smooth signals, having a finite
number of discontinuities. But, while decimated transforms
yield good compression performance, other data processing
applications (analysis, denoising, detection) often require more
sophisticated schemes than DWT.

One first drawback usually limiting the practical perfor-
mance of DWT algorithms is their shift-variance with respect
to the value of the transformed coefficients at a given scale.
It often results in shift-variant edge artifacts at the vicinity
of jumps, which are not desirable in real-world applications,
signal delays being rarely known.

A second drawback arises in dimensions greater than one:
tensor products of standard wavelets usually possess poor
directional properties. The later problem is sensitive in feature
detection or denoising applications. A vast majority of the
proposed solutions relies on adding some redundancy to the
transform. Redundancy based on shift-invariant wavelet trans-
forms (see [4], [5] and references therein) suppresses shift
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dependencies, at the expense of an increased computational
cost, which often becomes intractable in higher dimensions.
Less computationally-expensive approaches have been devel-
oped on complex filters for real signals (we refer to [6] for an
overview and design examples), or by employing other wavelet
frames [7]. For instance, it is possible to resort to the concate-
nation of several wavelet bases. One of the most promising
decomposition is the dual-tree discrete wavelet transform,
proposed by N. Kingsbury [8]: two classical wavelet trees
are developed in parallel, with filters forming (approximate)
Hilbert pairs. Advantages of Hilbert pairs had been earlier
recognized by other authors [9]. In the complex case, the
resulting analysis yields a redundancy of only 2d for d-
dimensional signals, with a much lower shift sensitivity and
better directionality in 2D than the DWT. The design of
dual-tree filters is addressed in [10] through an approximate
Hilbert pair formulation for the “dual” wavelets. I. Selesnick
also proposed the double-density DWT and combined both
frame approaches [11]. The phaselet extension of the dual-
tree DWT has been recently introduced by R. Gopinath in
[12]. More recently, several authors have also proposed a
projection scheme with an explicit control of the redundancy
or with specific filter bank structures [13], [14]. Finally, other
works on the blending of analytic signals and wavelets must
be mentioned [15], [16], in the context of denoising or higher
dimension signal processing. Recent developments based on
“geometrical” wavelets are not mentioned here, in spite of
their relevance.

A third drawback concerns design limitations in two-band
decompositions: orthogonality, realness, symmetry, compact-
ness of the support and other properties (regularity, vanishing
moments) compete. The relative sparsity of good filter banks
amongst all possible solutions is also well-known. In order
to improve both design freedom and filter behavior, M -band
filter banks and wavelets have been proposed [17]–[19].

Improving on our previous work [1], we propose the con-
struction of a 2D dual-tree M -band wavelet decomposition.
The organization of the paper is as follow: in Section II,
we investigate the theoretical conditions for the construction
of M -band Hilbert pairs. In Section III, we extend previous
results on the pre-processing stage to the M -band context and
illustrate the direction extraction with the constructed wavelets.
Since several reconstructions are possible, due to the decom-
position redundancy, we then propose an optimal pseudo-
inverse based frame reconstruction, which allows to reduce
the effects of coefficient estimation errors. Implementation
issues are discussed in Section IV. In Section V, we consider
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image denoising applications and provide experimental results
showing significant improvements in terms of both noise
reduction and direction preservation. Conclusions are drawn
in Section VI.

II. CONSTRUCTION OF M -BAND HILBERT PAIRS

A. Problem statement
In this section, we will focus on 1D signals belonging to

the space L2(R) of square integrable functions. Let M be
an integer greater than or equal to 2. Recall that an M -band
multiresolution analysis of L2(R) is defined by one scaling
function (or father wavelet) ψ0 ∈ L2(R) and (M − 1) mother
wavelets ψm ∈ L2(R), m ∈ {1, . . . ,M − 1} [18]. These
functions are solutions of the following scaling equations:

∀m ∈ {0, . . . ,M − 1},
1√
M
ψm(

t

M
) =

∞∑

k=−∞

hm[k]ψ0(t− k), (1)

where the sequences (hm[k])k∈Z are square integrable. In the
following, we will assume that these functions (and thus the
associated sequences (hm[k])k∈Z) are real-valued. The Fourier
transform of (hm[k])k∈Z is a 2π-periodic function, denoted
by Hm. Thus, in the frequency domain, Eq. (1) can be re-
expressed as:

∀m ∈ {0, . . . ,M − 1},
√
Mψ̂m(Mω) = Hm(ω)ψ̂0(ω), (2)

where â denotes the Fourier transform of a function a. For the
set of functions ∪M−1

m=1 {M−j/2ψm(M−jt − k), (j, k) ∈ Z
2}

to correspond to an orthonormal basis of L2(R), the following
para-unitarity conditions must hold:

∀(m,m′) ∈ {0, . . . ,M − 1}2,
M−1∑

p=0

Hm(ω + p
2π

M
)H∗

m′(ω + p
2π

M
) = Mδm−m′ , (3)

where δm = 1 if m = 0 and 0 otherwise. The filter with
frequency response H0 is low-pass whereas usually the filter
with frequency response Hm, m ∈ {1, . . . ,M−2} (resp. m =
M − 1) is band-pass (resp. high-pass). In this case, cascading
the M -band para-unitary analysis and synthesis filter banks,
depicted in the upper branch in Fig. 1, allows us to decompose
and to reconstruct perfectly a given signal.

Our objective is to construct a “dual” M -band multireso-
lution analysis defined by a scaling function ψH

0 and mother
wavelets ψH

m, m ∈ {1, . . . ,M−1}. More precisely, the mother
wavelets will be obtained by a Hilbert transform from the
“original” wavelets ψm, m ∈ {1, . . . ,M − 1}. In the Fourier
domain, the desired property reads:

∀m ∈ {1, . . . ,M−1}, ψ̂H
m(ω) = −ı sign(ω)ψ̂m(ω), (4)

where sign is the signum function defined as:

sign(ω) =





1 if ω > 0

0 if ω = 0

−1 if ω < 0.
(5)

As it is common in wavelet theory, Eq. (4), as well as all
equalities in the paper involving square integrable functions,
holds almost everywhere (that is, for all ω 6∈ Ω where Ω is a
real set of zero measure).

Furthermore, the functions ψH
m are defined by scaling

equations similar to (1) involving real-valued sequences
(gm[k])k∈Z:

∀m ∈ {0, . . . ,M − 1},
1√
M
ψH
m(

t

M
) =

∞∑

k=−∞

gm[k]ψH
0 (t− k) (6)

⇐⇒
√
Mψ̂H

m(Mω) = Gm(ω)ψ̂H
0 (ω). (7)

In order to generate a dual M -band orthonormal wavelet
basis of L2(R), the Fourier transforms Gm of the sequences
(gm[k])k∈Z must also satisfy the para-unitarity conditions:

∀(m,m′) ∈ {0, . . . ,M − 1}2,
M−1∑

p=0

Gm(ω + p
2π

M
)G∗

m′(ω + p
2π

M
) = Mδm−m′ . (8)

The corresponding para-unitary Hilbert filter banks are illus-
trated by the lower branch in Fig. 1.

B. Sufficient conditions for obtaining dual decompositions
The Hilbert condition (4) yields

∀m ∈ {1, . . . ,M − 1}, |ψ̂H
m(ω)| = |ψ̂m(ω)|. (9)

If we further impose that |ψ̂H
0 (ω)| = |ψ̂0(ω)|, the scaling

equations (2) and (7) lead to

∀m ∈ {0, . . . ,M−1}, Gm(ω) = e−ıθm(ω)Hm(ω), (10)

where θm is 2π-periodic. The phase functions θm should also
be odd (for real filters) and thus only need to be determined
over [0, π].

For any (m,m′) ∈ {0, . . . ,M − 1}2 with m < m′,
let (Pm,m′) denote the following assumption: The function
αm,m′ = θm′ − θm is such that, for (almost) all ω ∈ [0, 2π[,

αm,m′(ω +
2π

M
) = αm,m′(ω) (mod 2π). (11)

Assuming that Eq. (3) is satisfied, it is then straightforward
to verify that the para-unitarity conditions (8) for the dual
filter bank hold if (Pm,m′) holds. We are then able to state
the following result:

Proposition 1: Assume that Conditions (10) hold. A neces-
sary and sufficient condition for Eq. (4) to be satisfied is that
there exists θ̃0 = θ0 (mod 2π) such that

β(ω) =
∞∑

i=1

θ̃0

( ω

M i

)
(12)

is a convergent series and, ∀m ∈ {1, . . . ,M − 1},

α̃0,m

( ω

M

)
+ β(ω) =

π

2
sign(ω) (mod 2π) (13)

where α̃0,m = θm − θ̃0.
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Proof: Given that ψ̂0(0) = 1, for m = 0 Eq. (2) is
equivalent to

ψ̂0(ω) =
∞∏

i=1

[
1√
M
H0(

ω

M i
)]. (14)

Similarly, we have for the “dual” scaling function:

ψ̂H
0 (ω) =

∞∏

i=1

[
1√
M
G0(

ω

M i
)]. (15)

Furthermore, the expressions of the Fourier transforms of the
mother wavelets and “dual” mother wavelets can be deduced
from Eqs. (2) and (7). Consequently, Condition (4) may be
rewritten as ∀m ∈ {1, . . . ,M − 1},

Gm(
ω

M
)

∞∏

i=2

[
1√
M
G0(

ω

M i
)] =

− ı sign(ω)Hm(
ω

M
)

∞∏

i=2

[
1√
M
H0(

ω

M i
)]. (16)

Using Eq. (10), we see that the above relation is verified if
and only if there exists θ̃0 = θ0 (mod 2π) such that

∀m ∈ {1, . . . ,M − 1},

θm(
ω

M
) +

∞∑

i=2

θ̃0(
ω

M i
) =

π

2
sign(ω) (mod 2π)

where the involved series is convergent. The above equation
is obviously equivalent to Eq. (13).

Eqs. (13) and (12) constitute a generalization to the M -band
case of a famous result by Selesnick [10] restricted to dyadic
wavelets. One can remark that the convergence properties of
the series β(ω) are only related to the behaviour of θ̃0 around
the origin since ω/M i → 0 as i→ ∞. It is also worth noting
that the function β is given by the following “additive” scaling
equation:

β(ω) = β
( ω

M

)
+ θ̃0

( ω

M

)
. (17)

C. Linear phase solution
In the 2-band case (under weak assumptions), θ̃0 verifying

Eqs. (13) and (12) is a linear function on [−π, π[ [10]. In
the M -band case, we will slightly restrict this constraint on a
smaller interval by imposing:

∀ω ∈ [0, 2π/M [, θ̃0(ω) = γω, (18)

where γ ∈ R. This choice clearly guarantees that the series
β(ω) is convergent. Using Eq. (17), after some calculations
which are provided in Appendix I, the following result can be
proved:

Proposition 2: Under the three conditions (10), (P0,m)m≥1

and (18), the solutions (modulo 2π) to Eq. (13) are given by

∀m ∈ {1, . . . ,M − 1},

α̃0,m(ω) =





π

2
− (d+

1

2
)Mω if ω ∈]0,

2π

M
[,

0 if ω = 0.
(19)

and ∀p ∈
{
0, . . . ,

⌈
M
2

⌉
− 1

}
, ∀ω ∈

[
p 2π
M , (p+ 1) 2π

M

[
,

θ̃0(ω) = (d+
1

2
)(M − 1)ω − pπ, (20)

where d ∈ Z and due denotes the upper integer part of a real
u.

The integer d defines a possible arbitrary delay between
the filters of the original and dual decompositions. Up to this
delay, Proposition 2 states that, subject to (10), (P0,m)m≥1

and (18), there exists a unique solution to Eq. (13). It should
also be noted that except for the 2-band case, θ̃0 exhibits
discontinuities on ]0, π[ due to the pπ term (see Fig. 2).
These discontinuities however occur at zeros of the frequency
response of the lowpass filter since we have H0(2pπ/M) = 0,
for all p ∈ {1, . . . ,M − 1} [18].

We subsequently deduce the following corollary of the
above proposition:

Proposition 3: Para-unitaryM -band Hilbert filter banks are
obtained by choosing the phase functions defined by Eq. (20)
and

∀m ∈ {1, . . . ,M − 1},

θm(ω) =





π

2
−

(
d+

1

2

)
ω if ω ∈]0, 2π[,

0 if ω = 0,
(21)

where d ∈ Z. Then, the scaling function associated to the dual
wavelet decomposition is such that

∀k ∈ N, ∀ω ∈ [2kπ, 2(k + 1)π[,

ψ̂H
0 (ω) = (−1)ke−ı(d+

1

2
)ω ψ̂0(ω). (22)

Proof: It is readily shown that, if θ̃0 is given by
Eq. (20), α̃0,m is a 2π/M -periodic function satisfying (almost
everywhere) Eq. (19) if and only if the functions θm, m ∈
{1, . . . ,M − 1}, are expressed by Eq. (21) (modulo 2π).
Then, we conclude from Proposition 2 that the phases given
by Eqs. (20)-(21) allow us to satisfy the Hilbert condition
(13). Furthermore, the functions θm, m ∈ {1, . . . ,M − 1},
being all equal, the paraunitary conditions (Pm,m′)m′>m≥0

are obviously fulfilled. According to Eqs. (12), (14) and (15),
ψ̂H

0 (ω) = e−ıβ(ω) ψ̂0(ω). When θ̃0 takes the form (20), the
expression of β is given by Eq. (65) in Appendix I, thus
yielding Eq. (22).
Note that in the dyadic case, necessary and sufficient condi-
tions have been found for the linear phase property [20].

D. Compact support
Compactly supported wavelets are obtained with FIR (Fi-

nite Impulse Response) filters. However, if the filters with
frequency responses Hm(ω) with m ∈ {1, . . . ,M−1} are FIR
(i.e. Hm(ω) is a Laurent polynomial in eıω), the dual filters
with frequency responses Gm(ω) cannot be FIR. Indeed, the
ω/2 term in Eq. (21) preventsGm(ω) from being a polynomial
or even a rational function in eıω. When M is even, a similar
argument holds showing that the low-pass filter G0(ω) cannot
be FIR if the primal one is FIR and Eq. (20) is satisfied. When
M is odd, the jumps of π arising for θ̃0 at frequencies 2pπ/M
with p ∈ {1, . . . ,M−1} allow us to draw the same conclusion.
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In other words, starting from orthonormal compactly supported
scaling functions/wavelets, it is not possible to generate dual
basis functions having a compact support. However, the study
of approximate FIR Hilbert pairs satisfying perfect reconstruc-
tion has been addressed by several authors in the dyadic case
[21], [8].

E. Symmetry properties
As already pointed out, one of the main advantage of the

M -band case with M > 2 is to allow the construction of
non-trivial real orthonormal bases with compact support and
symmetric (or antisymmetric) wavelets. Assume that symme-
try properties are fulfilled for the primal filter bank. We now
show that the dual filters and wavelets inherit these properties.
Indeed, it can be proved (see Appendix II) that:

Proposition 4: Let phase conditions (20), (21) be satisfied.
If the low-pass impulse response (h0[k])k∈Z is symmetric w.r.t.
k0 ∈ 1

2Z, and, for m ∈ {1, . . . ,M − 1}, (hm[k])k∈Z is sym-
metric (resp. antisymmetric) w.r.t. km ∈ 1

2Z, then (g0[k])k∈Z

is symmetric w.r.t. k0 + (d + 1
2 )(M − 1) and (gm[k])k∈Z is

antisymmetric (resp. symmetric) w.r.t. km − d− 1
2 .

Under the assumptions of the above proposition, Eqs. (14) and
(2) allow us to claim that ψ0 is symmetric w.r.t.

τ =
k0

M − 1
(23)

and, for m ∈ {1, . . . ,M − 1}, ψm is symmetric (resp.
antisymmetric) w.r.t. (τ + km)/M . Then, it is easily deduced
from Eqs. (22) and (4) that ψH

0 is symmetric w.r.t. τ+d+1/2
and, for m ∈ {1, . . . ,M − 1}, ψH

m is antisymmetric (resp.
symmetric) w.r.t. (τ + km)/M .

III. EXTENSION TO 2D DUAL-TREE M -BAND WAVELET
ANALYSIS

A. 2D Decomposition
Two-dimensional separable M -band wavelet bases can be

deduced from the 1D dual-tree decomposition derived in
Section II. The so-obtained bases of L2(R2) (the space of
square integrable functions defined on R

2) are
J⋃

j=−∞

⋃

(m,m′)

6=(0,0)

{M−jψm(
x

M j
− k)ψm′(

y

M j
− l), (k, l) ∈ Z

2}

⋃
{M−Jψ0(

x

MJ
− k)ψ0(

y

MJ
− l), (k, l) ∈ Z

2} (24)
J⋃

j=−∞

⋃

(m,m′)

6=(0,0)

{M−jψH
m(

x

M j
− k)ψH

m′(
y

M j
− l), (k, l) ∈ Z

2}

⋃
{M−JψH

0 (
x

MJ
− k)ψH

0 (
y

MJ
− l), (k, l) ∈ Z

2} (25)

where J ∈ Z is the considered coarsest decomposition level.
A discrete implementation of these wavelet decompositions
starts from level j = 1 to J ∈ N

∗. As pointed out in the
seminal works of Kingsbury and Selesnick, it is however
advantageous to add some pre- and post-processing to this
decomposition. The pre-processing aims at establishing the

connection between the analog theoretical framework and its
discrete-time implementation whereas the post-processing is
used to provide directional analysis features to the decompo-
sition. We will now revisit these problems in the context of
M -band decompositions.

The proposed 2D M -band dual-tree decomposition is illus-
trated in Fig. 3. For the sake of simplicity, only two levels
of decomposition (J = 2) are represented but this transform
can be implemented over further levels, the approximation
coefficients being re-decomposed iteratively. For each of the
two M -band decompositions, we get J×M 2−J+1 subbands.
We observe that the 2D dual-tree decomposition can be
divided into three steps which are detailed hereafter.

1) Prefiltering: The wavelet transform is a continuous-
space formalism that we want to apply to a “discrete” image.
We consider that the analog scene corresponds to the 2D field:

f(x, y) =
∑

k,l

f [k, l] s(x− k, y − l) (26)

where s is some interpolation function and (f [k, l])(k,l)∈Z2 is
the image sample sequence. Let us project the image onto the
approximation space

V0 = Span{ψ0(x− k)ψ0(y − l), (k, l) ∈ Z
2}. (27)

The projection of f reads

PV0
(f(x, y)) =

∑

k,l

c0,0,0[k, l] ψ0(x− k) ψ0(y − l) (28)

where the approximation coefficients are

c0,0,0[k, l] = 〈f(x, y), ψ0(x− k) ψ0(y − l)〉 (29)

and 〈 , 〉 denotes the inner product of L2(R2). Using Eq. (26)
we obtain:

c0,0,0[k, l] =
∑

p,q

f [p, q] γs,Ψ0,0
(k − p, l− q) (30)

where Ψ0,0(x, y) = ψ0(x)ψ0(y) and γs,Ψ0,0
is the cross-

correlation function defined as

γs,Ψ0,0
(x, y) =

∫ ∞

−∞

∫ ∞

−∞

s(u, v)Ψ0,0(u− x, v − y) du dv.

(31)
In the same way, we can project the analog image onto the
dual approximation space

V H
0 = Span{ΨH

0,0(x− k, y − l), (k, l) ∈ Z
2} (32)

where ΨH
0,0(x, y) = ψH

0 (x)ψH
0 (y). We have then

PV H

0

(f(x, y)) =
∑

k,l

cH0,0,0[k, l] ΨH
0,0(x − k, y − l)

where the dual approximation coefficients are given by

cH0,0,0[k, l] =
∑

p,q

f |p, q] γs,ΨH

0,0

(k − p, l − q). (33)

Obviously, Eq. (30) and (33) can be interpreted as the use
of two prefilters on the discrete image (f [k, l])(k,l)∈Z2 before
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the dual-tree decomposition. The frequency response of these
filters are

F1(ωx, ωy) =

∞∑

p=−∞

∞∑

q=−∞

ŝ(ωx + 2pπ, ωy + 2qπ)

ψ̂∗
0(ωx + 2pπ)ψ̂∗

0(ωy + 2qπ) (34)

F2(ωx, ωy) =

∞∑

p=−∞

∞∑

q=−∞

ŝ(ωx + 2pπ, ωy + 2qπ)

(ψ̂H
0 (ωx + 2pπ))∗(ψ̂H

0 (ωy + 2qπ))∗. (35)

By using Eq. (22), it can be noticed that, when ŝ is compactly
supported on [−π, π[2, for all (ωx, ωy) ∈ [−π, π[2,

F2(ωx, ωy) = eı(d+1/2)(ωx+ωy)F1(ωx, ωy). (36)

Different kinds of interpolation functions may be envisaged, in
particular separable functions of the form s(x, y) = χ(x)χ(y).
The two prefilters are then separable with impulse responses
(γχ,ψ0

(p)γχ,ψ0
(q))(p,q)∈Z2 and (γχ,ψH

0

(p)γχ,ψH

0

(q))(p,q)∈Z2 ,
respectively. A natural choice for χ is the Shannon-Nyquist
interpolation function, χ(t) = sinc(πt), which allows the ideal
digital-to-analog conversion of a band-limited signal. We have
then, for (ωx, ωy) ∈ [−π, π[2, F1(ωx, ωy) = ψ̂∗

0(ωx)ψ̂
∗
0(ωy).

Moreover, in the specific case when ψ0 also corresponds
to an ideal low-pass filter, that is ψ0(t) = sinc(πt), the
prefilter for the primal decomposition reduces to the iden-
tity (F1(ωx, ωy) = 1) whereas the prefilter for the dual
decomposition is an half-integer shift with frequency response
F2(ωx, ωy) = eı(d+1/2)(ωx+ωy), for (ωx, ωy) ∈ [−π, π[2.

2) M -band wavelet decompositions: The M -band multires-
olution analysis of the first prefiltered image is performed,
resulting in coefficients

cj,m,m′ [k, l] = 〈f(x, y),
1

M j
ψm(

x

M j
− k)ψm′(

y

M j
− l)〉

(37)
where (j ∈ {1, . . . , J} and (m,m′) 6= (0, 0)) or (j = J and
m = m′ = 0). In parallel, the dual decomposition of the
second prefiltered image is computed, generating coefficients

cHj,m,m′ [k, l] = 〈f(x, y),
1

M j
ψH
m(

x

M j
− k)ψH

m′(
y

M j
− l)〉.

(38)
3) Direction extraction in the different subbands: In order

to better extract the local directions present in the image, it is
useful to introduce linear combinations of the primal and dual
subbands. To do so, we define the analytic wavelets as

ψam(t) =
1√
2
(ψm(t) + ı ψH

m(t)), m ∈ {0, . . . ,M − 1}
(39)

and the anti-analytic wavelets as

ψām(t) =
1√
2
(ψm(t) − ı ψH

m(t)), m ∈ {0, . . . ,M − 1}.
(40)

Let us now calculate the tensor product of two analytic
wavelets ψam and ψam′ . More precisely, we are interested in
the real part of this tensor product:

Ψa
m,m′(x, y) = Re{ψam(x)ψam′(y)}

=
1

2

(
ψm(x)ψm′(y) − ψH

m(x)ψH
m′ (y)

)
. (41)

For (m,m′) ∈ {1, . . . ,M − 1}2, using Eq. (4), the Fourier
transform of this function is seen to be equal to

Ψ̂a
m,m′(ωx, ωy) =

1

2
(1 + sign(ωx ωy))ψ̂m(ωx)ψ̂m′(ωy)

=

{
ψ̂m(ωx)ψ̂m′(ωy) if sign(ωx) = sign(ωy),
0 if sign(ωx) 6= sign(ωy).

(42)

As illustrated in Fig. 4, this function allows us to extract the
“directions” falling in the first/third quarter of the frequency
plane.

In the same way, the real part of the tensor product of an
analytic wavelet and an anti-analytic one reads

Ψā
m,m′(x, y) = Re{ψam(y)ψām′(x)} (43)

and, for (m,m′) ∈ {1, . . . ,M − 1}2, its Fourier transform is

Ψ̂ā
m,m′(ωx, ωy) = (44)

{
ψ̂m(ωx)ψ̂m′(ωy) if sign(ωx) 6= sign(ωy),
0 if sign(ωx) = sign(ωy).

Fig. 4 shows that these functions allow us to select frequency
components which are localized in the second/fourth quarter
of the frequency plane. This yields “opposite” directions to
those obtained with Ψa

m,m′ .
At a given resolution level j, for each subband (m,m′) with

m 6= 0 and m′ 6= 0, the directional analysis is achieved by
computing the coefficients

dj,m,m′ [k, l] =
√

2〈f(x, y),
1

M j
Ψā
m,m′(

x

M j
− k,

y

M j
− l)〉

(45)

dH
j,m,m′ [k, l] =

√
2〈f(x, y),

1

M j
Ψa
m,m′(

x

M j
− k,

y

M j
− l)〉.

(46)

According to Eqs. (39), (41), (40) and (43), we have for all
(m,m′) ∈ {1, . . . ,M − 1}2,

dj,m,m′ [k, l] =
1√
2
(cj,m,m′ [k, l] + cHj,m,m′ [k, l]) (47)

dH
j,m,m′ [k, l] =

1√
2
(cj,m,m′ [k, l] − cHj,m,m′ [k, l]) (48)

which amounts to applying a simple 2 × 2 isometry to the
M -band wavelet coefficients. Note that Relations (42) and
(44) are not valid for horizontal or vertical low-pass subbands
such that m = 0 or m′ = 0. The corresponding coefficients
are left unchanged by setting dj,m,m′ [k, l] = cj,m,m′ [k, l] and
dH
j,m,m′ [k, l] = cHj,m,m′ [k, l].
To illustrate the improved directional analysis provided by

the proposed decompositions, the basis functions used in a
3-band dual-tree structure are shown in Fig. 5.

B. Reconstruction
Let us denote by f ∈ `2(Z2) the vector of image samples

where `2(Z2) is the space of finite-energy 2D discrete fields.
Besides, we denote by c the vector of coefficients generated
by the primal M -band decomposition and by c

H the vector of
coefficients produced by the dual one. These vectors consist
of M2J − J + 1 sequences each belonging to `2(Z2). The
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linear combination of the subbands described in Section III-
A.3 can be omitted in the subsequent analysis since we have
seen that this post-processing reduces to a trivial 2×2 orthog-
onal transform. The global decomposition operator (including
decomposition steps 1 and 2) is

D : f 7→
(

c

c
H

)
=

(
D1f

D2f

)
(49)

where D1 = U1F1 and D2 = U2F2, F1 and F2 being
the prefiltering operations described in Section III-A.1 and
U1 and U2 being the two considered orthogonal M -band
wavelet decompositions. We have then the following result
whose proof is provided in Appendix III:

Proposition 5: Provided that there exist positive constants
As, Bs, Cs and Aψ0

such that, for (almost) all (ωx, ωy) ∈
[−π, π[2,

As ≤ |ŝ(ωx, ωy)| ≤ Bs, |ψ̂0(ωx)| ≥ Aψ0
(50)

∑

(p,q)6=(0,0)

|ŝ(ωx + 2pπ, ωy + 2qπ)|2 ≤ Cs < A2
sA

4
ψ0

(51)

D is a frame operator. The “dual” frame reconstruction
operator is given by1

f = (F1
†
F1 +F2

†
F2)−1 (F1

†
U1

−1
c+F2

†
U2

−1
c
H) (52)

where T
† designates the adjoint of an operator T.

A particular case of interest is when {s(x−k, y−l), (k, l) ∈
Z

2} is an orthonormal family of L2(R2). We then have∑
p,q |ŝ(ωx + 2pπ, ωy + 2qπ)|2 = 1 and consequently we can

choose Bs = 1. The lower bounds As and Aψ0
prevent ŝ

and ψ̂0 from vanishing for low frequencies whereas Eq. (51)
controls the amount of energy of ŝ out of the frequency band
[−1/2, 1/2[2. Note that the assumptions on s are obviously
satisfied by the Shannon-Nyquist interpolation function.

Although other reconstructions of f from (c, cH) could be
envisaged, Formula (52) minimizes the impact of possible
errors in the computation of the wavelet coefficients. For
example, these errors may arise in the estimation procedures
when a denoising application is considered. Finally, it is worth
pointing out that Eq. (52) is not difficult to implement since
U1

−1 and U2
−1 are the inverse M -band wavelet transforms

and F1
†, F2

† and (F1
†
F1 + F2

†
F2)−1 correspond to fil-

tering with frequency responses F ∗
1 (ωx, ωy), F ∗

2 (ωx, ωy) and
(|F1(ωx, ωy)|2 + |F2(ωx, ωy)|2)−1, respectively.

IV. IMPLEMENTATION AND DESIGN ISSUES

A. M -band wavelet and filter bank families
In our experiments, the advantage of the dual-tree decompo-

sition has been tested over several classical dyadic orthonormal
wavelet bases. Since we are interested in its M -band gener-
alization, several other M -band filter banks decompositions
have been considered, including both M -band wavelets and
lapped transforms (we refer to [23], [24] for more details on
filter banks regularity):

1Here “dual” is meant in the sense of the frame theory [22] which is
different from the sense given in the rest of the paper.

• Primal wavelets with compact support: the first exam-
ple consists in four finite impulse response (FIR) 16-
tap filters (denoted as AC in [25]), generating regular,
orthonormal and symmetric basis functions. The scaling
function and the wavelets associated to the dual 4-band
filter bank are represented in Fig. 6. We observe that the
constructed dual wavelets possess regularity and satisfy
the symmetry properties stated in Proposition 4. We also
have constructed and tested dual wavelets from standard
symmlets as well as a 4-channel modulated lapped trans-
form [17].

• Primal wavelets without compact support: we have con-
structed M -band generalizations of Meyer’s wavelets.
The corresponding filters possess a good frequency se-
lectivity. To implement these filters, we have used a
method similar to that developed in [26]. Taking the same
wavelet family with a different number of bands helps in
providing fair assessment on the benefits of using more
channels.

B. Frequency-domain implementation
Two solutions are possible to implement a wavelet de-

composition: a time-domain or a frequency-domain approach.
The first one is probably the most popular for classical
wavelet decompositions when wavelets with compact support
are used. Sometimes however, especially for wavelets having
an infinite support (for instance orthonormal spline wavelets),
a frequency-domain implementation is often preferable, taking
advantage of FFT algorithms [27] (see also [28] for a thorough
discussion of these problems). In particular, FFTs are used
to compute Fractional Spline Wavelet Transform [29] and
also to implement steerable pyramids [30]. In the case of
dual-tree decompositions, we have noticed in Section II-
D that, when the primal wavelets are compactly supported,
the dual ones are not. If a time-domain implementation is
chosen, it then becomes necessary to approximate the infinite
impulse responses of the dual filter bank by finite sequences
satisfying constraints related to the para-unitarity conditions,
symmetry, number of vanishing moments, etc. The result-
ing optimal design problem may become involved and, for
a good approximation of the ideal dual responses, it may
happen that the obtained solutions only approximately satisfy
the para-unitarity conditions which correspond to non-convex
constraints. In spite of these difficulties, such an approach was
followed in [31] which is approximate in the sense of the
Hilbert transform and symmetry and in one of our previous
work [1]. For the simulations in this paper, frequency-domain
implementations have been adopted. They may provide better
numerical solutions in the context of dual-tree decompositions.
In this case, both convolutions and decimations/interpolations
are performed in the frequency domain.

V. APPLICATION TO DENOISING

The 2-band multidimensionnal dual-tree complex wavelet
transform has already been proved to be useful in denoising
problems, in particular for video processing [32] or satellite
imaging [33]. In this part, we show that M -band dual-tree
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wavelet transforms also demonstrate good performances in
image denoising and outperform existing methods such as
those relying on classical M -band wavelet transforms (M ≥
2) or even 2-band dual-tree wavelet transforms. We will be
mainly interested in applications involving images containing
directional information and texture-like behavior such as seis-
mic images.

A. Denoising problem
In this part, we will consider the estimation of an image

s, corrupted by an additive zero-mean white Gaussian noise b
with power spectrum density σ2. The observed image f(x, y)
is therefore given by: f(x, y) = s(x, y) + b(x, y). We will
denote by (bj,m,m′ [k, l])k,l the coefficients resulting from a
2D M -band wavelet decomposition of the noise in a given
subband (j,m,m′). The associated wavelet coefficients of the
dual decomposition are denoted by (bHj,m,m′ [k, l])k,l. These
sequences are white zero-mean Gaussian with variance σ2.
Besides, we have for all (k, l) ∈ Z

2,

E{bj,m,m′ [k, l]bHj,m,m′ [k, l]} =∫

R4

E{b(x, y)b(x′, y′)} 1

M j
ψm(

x

M j
− k)ψm′(

y

M j
− l)

1

M j
ψH
m(

x′

M j
− k)ψH

m′(
y′

M j
− l) dxdydx′dy′ (53)

where E{b(x, y)b(x′, y′)} = σ2 δ(x − x′)δ(y − y′) (δ is the
Dirac distribution). After some straightforward calculations
when m 6= 0 or m′ 6= 0, this yields

E{bj,m,m′ [k, l]bHj,m,m′ [k, l]} = 0. (54)

It is deduced that, when m 6= 0 or m′ 6= 0, the Gaussian vector
(bj,m,m′ [k, l] bHj,m,m′ [k, l])T has independent components.

The variance of the noise may be unknown. In such a case,
we use a robust estimator σ̂ of σ which is computed from the
wavelets coefficients at scale j = 1 in a high-pass subband
(see [3, p. 447]):

σ̂ =
1

0.6745
median[(|c1,M−1,M−1[k, l]|)(k,l)]. (55)

B. Thresholding
Various thresholding techniques have been applied on the

wavelet coefficients of the observed image f . Although many
choices of estimators can be envisaged, we have studied the
following ones:

• Visushrink (see [34]) defined by the “universal” hard
threshold T = σ

√
2 ln(N), N being the number of

pixels of the original image.
• Hybrid SUREshrink [35], [36]. This subband-adaptive

threshold technique relies on Stein’s Unbiased Risk Es-
timate and uses a soft thresholding. As a result, if the
signal to noise ratio is very small, the SURE estimate
may become unreliable. If such a situation is detected, a
universal threshold is used.

• Cai and Silverman estimator [37]. This block thresholding
approach exploits correlations between neighboring coef-
ficients. In our work, we use a variant of the NeighBlock
method.

• Bivariate Shrinkage [38]. This method exploits the inter-
scale dependencies i.e. relations between the coefficients
and their parents.

C. Mesures of performance
Let N be the number of points in the observed image f ,

σs the standard deviation of s. We define two signal-to-noise
ratios, denoted by SNR, as:

SNRinitial = 10 log10

(
σ2
s N

‖s− f‖2

)

SNRfinal = 10 log10

(
σ2
s N

‖s− ŝ‖2

)
(56)

where ŝ is the estimated image.
Visual comparisons are provided as well, since SNR does

not always faithfully accounts for image quality, especially in
highly structured areas (textures, edges,...)

D. Experimental results
Tests have been carried out on a variety of images corrupted

by an additive zero-mean white Gaussian noise. We have con-
sidered two possible situations : first, when the noise variance
is known and second, when it is not. In the latter case, the
noise variance is estimated with the robust median estimator
as defined in Eq. (55). The noisy image is decomposed via an
M -band DWT or an M -band Dual-Tree Transform (DTT) in
the 2, 3 and 4-band cases. For each decomposition, the number
of decomposition levels is fixed so as to get approximation
images having roughly the same size at the coarsest resolution.
This means that 2-band decompositions are carried out over 4
resolution, whereas 3 or 4-band decompositions are performed
over 2 resolution levels. Under these conditions, the com-
putational costs of the different M -band decompositions are
comparable. Different wavelet families have been tested, the
provided results corresponding to the use of Meyer’s wavelets
[26]. For various noise levels, the values of the SNR’s are
obtained from a Monte Carlo study over ten noise realizations.

Since we address more specifically the ability of the M -
band DTT to preserve features in specific directions, com-
parisons are made on the following three images containing
rich directional contents: a high frequency textured image, the
standard Barbara image and a set of 2D seismic data with
oriented patterns.

• We have first applied our method on a 512 × 512
directional texture image (Straw D15 image from the
Brodatz album) corrupted by an additive zero-mean white
Gaussian noise.
The obtained SNR’s (in dB) for three different initial
noise levels are listed in Tab. I. We observe for this image
that, by increasing the number of bands M , the denoising
results are improved in almost all cases for the DWT
(sometimes only marginally) and significantly in almost



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005 8

all cases for the DTT. Furthermore, the DTT clearly
leads to an improvement of the denoising performance
compared with the DWT, whatever the initial SNR or
the threshold selection method is. We remark that the
more dramatic improvement over DWT is observed for
Visushrink, which does not perform very well compared
with SURE, NeighBlock or Bivariate. Results are also
relatively consistent between the top (noise variance
known) and the bottom of the table (noise variance
unknown), which is important in real applications where
noise statistics often have to be estimated from the data.
Fig. 7 also illustrates that, compared with other decom-
positions, the DTT with M = 4 leads to sharper visual
results and reduced artifacts. It can be seen from the
bottom left corner that a 4-band DTT (Fig. 7d) better
preserves the thin lines that are often blurred or merged
in the other cropped images.

• Second, we have performed the same denoising tests on
the 512× 512 8-bit Barbara image. The obtained SNR’s
(in dB) are listed in Tab. II.
For this image, we observe that, by increasing the number
of bands M , the denoising results are improved in almost
all cases both for the DWT and the DTT. Furthermore,
the DTT clearly outperforms the DWT, as in the textured
image case.
Fig. 8 represents a zoom on a leg with a regular texture.
This illustrates that, compared with other decompositions,
the 4-band DTT leads to better visual results. Fig. 8a
corresponding to the 2-band DWT is strongly blurred.
Details are better preserved in the 4-band decomposition
(Fig. 8b), but it clearly appears that the texture with an
apparent angle of π/4 is heavily corrupted by patterns in
the opposite direction, due to the mixing in the “diagonal”
subband. Although Fig. 8c remains blurry, there is much
less directional mixture in both DTT decompositions.

• Finally, we have tested our method on a 512×512 seismic
image displayed in Fig. 9a. The data exhibits mostly
horizontal structures as well as other directions which
are important to the geophysicist for the underground
analysis.
Similarly to previous cases, the seismic image is cor-
rupted by an additive white Gaussian noise. The obtained
denoising results are listed in Tab. III.
We observe that in most of the cases, denoising improves
objectively with the increase of the number of bands M ,
with DWT and DTT as well. Again, the best results are
obtained with both dual-tree and a 4-band wavelet, but
the gain over traditional DWT is sometimes smaller than
in the previous example, for instance for NeighBlock
shrinkage. It should be noted that the original image is not
noise-free in general. SNR measures are therefore more
difficult to interpret. The existence of prior noise may
explain the relatively weaker SNR increase between DWT
and DTT, since denoising may attempt to remove both the
added and the original noise, and thus the denoised image
strays away from the original noisy data.
Fig. 9b represents the original data corrupted with a -2 dB
additive noise. Figs. 9c-d display the results with 2- and

4-band DTT respectively. Some of the oblique features
(e.g. on the top-right corner) that are almost hidden in
the noisy image become apparent in both the 2- and the
4-band DTT. We observe for this image that denoising
results are more satisfactory with a 4-band than with
a 2-band DTT: the 2-band denoising image possesses
larger blurred areas, especially in weakly energetic zones.
Careful examination also indicates a reduced presence of
mosquito effects in the 4-band case.

We have experimented the DTT denoising algorithm on
other image sets. Dual-tree M -band structures with M > 2
generally outperform existing wavelet decompositions in terms
of SNR. We shall remark that visual improvement is not
always perceptible in image areas with weak directionality.

E. Basis choice
The previous section focused on the comparison between

DWT and DTT with M -band Meyer wavelets, for different im-
ages, noise levels and threshold selection methods. Choosing
a single wavelet family allowed us to provide a relatively fair
comparison concerning the choice of the different aforemen-
tioned characteristics but it also appears interesting to evaluate
the influence of the decomposition filters. Amongst a variety of
choices, we have tested 2-band symmlets (with length 8), the
basic 4-band Modulated Lapped Transform (MLT, see [17])
and finally, Alkin and Caglar 4-band filter bank [25]. The
results concerning Meyer’s wavelets can be found in previous
tables.

The results reported in Tab. IV show the superiority of the
M -band DTT (with M > 1) over M -band DWT or 2-band
DTT, in particular when the popular symmlets are employed.
There is however no family which always leads to the best
results. We remark indeed that DT MLT or AC DTT may
lead to slightly improved results compared with Meyer DTT,
but the best choice often depends on the image.

VI. CONCLUSION

Motivated by applications where directional selectivity is of
main interest, we have proposed an extension of existing works
on Hilbert transform pairs of dyadic orthonormal wavelets
to the M -band case. In this context, we have pointed out
that, when several wavelet decompositions are performed in
parallel, special care should be taken concerning their imple-
mentation, by designing appropriate pre- and post-processing
stages. Since the decomposition is redundant, an optimal
reconstruction has also been proposed.

By taking advantage of the Hilbert pair conditions and M -
band features which offer additional degrees of freedom, this
new transform has been applied to image denoising. Various
simulations have allowed us to conclude that dual-tree de-
compositions with more than two bands generally outperform
discrete orthonormal wavelet decompositions and dyadic dual-
tree representations.

Encouraged by these results, we will consider further im-
provements with other filter bank designs, including regularity,
as well as applications of dual-tree M -band wavelets to other
signal and image processing tasks, especially in seismics.
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APPENDIX I
PROOF OF PROPOSITION 2:

Assuming that θ̃0 verifies the linearity relation (18) and
using the fact that it is an odd function, we find that

∀ ω ∈] − 2π, 2π[,

β(ω) =

∞∑

i=1

θ̃0(
ω

M i
) = γ

ω

M

∞∑

i=0

1

M i
=

γω

M − 1
. (57)

We deduce from Eq. (13) that, for all m ∈ {1, . . . ,M − 1},

∀ ω ∈] − 2π

M
,
2π

M
[

α̃0,m(ω) =
π

2
sign(ω) − γωM

M − 1
(mod 2π). (58)

Furthermore, according to Condition (P0,m),

∀ ω ∈] − 2π

M
, 0] α̃0,m(ω +

2π

M
) = α̃0,m(ω) (mod 2π).

(59)
This allows us to claim that there exists d ∈ Z such that

γ = (d+
1

2
)(M − 1). (60)

This leads to the expression of α̃0,m in Eq. (19). As α̃0,m is a
2π/M -periodic function, it is fully defined by its expression
on [0, 2π

M [. In contrast, we have to determine the expression of
θ̃0 outside the interval ] − 2π

M , 2π
M [. Using Eqs (13) and (17),

we obtain, for all m ∈ {0, . . . ,M − 1},

α̃0,m(
ω

M
) + θ̃0(

ω

M
) + β(

ω

M
) =

π

2
sign(ω) (mod 2π)

⇐⇒ θ̃0(ω) =
π

2
sign(ω) − β(ω) − α̃0,m(ω) (mod 2π).

(61)

Consider now the interval [p 2π
M , (p + 1) 2π

M [ where p ∈{
1, . . . ,

⌈
M
2

⌉
− 1

}
. As [p 2π

M , (p + 1) 2π
M [⊂ [0, 2π[, Eq. (57)

yields

∀ω ∈ [p
2π

M
, (p+ 1)

2π

M
[, β(ω) = (d+

1

2
)ω. (62)

Using Eq. (61) and the 2π/M -periodicity of α̃0,m, we deduce
that

∀ω ∈ [p
2π

M
, (p+ 1)

2π

M
[,

θ̃0(ω) =
π

2
− (d+

1

2
)ω − α̃0,m(ω − 2π

M
p) (mod 2π).

(63)

Combining this result with Eq. (19) leads to Eq. (20). As a
consequence of the antisymmetry of the phase of a real filter,
a similar expression is obtained for p ∈

{⌈
M
2

⌉
, . . . ,M − 1

}
:

∀ω ∈
]
p
2π

M
, (p+ 1)

2π

M

]
,

θ̃0(ω) = (d+
1

2
)(M − 1)ω − pπ (mod 2π). (64)

In summary, under the considered assumptions, we have
seen that, if there exists a solution to Eq. (13), it is given by
Eqs. (19) and (20). Conversely, we will now prove that any

filters satisfying Eqs. (19) and (20) are solutions to Eq. (13).
More precisely, we will proceed by induction to show that

∀k ∈ N, ∀ω ∈]2kπ, 2(k + 1)π[,

β(ω) = (d+
1

2
)ω − kπ (mod 2π) (65)

and α̃0,m(
ω

M
) + β(ω) =

π

2
(mod 2π). (66)

• It is readily checked that the properties (65)-(66) are
satisfied for k = 0.

• Assuming that the properties hold true up to the index
k− 1 ≥ 0, we will demonstrate it remains valid at index
k.
We can write k = Mp+q with p ∈ N and q ∈ {0, ...,M−
1} and, consequently,

ω ∈]2kπ, 2(k + 1)π[⇐⇒ (67)
ω

M
∈]2(p+

q

M
)π, 2(p+

q + 1

M
)π[⊂ ]2pπ, 2(p+ 1)π[.

Since p < k, according to the induction hypothesis, we
have ∀ω ∈]2kπ, 2(k + 1)π[,

β(
ω

M
) = (d+

1

2
)
ω

M
− pπ (mod 2π). (68)

Moreover, the 2π-periodicity of θ̃0 allows us to write:

θ̃0(
ω

M
) = θ̃0(

ω

M
− 2pπ). (69)

As ω/M − 2pπ ∈ ]2q πM , 2(q+1) πM [, Eqs. (20) and (64)
lead to

θ̃0(
ω

M
) =

M − 1

M
(d+

1

2
)ω (70)

−
(
(2d+ 1)(M − 1)p+ q

)
π (mod 2π)

=
M − 1

M
(d+

1

2
)ω − (k − p)π (mod 2π).

Combining Eqs. (17), (68) and (70), Eq. (65) is obtained.
By invoking the 2π/M -periodicity of α̃0,m, the second
part of the property is proved in the similar way. Indeed,
for ω ∈]2kπ, 2(k + 1)π[, we have:

α̃0,m(
ω

M
) = α̃0,m(

ω

M
− 2(p+

q

M
)π) (71)

which, using Eq. (19), leads to

α̃0,m(
ω

M
) =

π

2
− (d+

1

2
)M(

ω

M
− 2(p+

q

M
)π)

=
π

2
− (d+

1

2
)ω + kπ (mod 2π). (72)

Then, summing Eq. (65) and the above expression results
in Eq. (66).

In conclusion, we have proved by induction that Eq. (66) holds
for almost all ω > 0. The function θ̃0 (and thus β) being odd
as well as α̃0,m, we deduce that Eq. (13) is satisfied almost
everywhere. This ends the proof of Proposition 2.
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APPENDIX II
PROOF OF PROPOSITION 4:

Assuming h0 is symmetric w.r.t. k0, we have

∀k ∈ Z, h0[2k0 − k] = h0[k] (73)
⇐⇒ e−2ık0ωH∗

0 (ω) = H0(ω). (74)

Thanks to Eq. (10), this may be rewritten as

e−2ık0ωe−2ıθ0(ω)G∗
0(ω) = G0(ω). (75)

According to Eq. (20),

2θ0(ω) = (2d+ 1)(M − 1)ω (mod 2π). (76)

which leads to

∀k ∈ Z, g0[2k0 + (2d+ 1)(M − 1) − k] = g0[k]. (77)

This shows that g0 is symmetric w.r.t. k0 + (d+ 1
2 )(M − 1).

In the same way, for any m ∈ {1, ...,M − 1}, the symme-
try/antisymmetry property:

∀k ∈ Z, hm[2km − k] = ±hm[k] (78)

combined with Eq. (21), results in:

∀k ∈ Z, gm[2km − 2d− 1 − k] = ∓gm[k]. (79)

APPENDIX III
PROOF OF PROPOSITION 5:

We denote by ‖.‖ the norms of the underlying Hilbert
spaces. We have then, for all f ∈ `2(Z2),

‖Df‖2 = ‖D1f‖2 + ‖D2f‖2. (80)

Let us next focus on the first term on the right-hand side of
this equation. As U1 is unitary, we have

‖D1f‖2 = ‖F1f‖2 (81)

=
1

(2π)2

∫ π

−π

∫ π

−π

|F1(ωx, ωy)f̂(ωx, ωy)|2 dωx dωy.

In Equation (34), we upper bound the magnitude of the sums
by the sum of magnitudes. Invoking the Cauchy-Schwarz
inequality, the modulus of the frequency response of the first
prefilter satisfies the following inequality:

|F1(ωx, ωy)| ≤
(∑

p,q

|ŝ(ωx + 2pπ, ωy + 2qπ)|2
)1/2

(∑

p

|ψ̂0(ωx + 2pπ)|2
)1/2(∑

q

|ψ̂0(ωy + 2qπ)|2
)1/2

. (82)

As {ψ0(t − k), k ∈ Z} is an orthonormal family of L2(R),∑∞
p=−∞ |ψ̂0(ωx + 2pπ)|2 = 1. Under the Assumptions (50)

and (51), we deduce that

|F1(ωx, ωy)| ≤
√
B2
s + Cs. (83)

Besides, the frequency magnitude of the first prefilter can be
lower bounded as follows:

|F1(ωx, ωy)| ≥ |ŝ(ωx, ωy)ψ̂0(ωx)ψ̂0(ωy)|
−

∑

(p,q)

6=(0,0)

|ŝ(ωx+2pπ, ωy+2qπ)ψ̂0(ωx+2pπ)ψ̂0(ωy+2qπ)|.

(84)
The latter summation can be upper bounded as we did for
|F1(ωx, ωy)|, which combined with the assumptions (50) and
(51), yields:

|F1(ωx, ωy)| ≥ AsA
2
ψ0

−
√
Cs. (85)

From Eqs. (81), (83) and (85), we conclude that

(AsA
2
ψ0

−
√
Cs)‖f‖ ≤ ‖D1f‖ ≤

√
B2
s + Cs‖f‖. (86)

Now, using Eq. (35) and invoking the same arguments as
previously lead to

(AsA
2
ψ0

−
√
Cs)‖f‖ ≤ ‖D2f‖ ≤

√
B2
s + Cs‖f‖. (87)

Combining Eqs. (86) and (87) allows us to conclude that
√

2(AsA
2
ψ0

−
√
Cs)‖f‖ ≤ ‖Df‖ ≤

√
2(B2

s + Cs)‖f‖. (88)

As we have assumed in Eq. (51) that AsA2
ψ0

−
√
Cs > 0,

this means that D is a frame operator. Note that, when ideal
low-pass filters are used for s and ψ0 (that is s(x, y) =
ψ0(x)ψ0(y) with ψ0(t) = sinc(πt)), we have |F1(ωx, ωy)| =
|F2(ωx, ωy)| = 1, and thus, ‖D1f‖ = ‖D2f‖ = ‖f‖.
Therefore, in this ideal case, D is a tight frame operator with
bound 2.

To determine the “dual” frame reconstruction operator, we
have to calculate the pseudo-inverse of D which is defined by
D
] = (D†

D)−1
D

†. In our case, the adjoint of D is

D
† = (D1

†
D2

†) = (F1
†
U1

†
F2

†
U2

†). (89)

Hence, by virtue of the unitarity of U1 and U2, we obtain
D

†
D = F1

†
F1 + F2

†
F2

and, finally,

D
] = (F1

†
F1 + F2

†
F2)−1 (F1

†
U1

−1
F2

†
U2

−1). (90)
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Fig. 8. Denoising results for a cropped version of “Barbara” using Bivariate Shrinkage and: (a) DWT M = 2; (b) DWT M = 4; (c) DTT M = 2; (d) DTT
M = 4.
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Fig. 9. Seismic data and denoising results using Neighblock: (a) Original data; (b) Noisy data; (c) DTT M = 2; (d) DTT M = 4.
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SNRinit = 7.71 dB SNRinit = 5.71 dB SNRinit = 3.71 dB
Visu SURE Biv NB Visu SURE Biv NB Visu SURE Biv NB

DWT M = 2 5.44 10.07 10.37 10.72 4.36 8.70 9.02 9.40 3.37 7.49 7.75 8.14
DWT M = 3 5.57 10.25 10.38 10.86 4.53 8.82 9.01 9.52 3.62 7.52 7.72 8.24
DWT M = 4 5.53 10.25 10.38 10.94 4.43 8.83 9.03 9.59 3.44 7.65 7.75 8.31
DTT M = 2 6.67 10.67 10.85 11.01 5.51 9.38 9.54 9.70 4.39 8.12 8.29 8.46
DTT M = 3 6.72 10.80 10.93 11.19 5.54 9.47 9.60 9.85 4.54 8.15 8.33 8.57
DTT M = 4 6.91 10.91 10.96 11.31 5.64 9.50 9.65 9.98 4.48 8.28 8.40 8.69
DWT M = 2 4.78 9.71 9.99 10.49 3.94 8.56 8.78 9.30 3.13 7.41 7.60 8.12
DWT M = 3 5.18 9.96 10.29 10.80 4.29 8.59 8.95 9.51 3.49 7.50 7.68 8.26
DWT M = 4 5.20 10.04 10.40 10.90 4.22 8.78 9.04 9.59 3.32 7.63 7.75 8.32
DTT M = 2 5.91 10.33 10.53 10.86 4.98 9.15 9.32 9.66 4.04 8.04 8.14 8.48
DTT M = 3 6.23 10.45 10.87 11.17 5.25 9.22 9.56 9.87 4.37 8.06 8.29 8.60
DTT M = 4 6.52 10.62 10.99 11.31 5.40 9.45 9.68 10.00 4.33 8.23 8.42 8.73

TABLE I
DENOISING RESULTS ON TEXTURE IMAGE FOR DIFFERENT INITIAL SNR’S. IN THE TOP PART OF THE TABLE, THE VARIANCE IS ASSUMED TO BE KNOWN

AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARE SURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37], BIVARIATE

SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).

SNRinit = 5.67 dB SNRinit = 4.17 dB SNRinit = 2.67 dB
Visu SURE Biv NB Visu SURE Biv NB Visu SURE Biv NB

DWT M = 2 8.67 12.21 13.27 13.44 8.18 10.90 12.30 12.49 7.83 10.15 11.37 11.57
DWT M = 3 9.65 12.18 13.32 13.52 9.06 11.13 12.41 12.59 8.53 10.43 11.54 11.68
DWT M = 4 9.65 12.60 13.37 13.65 9.01 11.03 12.51 12.73 8.42 10.39 11.68 11.83
DTT M = 2 9.38 12.89 13.76 13.69 8.73 11.93 12.79 12.74 8.25 10.88 11.84 11.80
DTT M = 3 10.45 12.80 13.99 13.83 9.66 11.69 13.06 12.88 8.97 10.95 12.15 11.93
DTT M = 4 10.80 13.32 14.16 14.01 10.05 12.28 13.31 13.07 9.35 11.20 12.47 12.15
DWT M = 2 8.63 12.19 13.25 13.50 8.16 10.89 12.28 12.55 7.82 10.14 11.35 11.62
DWT M = 3 9.63 12.17 13.31 13.55 9.05 11.13 12.41 12.61 8.53 10.42 11.54 11.70
DWT M = 4 9.62 12.55 13.37 13.68 8.99 11.04 12.51 12.76 8.41 10.39 11.68 11.86
DTT M = 2 9.33 12.88 13.74 13.75 8.70 11.92 12.77 12.79 8.23 10.85 11.82 11.84
DTT M = 3 10.43 12.78 13.99 13.85 9.65 11.70 13.06 12.89 8.97 10.96 12.14 11.94
DTT M = 4 10.78 13.30 14.17 14.04 10.04 12.23 13.31 13.10 9.34 11.21 12.47 12.17

TABLE II
DENOISING RESULTS ON BARBARA IMAGE FOR DIFFERENT INITIAL SNR’S. IN THE TOP PART OF THE TABLE, THE VARIANCE IS ASSUMED TO BE KNOWN

AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARE SURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37], BIVARIATE

SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).

SNRinit = 4.13 dB SNRinit = 3.13 dB SNRinit = 2.13 dB
Visu SURE Biv NB Visu SURE Biv NB Visu SURE Biv NB

DWT M = 2 3.17 6.66 6.78 7.46 2.83 6.05 6.19 6.87 2.51 5.48 5.64 6.30
DWT M = 3 3.53 7.12 7.14 7.84 3.21 6.51 6.53 7.23 2.90 5.91 5.96 6.64
DWT M = 4 3.60 7.52 7.47 8.16 3.24 6.91 6.83 7.53 2.91 6.31 6.23 6.93
DTT M = 2 3.82 7.12 7.10 7.57 3.47 6.52 6.50 6.98 3.12 5.96 5.96 6.42
DTT M = 3 4.15 7.49 7.42 7.92 3.79 6.91 6.82 7.31 3.46 6.28 6.25 6.72
DTT M = 4 4.23 7.82 7.72 8.21 3.84 7.23 7.09 7.58 3.49 6.65 6.49 6.98
DWT M = 2 2.56 5.19 5.73 6.76 2.34 4.92 5.37 6.34 2.11 4.64 5.03 5.92
DWT M = 3 3.27 6.60 6.77 7.72 3.01 6.28 6.26 7.16 2.75 5.62 5.76 6.61
DWT M = 4 3.50 7.51 7.36 8.16 3.17 6.88 6.74 7.54 2.86 6.29 6.15 6.94
DTT M = 2 3.12 5.86 5.97 6.93 2.89 5.51 5.62 6.51 2.65 4.95 5.28 6.10
DTT M = 3 3.84 7.07 7.04 7.84 3.55 6.56 6.52 7.27 3.27 5.97 6.02 6.72
DTT M = 4 4.11 7.81 7.60 8.23 3.76 7.22 6.99 7.60 3.42 6.64 6.41 7.00

TABLE III
DENOISING RESULTS ON SEISMIC IMAGE FOR DIFFERENT INITIAL SNR’S. IN THE TOP PART OF THE TABLE, THE VARIANCE IS ASSUMED TO BE KNOWN

AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARE SURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37], BIVARIATE

SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).
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Visu SURE Biv NB Visu SURE Biv NB Visu SURE Biv NB
Texture SNRinit = 7.71 dB SNRinit = 5.71 dB SNRinit = 3.71 dB

symlet DWT 5.01 9.78 9.96 10.33 3.97 8.40 8.58 8.99 3.07 7.12 7.31 7.73
DW MLT 5.04 10.08 10.11 10.58 3.94 8.60 8.71 9.20 3.01 7.33 7.38 7.89
AC DWT 5.18 10.06 10.07 10.58 4.11 8.61 8.70 9.22 3.19 7.32 7.39 7.94

symlet DTT 6.59 10.64 10.85 10.91 5.36 9.36 9.55 9.61 4.24 8.16 8.32 8.38
DT MLT 6.94 11.04 11.07 11.32 5.56 9.72 9.79 9.99 4.35 8.50 8.54 8.70
AC DTT 6.95 10.97 11.01 11.29 5.60 9.69 9.74 9.97 4.40 8.45 8.52 8.71
Barbara SNRinit = 5.67 dB SNRinit = 4.17 dB SNRinit = 2.67 dB

symlet DWT 8.66 11.83 12.72 12.95 8.21 10.76 11.83 12.06 7.85 9.94 10.98 11.19
DW MLT 8.95 12.05 12.70 12.96 8.37 11.00 11.81 12.05 7.88 9.81 10.97 11.17
AC DWT 9.20 12.17 12.93 13.17 8.58 10.86 12.06 12.27 8.08 9.94 11.23 11.39

symlet DTT 9.45 12.92 13.69 13.62 8.86 11.82 12.74 12.70 8.43 10.85 11.83 11.80
DT MLT 10.49 13.29 14.15 13.98 9.67 12.32 13.26 13.07 8.94 11.07 12.39 12.17
AC DTT 10.71 13.40 14.31 14.08 9.88 12.31 13.43 13.17 9.12 11.16 12.56 12.28
Seismic SNRinit = 4.13 dB SNRinit = 3.13 dB SNRinit = 2.13 dB

symlet DWT 3.22 6.64 6.74 7.39 2.91 6.04 6.15 6.80 2.60 5.47 5.60 6.23
DW MLT 3.54 7.09 7.08 7.72 3.22 7.11 6.47 7.11 2.92 5.90 5.90 6.53
AC DWT 3.64 7.27 7.26 7.90 3.31 6.61 6.64 7.29 3.01 6.06 6.05 6.70

symlet DTT 3.99 7.22 7.25 7.63 3.64 6.65 6.66 7.05 3.31 6.11 6.12 6.50
DT MLT 4.30 8.01 7.74 8.13 3.95 7.40 7.12 7.53 3.62 6.82 6.53 6.96
AC DTT 4.39 8.04 7.83 8.24 4.02 7.44 7.20 7.64 3.68 6.85 6.60 7.05

TABLE IV
DENOISING RESULTS FOR DIFFERENT INITIAL SNR’S AND DIFFERENT WAVELETS FAMILIES. THE THREE PREVIOUS IMAGES ARE STUDIED. THE

CONSIDERED ESTIMATORS ARE SURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37] , BIVARIATE SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).


