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Abstract

The richness of natural images makes the quest for optimal representations in image pro-
cessing and computer vision challenging. The latter observation has not prevented the design
of image representations, which trade off between efficiency and complexity, while achieving
accurate rendering of smooth regions as well as reproducing faithful contours and textures. The
most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multi-
scale and oriented nature of edges and patterns in images. This paper presents a panorama of
the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictio-
naries. They typically exhibit redundancy to improve sparsity in the transformed domain and
sometimes its invariance with respect to simple geometric deformations (translation, rotation).
Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation
invariance. Highly redundant dictionaries require specific algorithms to simplify the search for
an efficient (sparse) representation. We also discuss the extension of multiscale geometric de-
compositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The
etymology of panorama suggests an overview, based on a choice of partially overlapping “pic-
tures”. We hope that this paper will contribute to the appreciation and apprehension of a
stream of current research directions in image understanding.

Keywords: Review, Multiscale, Geometric representations, Oriented decompositions, Scale-space, Wavelets,
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1 Introduction: Vision Aspects, Scope and Notations

1.1 Background on Vision Aspects of Scale

Many natural-world object features are substantive only over a certain spatial extent. In other
words, the scale of observation is crucial in object recognition and understanding. For instance, a
chair would be easily recognizable in the scale of a few meters. But neither at a centimeter scale
which captures the chair’s texture and not its object appearance, or at a hectometer scale, where
the chair’s appearance is hardly distinguished from other surrounding objects.

Accordingly, early neurophysiological studies in biologic perception reveal that those objects
are generally apprehended differently according to the scale of observation by the sensory receptors
and the cortex of mammalians [1, 2]. Efficient information extraction is thus required for artificial
sensing systems to mimic standard biologic tasks such as object recognition.

Pixel-based representations as linear combinations of “delta” functions suffice for simple data
manipulation but are very limited for higher level tasks. Only assuming some sufficient resolution
in the data, the lack of prior knowledge in the extent of objects to be analyzed calls for tools
able to unveil the appropriate scales and to allow a hierarchical representation of the underlying
features [3, 4, 5]. Disregarding the peculiar fractal formalism [6, 7] where similar phenomena
appear at different scales (what is called self-similarity), special attention has been paid to data
transformations able to capture object features over a range of scales in a more compact form.
Sparsity, amounting to a reduced number of parameters in a suitable domain, is thus used as a
heuristic guide to image understanding. Bearing analogies with findings in vision processes [8],
several sparse decompositions have proven efficient in image compression, with the discrete wavelet
transform (DWT) as their most well-known avatar, often intermingled with information theory and
technical wizardry, from bit plane arithmetic coding [9] to trellis coded quantization. A compact
history and a paper collection are given in [10, 11], respectively.

Yet, beyond image compression transforms, other decomposition techniques are needed, with
more resolving power in complex scene detection, denoising, segmentation or, in a broad sense,
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(a) (b)

Figure 1: Two faces of the cartoon-texture model: (a) Yogi bear (b) Fingerprint.

scene understanding. As a matter of fact, standard separable wavelet transforms appropriately
detect point-like (0-D) singularities and address mild noise levels. Still they generally lack perfor-
mance in dealing with higher dimensional features combining both regularity and singularity such
as edges, contours or regular textures, that may also be anisotropic. Amongst their limitations are
shift sensitivity, limited orientation selectivity, rigid and uneven atom shapes (e.g., fractal-looking
asymmetric Daubechies wavelets), crude frequency direction selection. Major challenges reside in
a proper definition of the underlying regularity (with respect to each feature) and corresponding
singularities. These challenges are amplified by additional degradations from which acquired data
may suffer such as blur, jitter and noise. Descriptive mathematical models of images combining
cartoon and textures become increasingly popular [12, 13] and progressively yield tractable algo-
rithms. We note that there exists a continuum of real-world images between cartoon and textures,
ranging from cartoon-ish Yogi bear in Fig. 1(a) to “textural” fingerprints in Fig. 1(b). In between
these two extreme image types, there exists many possible variations in image object complexity.

Moreover, both contours and (even regular) textures are known to be ill-defined. They are
indeed viewer- and scale-dependent concepts in discrete images or volumes. Consider an image
resulting from a combination of piecewise smooth components, contours, geometrical textures and
noise. Their discrimination is required for high level image processing tasks. Each of these four
components could be detected, described and modeled by different formalisms: smooth curves or
polynomials, oriented regularized derivatives, discrete geometry, parametric curve detectors (such
as the Hough transform), mathematical morphology, local frequency estimators, optical flow ap-
proaches, smoothed random models, etc. They have progressively influenced the hybridization of
standard multiscale transforms towards more geometric and sparser representations of such compo-
nents, with improved localization, orientation sensitivity, frequency selectivity or noise robustness.

1.2 Scope of the Paper

Geometry driven “?-let” transforms [14] have been popular in the past decade, with a seminal
ancestor in [15]. Early [16], a debate opened on the relative strength of Eulerian (non-adaptive)
versus Lagrangian (adaptive) representation, now pursued with the growing interest in dictionary
learning [17].

As of today, the authors believe that the discussion is not fully settled in the various different
uses of sparsity in images. Neither has the trade-off between redundancy and sparsity. A number
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of early papers on geometric multiscale methods appear in [18]. Comparisons are drawn in [19, 20],
while [21, 22, 23, 22, 24] focus on ridgelets, curvelets and wedgelets, as representative of fixed
and adaptive decompositions. The present paper aims at providing a broader panorama of the
recent developments in multiscale decompositions targeted to efficient representation of geometric
features in images: smooth content (multiscale or hierarchical), edges and contours (locally spatial)
and textures (locally spectral). We emphasize the main characteristics and differences pertaining
to spatial, directional and frequency selectivity of the selected methods. The paper therefore
cites a dense set of references, ranging from continuous to discrete representations, from (nearly)
orthogonal to (fully) redundant. As a guiding thread to this panorama, we illustrate some of the
reviewed geometric multiscale decompositions on a memorial plaque1 in Szeged University, Hungary,
depicted in Fig. 2. It features simple objects (embedded rectangles and a disk), a few differently
oriented features and regular textures at different scales. Since some of the illustrations have been
slightly enhanced to improve the clarity of details, they are available in original resolution online
[26]. This picture finally honors Alfréd Haar’s originative paper [27] Zur Theory der orthogalen
Funktionen Systeme (On the Theory of Orthogonal Function Systems) and his eponymous wavelet.
He also founded Acta Scientiarum Mathematicarum together with Frigyes Riesz, whose works
percolated wavelet theory [28].

Figure 2: Szeged University Memorial plaque in honor of A. Haar and F. Riesz: A szegedi matem-
atikai iskola világh́ırű megalaṕıtói (The world-wide famous founders of the mathematical school in
Szeged).

The paper is organized as follows: the remaining of Section 1 is devoted to context and notations
for image representations. Then, as a preliminary to geometric tools, a quick survey of early
multiscale decompositions is presented in Section 2. More recent transforms, termed directional
or geometrical, circumventing aforementioned drawbacks, are discussed in Section 3. Owing to

1Courtesy of Professor Károly Szatmáry, http://astro.u-szeged.hu/szatmary.html, who performed scalograms
analysis of variable stars as early as in 1992 [25].
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the additional degrees of freedom provided by these representations, a discussion is carried out in
Section 4 on redundancy and adaptivity. The extension of frequency, scale and directionality to
non-Euclidean spaces or grids such as the sphere, are presented in Section 5. Finally, concluding
remarks are given in Section 6.

1.3 Mathematical Framework

1.3.1 Notations and Conventions

This paper describes numerous mathematical methods designed for different spaces and ge-
ometries. We have tried therefore to adopt coherent representations for the many mathematical
notions that coexist in this text. For instance, functions and vectors in high dimensional spaces
are generally referring to some signal of interest (e.g., 1-D signals or images). They must therefore
share the same notations and we thus decided to write them as simple lowercase Roman or Greek
letters. However, coordinate systems, vectors in 2 or 3 dimensions and multi-indices are denoted
in bold symbols.

The (Hilbert) space L2(X ) is the space of square integrable functions on the space X , i.e., given
the (Lebesgue) integration measure dρ on that space, L2(X ) = L2(X ,dρ) = {f : X → C : ‖f‖2 :=∫
X |f(u)|2 dρ(u) <∞}. In L2(X ) the inner product between two functions g, h ∈ L2(X ) is denoted

by 〈g, h〉 =
∫
X g
∗(u)h(u) dρ(u) with ∗ the complex conjugation. By extension, for p > 1, we also

use the (Banach) spaces Lp(X ) = Lp(X , dρ) = {f : X → C : ‖f‖pp :=
∫
X |f(u)|p dρ(u) <∞}, with

‖·‖2 = ‖·‖.
We also use some discrete spaces as the common `pN = (CN , ‖ · ‖p) with ‖v‖pp :=

∑
i |vi|p for

p > 1 and v ∈ CN , with again the shorthand ‖·‖ = ‖·‖2. In `2N , the inner product between u, v ∈ `2N
is written 〈u, v〉 = u · v =

∑
u∗i vi. Whether the overused notations 〈·, ·〉 or ‖·‖p are applied to

continuous or discrete mathematical objects will remain clear from the context. The spaces `p are
the generalization of the previous finite spaces to infinite sequences, i.e., `p = {v = (vi)i∈N : ‖v‖pp =∑

i>0 |vi| <∞}.
For functions f ∈ L2(X ) or discrete sequences v ∈ `2N , f̂ and v̂ denote the Fourier transform

of f or v respectively. For instance, for X = R and f ∈ L2(R), f̂(ω) = 1√
2π

∫
R f(t) e−iωt dt

and f(t) = 1√
2π

∫
R f̂(ω) eiωt dω are the Forward and Inverse Fourier transform respectively. For

f ∈ L2(R2) and x,ω ∈ R2, the same transforms are f̂(ω) = 1
2π

∫
R2 f(x) e−iω·x d2x and f(x) =

1
2π

∫
R2 f̂(ω) eiω·x d2ω. For v ∈ `2N , the same transforms are v̂k = 1√

N

∑
j vj exp(−2πi jk/N) and

vj = 1√
N

∑
k v̂k exp(2πi jk/N). In matrix algebra notations, this can be rewritten as v = F v̂ and

v̂ = F∗v, where the Fourier matrix F ∈ CN×N is given by Fjk = 1√
N

exp(2πi jk/N), and F∗ is its

complex adjoint. The convolution by time-invariant filter h operates as (f ?h)(t) =
∫∞
−∞ f(u)h∗(t−

u)du and (v ? h)n =
∑

n′ h
∗
n′vn−n′ in continuous and discrete sample domain2 respectively. The

ubiquitous Gaussian kernel with scale parameter σ > 0 is denoted by Gσ(x) = exp(− 1
2σ2 ‖x‖2),

with G(x) = G1(x).

2With periodization for finite length vectors.
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1.3.2 Image Representations in Bases and Frames

Stability and Frames This paper describes processing methods that make use of a decomposi-
tion of the image f ∈ L2([0, 1]2) into a family of atoms B = {ψm}m. Each atom ψm ∈ L2([0, 1]2) is
parameterized by a multi-index m (that might take into account its frequency, position, scale and
orientation). Numerical processing is performed on discretized images which are vectors f ∈ RN ,
where N stands for the number of pixels. The atoms of B are also discretized and the continuous
inner products are replaced by the standard discrete inner product in RN .

To guarantee a stable reconstruction from the coefficients {〈ψm, f〉}m, the family B is assumed
to be a frame [29, 30, 28, 31, 32] of L2([0, 1]2) or RN , which means that there exist two constants
0 < µ1 6 µ2 <∞ such that for all f

µ1‖f‖2 6
∑
m

|〈ψm, f〉|2 6 µ2‖f‖2. (1)

Atoms are allowed to be linearly dependent, thus corresponding to a redundant representa-
tion. Redundancy enables atoms to meet certain additional constraints, for instance smoothness,
symmetry and invariance to translation or rotation.

Thresholding for Approximation and Processing Using a dual frame {ψ̃m}m [28], an image
is recovered from the set of coefficients as f =

∑
m〈ψm, f〉ψ̃m. The computation of the set of

coefficients {〈ψm, f〉}m for a discrete image f ∈ RN is usually performed using a fast algorithm,
that also enables a fast reconstruction of an image from coefficients.

The basic processing operation, used in denoising and compression applications, is the thresh-
olding

fM = HT (f,B) =
∑

m : |〈ψm, f〉|>T

〈ψm, f〉 ψ̃m (2)

where M = # {m : |〈ψm, f〉| > T} counts the number of non-zero coefficients in (2).
When µ1 = µ2, the frame is said to be tight (Parseval tight frame). If furthermore µ1 = µ2 = 1,

then one can choose ψ̃m = ψm, and B = {ψm}m is then an orthonormal basis if ‖ψm‖ = 1 for
all m. In this last case, B performs the least energy reconstruction of fM in (2), or equivalently,
fM is the best M -terms approximation of f . The decay of the approximation error ‖f − fM‖ is
related to both the average risk of a denoiser, and the distortion rate decay of a coder, see for
instance [33]. This motivates the search for bases or frames B which can efficiently approximate
large classes of (natural) images. When the frame is redundant, more complicated decomposition
methods improve the sparsity of the representation (see Sec. 4.1).

2 Early Scale-Related Representations

2.1 Frequency, Heat Kernel and Scale-Space Formalism

At the heart of modern signal processing techniques is the concept of signal representation, i.e.,
the selection of an efficient “point of view” in the study of signal properties that is not restricted
to straightforward spatial descriptions.

The most obvious alternative signal representation is its frequency reading, i.e., the one provided
by the Fourier transform of the signal explained in Sec. 1.3.1 [34, 35]. However, this representation
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is not sufficiently “local”. It is indeed rather difficult to detect what spatial part of an image
contributes to high peaks in the Fourier spectrum. Fig. 3 represents the amplitude spectrum3 of
the luminance component from Fig. 2. It exhibits a mixture of prominent vertical and horizontal
directions with tiny fuzzy diagonal ones.

Figure 3: Magnitude of the 2-D Fourier transform of the Haar-Riesz Memorial plaque in Fig. 2.

An approach for obtaining a better localization is to introduce a notion of “scale” in the image
observation. This has been performed very early in image and signal processing by either windowing
or introducing scales in the Fourier transform [36, 37] or observing a well-known diffusion process like
the heat dynamics governed by the famous Heat equation. The idea relies on considering the image
as an initial configuration of heat that is diffused with a time variable τ > 0 and in interpreting this
time parameter as the “scale”. Indeed, in this dynamic diffusion, small image structures will be
smoothed early at small evolution time while larger ones persist for a larger duration. Interestingly,
this diffusion is equivalently described by a filtering process: the convolution of the image by a
Gaussian function Gσ of width σ =

√
2τ [38, 39, 40]. This image unfolding into a scale-space

domain has led to many new image processing techniques such as edge, ridge and feature detection
[41, 42]. This is illustrated in Fig. 4, where the original image is convolved with three different
Gaussian kernels in dyadic progression. Large objects such as the white rectangular plaques persist
across all scales, while brick and grid textures vanish in Fig. 4(c). The overall redundancy of the
Gaussian pyramid is given by the number of smoothing kernels. Taking advantage of the resolution
loss, the redundancy factor may be reduced by sub-sampling, leading to the “Gaussian pyramid”
construction.

The scale content of the image can be decomposed further by computing, for instance, differences
between two filterings performed at two different scales. This led to the famous Littlewood-Paley de-
composition, or to the (invertible) Laplacian pyramid conveniently combining multiple sub-sampled
low-pass filterings of images, creating a pyramidal scale hierarchy [43]. Interestingly, the resulting
decomposition represented in Fig. 5 is a complete image representation that can advantageously be
processed before reconstructing a new “restored” image (e.g., in image denoising). Additionally,
image singularities are enhanced at fine scales, with low activity regions associated with coefficients

3The original image has been multiplied by a 2-D raised-cosine type apodizing window in order to reduce border
discontinuity effects.
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(a) (b) (c)

Figure 4: Gaussian scale-space decomposition of the Haar-Riesz Memorial plaque at three different
scales.

being close to zero. Fast implementations of deformable (steerable or scalable) decompositions [44]
are available for instance with recursive filters [45] or efficient multirate filter banks [46, 47, 48, 49].

Figure 5: Laplacian pyramid decomposition of the Haar-Riesz Memorial plaque.

Remarkably, the notion of Scale-Space has been defined and “axiomatized” more than 50 years
ago by the Japanese mathematicians Iijima and Otsu, as presented in [50]. As we will realize
throughout this paper, this scale-space representation (refer to [51] for a recent overview and
axiomatic generalization) was the starting point of many new ways to represent images.

2.2 Isotropic Continuous Wavelet Transform

The continuous wavelet transform somehow generalizes the previous scale-space formalism
driven by the Gaussian kernel to any “function” with enough regularity. The continuous wavelet
transform was initially developed for the transformation of 1-D signals [52] and further extended in
2-D first with isotropic wavelets. The case of non-isotropic (directional) wavelets was defined later
[53] (see Sec. 3.2.3).
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(a) (b)

Figure 6: (a) The Marr wavelet (or Mexican hat). (b) Marr Wavelet singularity detector of the
Haar-Riesz Memorial plaque.

In one dimension, a wavelet ψ is an integrable and well-localized function of L2(R), generally
described as locally oscillating, i.e.,

∫
R ψ(t)dt = 0. It may be dilated or contracted by a scale factor

a > 0 and translated to a position b ∈ R: ψ(b,a)(t) = 1√
a
ψ( t−ba ).

The continuous wavelet transform of a signal f ∈ L2(R) probes its content with a “lens” ψ(b,a)

of zoom factor a and location b. Mathematically,

Wf (b, a) =

∫
R
f(t) 1√

a
ψ∗( t−ba ) dt = 〈ψ(b,a), f〉. (3)

Interestingly, provided that ψ is admissible, i.e., when the two constants c±ψ = 2π
∫ +∞

0
|ψ̂(±ω)|2

ω dω <

∞ are finite and equal4, that is, c+
ψ = c−ψ = cψ < ∞, the signal f may be recovered from the

coefficients Wf (b, a):

f(t) = 1
cψ

∫ +∞

0

∫
R
Wf (b, a) ψ(b,a)(t) db da

a2
. (4)

This integral representation involves wavelets at every location and all positive dilations, i.e., f is
decomposed on the continuous set of functions {ψ(b,a) : a ∈ R∗+, b ∈ R}. Many different kinds of
(admissible) wavelets may be selected. We may cite the derivatives of Gaussian (DoG), the Morlet
and the Cauchy wavelets, etc. Their selection is driven by the features to be elucidated in the data,
e.g., frequency content with the Morlet wavelet or singularities with DoGs (Fig. 6(a)) as illustrated5

in Fig. 6(b).
In two dimensions, the most natural extension of the 1-D-CWT is obtained by considering

isotropic wavelets, i.e., wavelets ψ ∈ L2(R2) such that ψ(x) = ψrad(‖x‖), with x = (x1, x2),
for some radial function ψrad : R+ → R. In that case, the wavelet family is generated by 2-D
dilations and translations, i.e., we work with ψ(b,a)(x) = 1

aψ(x−ba ) that are copies of ψ translated
to b = (b1, b2) ∈ R2 and dilated by a > 0. The 2-D CWT of the image f ∈ L2(R2) is then simply

4When ψ is sufficiently regular, this condition reduces to a zero-average requirement, that is,
∫
R ψ(t) dt = 0

5The YAWTb toolbox has been used, see http://rhea.tele.ucl.ac.be/yawtb/.
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Wf (b, a) = 〈ψ(b,a), f〉 and the reconstruction of f is guaranteed by

f(x) = 2π
cψ

∫ +∞

0

∫
R2

Wf (b, a) ψ(b,a)(x) d2b da
a3
, (5)

if cψ = (2π)2
∫
R2 |ψ̂(k)|2/‖k‖2 d2k < ∞. The isotropic CWT is a useful analysis tool for edge

detection in images. For instance, by taking the (admissible) Marr Wavelet ψ(x) = ∆[exp−1
2‖x‖2]

(with ∆ the 2-D Laplacian) also called Laplacian of Gaussian or Mexican Hat (see Fig. 6(a)), the
CWT of an image f acts as a multiscale edge detector. The topic of 1-D and 2-D continuous
wavelet transforms is covered in more details in [52, 53, 54, 55, 33].

2.3 Discrete Scale-Space Representations

Numerical computation requires that continuous expansions such as (3) and (5) be discretized.
In this section, we detail some parameter samplings, such as dyadic or translation invariant grids.
Together with a suitable choice of the wavelet function, they lead to stable representations where
the original signal can be perfectly reconstructed from its coefficients.

2.3.1 Multiresolution Analysis (MRA)

In the context of a dyadic sampling where a = 2j and b = n2j for j, n ∈ Z, the canonical way
to design a suitable wavelet function ψ in 1-D makes use of a multi-resolution analysis (MRA).
It is defined as a nested sequence of closed vector subspaces (Vj)j∈Z in L2(R) verifying standard
properties [56]. Multiresolution analysis of a signal f consists of successively projecting the signal
onto subspaces Vj in a series of increasingly coarser approximations as j grows. The difference
between two successive approximations represents detail information. It amounts to the information
loss between two consecutive scales, which lies in the subspace Wj , the orthogonal complement of
Vj in Vj−1 such that:

Vj−1 = Vj ⊕Wj .

Then, with additional stability properties, there exists a wavelet ψ ∈ L2(R) such that B =
{2−j/2ψ(2−jx− n) : n ∈ N} is an orthonormal basis for Wj .

2.3.2 Separable Orthogonal Wavelets

A 2-D orthogonal wavelet basis B = {ψm}m of L2(R2) for m = (j,n, k) is parameterized by a
scale6 2j (j ∈ Z), a translation 2jn = 2j(n1, n2) (n ∈ Z2) and one of three possible orientations
k ∈ {V,H,D}, loosely denoting the vertical, horizontal and (bi) diagonal directions, the latter being
poorly representative. Wavelet atoms are defined by dyadic scalings and translations ψm(x) =
2−jψk(2−jx− n) of three tensor-product 2-D wavelets

ψV (x) = ψ(x1)φ(x2), ψH(x) = φ(x1)ψ(x2), and ψD(x) = ψ(x1)ψ(x2),

where φ and ψ are respectively 1-D orthogonal scaling and wavelet functions, see [54, 57, 33]. When
the scale interval is limited to j < J for some J ∈ Z, the basis B is completed by the functional
set A = {φ(J,n)}n, with the 2-D separable scaling function φ(x) = φ(x1)φ(x2). This set gathers all

6Here and throughout the rest of the paper, we use the convention that scale increases with j, as in s = 2j . The
converse convention is also often used in the literature.
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the coarse scale wavelet atoms with j > J . The standard cascade image is depicted in Fig. 7. It is
now critically sampled, i.e., free from redundancy (compare Fig. 5 and 6(b)). The approximation
coefficients in A, a coarse image approximation at scale J , are represented in the bottom-left square
of Fig. 7. The other squares in this picture, associated to the “bands” {V,H,D} for j < J , exhibit
some sparsity (few important coefficients), and horizontal and vertical edges are relatively well
captured.

Figure 7: Dyadic wavelet decomposition of the Haar-Riesz Memorial plaque.

A non-linear approximation fM = HT (f,B) in an orthogonal separable wavelet basis is efficient
for smooth images or images with point-wise singularities. The approximation of a piecewise
smooth image with edges of finite length decays like ‖f − fM‖2 = O(M−1). This result extends to
functions with bounded variations [58], and is asymptotically optimal. This decay is nevertheless
not improved when the edges are smooth curves, because of the fixed ratio between the horizontal
and the vertical sizes of the orthogonal wavelet support.

2.3.3 Fast Algorithms for Finite Images

A finite discretized image f ∈ CN1×N2 of N = N1N2 pixels fits into the MRA framework
by assuming that the pixel values of fn on n = (n1, n2) are the coefficients 〈φ(J,n), f̃〉 of some

continuous function f̃ ∈ L2(R2) at a fixed resolution VJ , where 22J = N .
The coefficients 〈ψkj,n, f〉 of f̃ for j > J are computed from the discrete image f alone. This com-

putation is performed using a cascade of filters interleaved with downsampling operators [56]. For
compactly supported wavelets, this requires O(N) operations. Symmetric bi-orthogonal wavelet
bases with compact support ease the implementation of non-periodic boundary conditions [59].
For infinite impulse response (IIR) wavelet filters, computations in the Fourier domain require
O(N log(N)) operations [60], while recursive implementations [61] allow signal-adaptive implemen-
tation.

12



While separable wavelets are not optimal for approximating generic edges, they lie at the heart
of early state-of-the-art methods for compression and denoising. The JPEG 2000 coding standard
[62] performs an embedded quantization of wavelet coefficients, and uses an adaptive entropic
coding scheme that takes into account the local dependencies across wavelet coefficients. The
sub-optimality of wavelets for the sparse representation of edges can be alleviated using block
thresholding of groups of wavelet coefficients [63], that gives improvements over scalar thresholding.
Advanced statistical modeling of wavelet coefficients leads to denoising methods close to the state-
of-the-art, see for instance [64, 65, 66].

2.3.4 Translation Invariant Wavelets

Given a discrete frame B = {ψm}m of CN , B is translation invariant if ψ(· − τ) ∈ B for any
ψ ∈ B and any integer translation τ . This property tends to reduce artifacts in image restoration
problems like denoising, since, for such invariant frame, the thresholding operator HT (f,B) becomes
itself translation invariant. Discrete orthogonal wavelet bases described in the previous sections are
not translation invariant and many authors have worked on recovering this useful capability.

For instance, cycle spinning, proposed by Coifman and Donoho in [67], reduces wavelet artifacts
by averaging the denoising result of all possible translates of the image, thus resulting in a transla-
tion invariant processing. For an orthogonal basis B = {ψm}m, this is equivalent to considering a
tight frame which is the union of all translated bases {ψm(·−τ)}m,τ . For a generic basis, this frame
has up to N2 atoms. For a wavelet basis, the frame has O(N log(N)) atoms, and the coefficients
are computed with the fast “à trous” algorithm in O(N log(N)) [60, 68]. The translation invariant
paradigm additionally draws a connection between the scale-space formalism (Sec. 2.1) [69] and
thresholding (Sec. 1.3.2). Several 2-D design described in the next sections attempt to (approxi-
mately) address invariance (translation/rotation) without sacrificing computational efficiency.

3 Oriented and Geometrical Multiscale Representations

The variety of oriented and geometric multiscale representations proposed over the last few
years requires broad grouping, arranged as follows: Sec. 3.1 presents directional methods closely
related to 1-D decompositions. In Sec. 3.2, the directionality is addressed with diverse non-separable
schemes. Finally, in Sec. 3.3, directionality is attained by an anisotropic scaling of the atoms that
yields various efficient edge and curve representations.

3.1 Directional Outcrops from Separable Representations

3.1.1 Improved Separable Selectivity by Relaxing Constraints

As discussed in Sec. 2.3.1, discrete orthogonal wavelets may be viewed as a peculiar instance
of orthogonal filter banks [70]. A well-known limitation in 1-D is that orthogonality (hence non-
redundant), realness, symmetry and finite support properties cannot coexist with pairs of low- and
high-pass filters, except for the Haar wavelet.

We decide to briefly mention here some of the early steps taken to tackle this limitation. These
have also been employed in more genuine non-separable transforms, as seen later, typically relaxing
one of the aforementioned properties, such as using infinite-support filters [71], semi- or biorthogonal
decompositions [59] or complex filter banks [72].
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For instance, instead of a two-band filter bank, M -band wavelets [73] with M > 2 provide
alternatives where symmetry, orthogonality and realness are compatible with finitely supported
atoms. In this setting, the approximation and the M -band detail spaces are Vj and (Wm

j )m∈N?M
related through Vj−1 = Vj⊕

⊕M−1
m=1 W

m
j for a resolution level j. This versatile design provides filters

that suffer less aliasing artifacts with increased regularity. Their finer subband decomposition is
also beneficial for detecting orientations in a more subtle fashion than with the {V,H,D} quadrants
obtained with standard wavelets (Sec. 2.3.2). Yet, more general M -adic MRAs are possible, for
instance with a rational M = p/q,M > 1 [74, 75, 76, 77, 78]. Note that for specific purposes such
as compression, M -band filter banks with M = 2J , J ∈ N may be treated like a J-level dyadic tree
and combined in a hierarchical transform [79, 80]. Satisfying the MRA axioms is not necessary in
practice in order to yield high performance results. This is suggested by recent image and video
coders focusing on “simpler” transforms, closer to ancient Walsh-Hadamard transforms than to
more involved wavelets [81].

Alternatively, the 1-D decomposition on rows and columns of images may be performed in a
more anisotropic manner, as in [82, 83]. An additional relaxation comes from lifting the critically
sampled scheme, yielding oversampled, translation-invariant (see Sec. 4.2.3) multiscale wavelets,
wavelet/cosine packets or frames [67, 84, 85, 86, 87, 88]. Multidimensional oversampled filter banks
in n−D with limited redundancy may be designed as well [89, 90, 91, 92, 93].

3.1.2 Pyramid-related wavelets

Notably influenced by [94, 95], Unser and Van de Ville propose a slightly redundant transform
[96] based on a pyramid-like wavelet analysis. This decomposition constitutes a wavelet frame
with mild redundancy, which is nevertheless not steerable. Subsequently, the same authors propose
a steerable analysis [97] based on polyharmonic B-splines [98] and the Maar-like [5, 99] wavelet
pyramid. Such multiresolution analysis can easily be implemented via filter banks as detailed in
[97] and the total redundancy of this decomposition is 8/3 (a redundancy of 4/3 is introduced by
the pyramid structure and the complex nature of the coefficients increases the redundancy by a
factor of 2). A similar approach based on Riesz-Laplace wavelets is proposed in [100]. The latter
constructions are related to Hilbert and Riesz transforms.

3.1.3 Complexifying Discrete Wavelets with Hilbert and Riesz

Different kinds of complexification are indeed a possible option in order to tackle the problem
of poor directionality with classical wavelet transforms. The common basic idea leans toward
analytic wavelets and their combination to improve the 2-D directionality. Behind a generic notion
of complex wavelets reside different approaches detailed hereafter, which require the definition of
some basic tools.

We first introduce the Hilbert transform, termed “complex signal” in [101] and exhaustively
mapped in [102]. While the 1-D Hilbert transform is unambiguously defined, there exists multidi-
mensional extensions, often obtained by tensor products, thus leading to approximations. In order
to increase the directionality property, other multidimensional constructions (discussed in [103])
have also been proposed.

• The 1-D Hilbert transform H of a signal f is easily expressed in the Fourier domain as

H{f}(ω) = −i sign(ω)f̂(ω). (6)
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• The 1-D fractional Hilbert transform Hθ of f is similarly defined in [104] by

Hθ{f}(ω) = exp(iπθ sign(ω))f̂(ω). (7)

• The 2-D directional Hilbert transform Hθ of f is one of the 2-D extensions defined in [104] as

Hθ{f}(ω1, ω2) = −i sign
(

cos(θ)ω1 + sin(θ)ω2

)
f̂(ω1, ω2). (8)

See also [105].

The Hilbert transform was already associated with wavelets for transient detection by Abry
et al. [106]. Others early connections between wavelets and the Hilbert transform are drawn in
[107, 108, 109]. At the end of the 1990’s, Kingsbury proposed the dual-tree transform based on
even and odd filters [110, 111]. An alternative construction is given by Selesnick [112]. It amounts
to performing two discrete classical wavelet transforms in parallel, the wavelets generated by the
trees forming Hilbert pairs. An atom of the corresponding basis (here the diagonal wavelet) and its
corresponding frequency plane tiling are depicted in Fig. 9. The corresponding dual-tree of wavelet
coefficients is represented in Fig. 8, which clearly shows the separation of oriented structures with
different orientations. The resulting oriented wavelet dictionary has a small redundancy and is also
computationally efficient. The corresponding wavelet is approximately shift invariant, see [113]
for more details. It is extended to the M -band setting by Chaux et al. [114] and to wavelet
packets in [115, 116]. In Fig. 10, one subband of the wavelet transform (red square in Fig. 7),
two subbands (primal+dual) of the dyadic dual-tree transform (red squares in Fig. 8), as well as
the corresponding eight subbands (4 primal+4 dual) of the 4-band dual-tree wavelet decomposition
are depicted. In Fig. 10(d), the fine oriented textures from the left side of the image are (slightly)
better separated in some non-horizontal subbands. The wavelet/frequency tiling corresponding to
the 4-band dual-tree wavelet decomposition are depicted in Fig. 11. The main advantage of this
decomposition is that it achieves a directional image analysis with a small redundancy of a factor
2 (4 for the complex transform).

Gopinath [117, 118] has designed phaselets which is an extension of the dyadic dual-tree wavelet
transform [110, 119]. They aim at improving translation invariance with a given redundancy, and
are built by carefully observing the effects of shifts in a discrete wavelet transform. 2-D phaselets
are easily obtained by tensor products.

More recently, the shiftability of the dual-tree transform has been studied by Chaudhury et al.
[104] by introducing the fractional Hilbert transform (7). A 2-D extension has been proposed in
[120] and the construction of Hilbert transform pairs of wavelet bases can be found in [121]. Note
that previous works dealing with multidimensional extensions have been first reported for instance
in [122] and then in [123, 124] using the notion of hypercomplex wavelets.

Numerous extension to multidimensional signals have been proposed, see for instance [125, 126].
They, for instance, use the Riesz transform R, which is defined in the frequency domain as follows:

R̂{f} = (R̂1{f}, . . . , R̂N{f}). (9)

where
∀n ∈ {1, · · · , N}, R̂n{f}(ω) = −i

ωn
‖ω‖ f̂(ω). (10)

Other recent extensions of multidimensional oriented wavelets are based on the notion of monogenic
signal/wavelet [127, 128, 129]. We finally mention that other methods have been developed in order
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to achieve directional analytic wavelets such as softy space projections [130, 131, 132, 133, 134] or
the Daubechies complex wavelets [135, 136, 137]. Complex wavelets have also been shown to provide
robust image similarity measures [138, 139].

Figure 8: Dyadic dual-tree wavelet decomposition of the Haar-Riesz Memorial plaque.

(a) (b)

Figure 9: The dyadic dual-tree wavelet. (a) Example of atom (diagonal wavelet). (b) Associated
frequency partitioning.

3.2 Non-Separable Directionality

3.2.1 Non-separable Decomposition Schemes

In contrast to the separable constructions detailed in Sec. 3.1.1 where n-D representations are
composed of 1-D transforms applied separately along each dimension (sometimes recombined, as in
the dual-tree wavelet case or in [140]), non-separable constructions are directly performed in n-D.
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(a) (c)

(b) (d)

Figure 10: The original image (a) and the horizontal subband(s) at first resolution level for (b)
Dyadic wavelet transform, (c) Dyadic dual-tree transform (primal+dual) and (d) M -band dual-tree
wavelet decomposition (primal+dual) of the Haar-Riesz Memorial plaque.

(a) (b)

Figure 11: The M -band dual-tree wavelet. (a) Example of atom. (b) Frequency partinioning.
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Since the literature on this topic is large, this section is focussed on a limited number of references
dealing with directional multiscale decompositions.

These works are often related to non-diagonal subsampling operators, non-rectangular lattices
(e.g., quincunx grids or integer lattices) [141, 142], or non-separable n-D windows [143, 144]. Com-
plementary standard references can be found in [70, p. 558 sq.] or [145, 146, 147]. Some of these
constructions are defined using the lifting scheme, see Sec. 4.3 and 5.3 for more details. While di-
rectional filter banks do not provide a multiscale representation in general, 2-band [148, 149, 150] or
even M -band non-redundant directional discrete wavelets [151] have been proposed. Non-separable
schemes are used for instance as building blocks for multiscale geometric decompositions such as:

• directional filter banks in [152], and their combination with a Laplacian pyramid in contourlets
[153, 154] or surfacelets [155],

• (pseudo-) polar fast Fourier transform (FFT) [156] in first generation curvelets described in
Sec. 3.3.2, or the loglets in [157] that exhibit a polar separability.

In order to overcome the limited efficiency of the standard 2-D separable DWT for representing
non-horizontally or vertically directed edges (see Sec. 2.3.2), several authors have adapted 1-D
concepts for local edge representation. Reissell [158] develops, for instance, a pseudo-coiflet scheme
that addresses numerically efficient interpolation for a parametric wavelet representation of curves.
Moreover, for digital images it would be beneficial to follow contours on more appropriate discrete
paths (see [159] for an early application) such as discrete lines [160, 161, 162]. While discrete lines
are adapted to digital ridgelets in [163], Velisavljević et al. propose multidirectional anisotropic
directionlets [164], based on skewed lattices, with directional vanishing moments along direction
with rational slopes, still relying on a simple separable implementation. This approach is refined in
[165] by taking lifting steps of 1-D wavelets along an explicit orientation map defined on a quincunx
multiresolution sampling grid, and in [166] with a more efficient representation for sharp features. A
combination of 2-D filter banks and 1-D directional filter bank is devised in [167, 168]. Similar ideas
have been recently applied to edge detection in [169]. In [170], non-adaptive directional wavelet
frames are constructed with Haar wavelets and a finite collection of “shear” matrices. Krommweh
also proposes tetrolets, an adaptive variation (akin to digital wedgelets) of Haar-like wavelets on
compact tetrominoes (geometric shapes composed of four squares, connected orthogonally, see
[171]). These last constructions may further sparkle the growing interest of the association of
multiscale analysis and discrete geometry [172].

3.2.2 Steerable Filters

Steerable filters [173, 174, 175] were developed in order to achieve more precise feature detec-
tors adapted to image edge junctions (often termed “X”, “T” and “L” junctions). Their construc-
tion allows one to compute multiscale derivatives at any orientation (steerability) from a linear
combination of a small number of fixed filters. In [174], the construction starts from a bidimen-
sional Gaussian G(x) = exp(−1

2‖x‖2) for x = (x1, x2) with associated base (differential) filters

G0(x) = ∂
∂x1

G(x) and Gπ/2(x) = ∂
∂x2

G(x).
From the properties of the directional derivative, filters “steered” at angle θ ∈ [0, 2π) are then

built from
Gθ(x) = cos(θ)G0(x) + sin(θ)Gπ/2(x). (11)
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where cos(θ) and sin(θ) may be interpreted as interpolators. Since the convolution is linear, the
resulting steered decomposition arises from a combination of images that underwent G0 or Gπ/2
filters. A larger class of asymmetric oriented filters is proposed in [176]. Their angular parts are
derived from even and odd functions:

∀ϕ ∈ [0, 2π), he(ϕ) =
N∑
n=1

wn cos(nϕ) and ho(ϕ) =
N∑
n=1

wn sin(nϕ), (12)

which form Hilbert transform pairs (see Sec. 3.1.3), unlike the resulting spatial filters. An angle θ
rotation is obtained through:

he(ϕ− θ) = ke(θ)
Tf(ϕ) and ho(ϕ− θ) = ko(θ)

Tf(ϕ), (13)

where ke(θ) and ko(θ) are interpolating vectors and f(ϕ) is a weighted Fourier vector, namely:

ke(θ) =
[

cos θ, sin θ, cos(2θ), sin(2θ), · · · , cos(Nθ), sin(Nθ)
]T
,

ko(θ) =
[
− sin θ, cos θ,− sin(2θ), cos(2θ), · · · ,− sin(Nθ), cos(Nθ)

]T
,

f(ϕ) =
[
w1 cosϕ,w1 sinϕ,w2 cos(2ϕ), w2 sin(2ϕ), · · · , wN cos(Nϕ), wN sin(Nϕ)

]T
.

If we set θ = θn = 2πn/N for 1 6 n 6 N , filters he(· − θ) and ho(· − θ) may be rewritten as a
linear combination of he(· − θn) and ho(· − θn), 1 6 n 6 N . An example of decomposition with
four orientations and two scales is represented in Fig. 12, with corresponding projection atoms in
Fig. 13. Steerable filters may be combined with discrete wavelets to improve their radial properties
[177, 178].

Figure 12: Steerable pyramid decomposition of the Haar-Riesz Memorial plaque, over two scales,
with four orientations.

3.2.3 Directional Wavelets and Frames

In Sec. 2.2, the two-dimensional Continuous Wavelet Transform (2-D CWT) was defined as a
straightforward extension of the 1-D CWT using isotropic wavelets. It is however possible to make
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Figure 13: Example of steerable pyramid atoms with four orientations.

use of more complicated group actions to drive the CWT parameterization in the plane, such as
rotations or the similitude group SIM(2), see [147].

Consequently, given a mother function ψ ∈ L2(R2) that is well localized and oriented, we write

ψ(b,a,θ)(x) = 1
a ψ( 1

a R
−1
θ

(
x− b)

)
,

where Rθ stands for the 2 × 2 rotation matrix. For a function f ∈ L2(R2), the 2-D CWT (non-
isotropic) is thus

Wf (b, a, θ) = 〈ψ(b,a,θ), f〉.
If the wavelet is admissible, i.e., if cψ = (2π)2

∫
R2 |ψ̂(ω)|2/‖ω‖2 d2ω <∞, then, the CWT may be

inverted through

f(x) = c−1
ψ

∫ ∞
0

da
a3

∫ 2π

0
dθ

∫
R2

d2b Wf (b, a, θ) ψ(b,a,θ)(x),

the equality being valid almost everywhere on R2.
The selectivity power of the wavelet, that is, its ability to distinguish two close orientations in

an image, may be measured in the Fourier domain. Typically, a good directional wavelet is thus
a function whose Fourier transform is essentially or exactly contained in a cone with apex on the
origin: the narrower the cone, the more selective the wavelet transform using that wavelet [147].

Practically, it is not satisfactory to manipulate a continuum of wavelets parameterized by con-
tinuous parameters. The question is therefore to know if it is possible to decompose and reconstruct
an image from a discretized set of parameters, i.e., on the family G = {ψ(b,a,θ) : b ∈ P, a ∈ A, θ ∈ Θ}
with P ⊂ R2, A ⊂ R∗+ and θ ⊂ [0, 2π) all discrete (countable) sets. As explained in Sec. 1.3.2, this
question amounts to ask when G is a frame of L2(R2).

Such frames have been built for the Morlet (or Gabor) wavelet [179, 180]:

ψ(x) = Gσ0(x) eiω0·x = e−‖x‖
2/2σ2

0 eiω0 x, ψ̂(ω) ∝ G1/σ0(ω − ω0) = e−σ
2
0‖ω−ω0‖2/2,

where ω0 ∈ R2 defines the cone axis and σ0 > 0 is related to the cone aperture, as represented
in Fig. 14. Notice that approximate quadrature filters exist to accelerate the computation of
the wavelet coefficients [181]. The Conic (or Cauchy) wavelet, whose spectral support is exactly
contained into a cone, can also be used in order to define a frame [105].

Finally, a multiresolution structure can also be put on the angular dependency of the conic
wavelets in the frequency domain to define multiselective wavelets [182]. This generates a redun-
dant basis that may represent jointly a large spectrum of features ranging from highly directional
ones (e.g., edges) to isotropic elements (e.g., spots, corners) and including intermediate directional
structures such as textures.
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(a) (b)

Figure 14: The Morlet Wavelet. (a) Spatial representation (real part). (b) Fourier representation.
Supporting cone and frequency axes are drawn for illustration.

3.3 Directionality in Anisotropic Scaling

3.3.1 Ridgelets

Ridgelets [183, 184] and wavelet X-ray transforms [185] appear as a combination of a 1-D
wavelet transform and the Radon transform [186]. They are designed for efficient representation of
discontinuities over straight lines. A bivariate ridgelet transform is constant along parameterized
lines x1 cos(θ) + x2 sin(θ) = b and defined for a > 0, b ∈ R and θ ∈ [0, 2π), by

∀x = (x1, x2) ∈ R2, ψ(b,a,θ)(x) = a−1/2 ψ((x1 cos(θ) + x2 sin(θ)− b)/a). (14)

Ridgelet coefficients for the image f are given by

Rf (b, a, θ) =

∫
ψ(b,a,θ)(x) f(x) d2x

=

∫
Rf (θ, t) a−1/2ψ((t− b)/a) dt, (15)

where Rf (θ, t) represents the Radon transform of f defined by:

Rf (θ, t) =

∫ ∫
f(x1, x2) δ(x1 cos(θ) + x2 sin(θ)− t) dx1dx2, (16)

with δ denoting the Dirac distribution. The ridgelet transform may be interpreted as a 1-D wavelet
transform of Radon slices where the angle θ is constant and t varies. Several implementations
and variations exist in order to overcome the issues raised by the Radon transform discretization,
such as the finite ridgelet transform [187], the approximate digital ridgelet transform [188] or the
discrete analytical ridgelet transform [189]. Their multiscale implementation [16] is the basis for the
first generation curvelets described in Sec. 3.3.2. A ridgelet decomposition7 [190] of the Haar-Riesz
Memorial plaque is given in Fig. 15, with a typical atom along with a synthetic description of its
implementation in Fig. 16.

7BeamLab toolbox: http://www-stat.stanford.edu/~beamlab/.
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Figure 15: Ridgelet decomposition (square root scale) of the Haar-Riesz Memorial plaque.

3.3.2 Curvelets

The curvelet representation, introduced by Candès and Donoho [16, 191], improves the approx-
imation of cartoon images with C2 edges with respect to wavelets. We review here the second
generation of curvelets, as introduced in [191].

Continuous Curvelet Transform A curvelet atom, with scale s, orientation θ ∈ [0, π), position
y ∈ [0, 1]2 is defined as

ψs,y,θ(x) = ψs(R
−1
θ (x− y)) (17)

where ψs(x) ≈ s−3/4 ψ(s−1/2x1, s
−1x2) is approximately a parabolic stretch of a curvelet function

ψ with vanishing moments in the vertical direction. At scale s, a curvelet atom is thus a needle
oriented in the direction θ whose envelope is a specified ridge of effective length s1/2 and width s,
and which displays an oscillatory behavior transverse to the ridge.

A curvelet atom thus benefits from a parabolic scaling property width = length2 that is a major
departure from oriented wavelets. Fig. 17 presents an example of a curvelet atom, together with
its Fourier transform, for the second generation of curvelets. The resulting curvelet Fourier tiling
resembles that of the Cortex transform [192].

The continuous curvelet transform computes the set of inner products 〈ψs,y,θ(·), f〉 for all possi-
ble (s,y, θ). A careful design of ψs [191] enables a conservation of energy and a simple reconstruction
formula. The decay of the curvelet transform as s decreases allows one to detect the position and
orientation of contours [193].

Curvelet Frame The continuous curvelet representation is sampled in order to obtain a curvelet
frame B = {ψm}m, [191], see also [194] for the description of a complex curvelet tight frame.
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Figure 16: The Ridgelet transform. (a) Example of atoms. (b) Synthetic implementation descrip-
tion.

A curvelet atom, with scale 2j , orientation θ` ∈ [0, π), position xn ∈ [0, 1]2 is defined from the
continuous atom (17)

ψm(x) = ψ2j ,θ`,xn(x) where m = (j, n, `)

where the sampling locations are

θ` = `π2bj/2c−1 ∈ [0, π) and xn = Rθ`(2
j/2n1, 2

jn2) ∈ [0, 1]2.

The curvelet parameters are sampled using an increasing number of orientations at finer scales.
This sampling is the key ingredient to ensure the tight frame property [191], which provides a
simple reconstruction formula.

A fast discrete curvelet transform computes the set of inner products {〈ψm, f〉}m inO(N log(N))
operations for an image with N pixels, see [195]. The coronae and rotations of the continuous set-
tings are replaced by their discrete Cartesian counterparts, i.e. concentric squares and shears.
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Figure 17: Left: Example of a curvelet ψ(x, s,y, θ). Right: the frequency support of ψ̂(ω, s,y, θ)
is a wedge.

Figure 18 shows an example of curvelets decomposition8.
Candès and Donoho prove [196] that the curvelet non-linear approximation fM = HT (f,B),

where HT is defined in (2), ensures an approximation error decay ‖f − fM‖2 = O(M−2 log3(M))
for a C2 regular image outside C2 regular edge curves. This is a significant improvement over the
O(M−1) error decay of a wavelet approximation described in Sec. 2.3.2, and is achieved with a
fast O(N log(N)) algorithm for discrete images. This asymptotic error decay is optimal (up to
logarithmic factor) for the class of images that are C2 regular outside C2 regular edge curves, see
[196]. Monogenic curvelets are proposed in [197] to obtain additional advantages over monogenic
wavelets, described in Section 3.1.3.

Shearlet atoms [198, 199] are built similarly to curvelets, but they replace, in their continuous
formulation, rotation and anisotropic stretch with anisotropic shears. The discrete shearlet trans-
form [200, 201] is thus implemented similarly to the discret curvelet transform [195] using discrete
shears9. It provides the same approximation properties as curvelets, albeit with a different direc-
tional sensitivity (e.g., the number of orientations doubles at each scale). Recently a type-I ripplet
transform [202] has been proposed as an extension to curvelets with alternative scaling laws.

3.3.3 Contourlets

Contourlets [153] are sometimes considered a low-redundancy discrete approximation of curvelets.
Actually, they are designed in the spatial domain (instead of the frequency plane), aiming at a close-
to-critical directional representation. Their construction is based on a Laplacian Pyramid [43] (see
Fig. 5). The low-pass part of the pyramid is further decomposed with a biorthogoal 9/7 DWT.
Each difference image obtained from the pyramid is subject to directional filter bank (see Sec. 3.2)
(initially from [141], [203] proposes a simpler implementation based only on a quincunx structure).
A contourlet decomposition is illustrated10 in Fig. 19. The resulting frequency plane tiling is rep-
resented in Fig. 20(c). The contourlet inherits its redundancy of 4/3 from the pyramidal scheme.
Its approximation rate is similar to that of curvelets (Sec. 3.3.2). At one end of the redundancy

8The Curvelab toolbox has been used, see http://www.curvelet.org/.
9An implementation is available at http://www.shearlab.org

10The contourlet toolbox has been used, see http://www.ifp.illinois.edu/~minhdo/software/.
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Figure 18: Curvelet decomposition of the Haar-Riesz Memorial plaque. The layout of the coeffi-
cients follows the frequency localization of curvelet atoms.
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spectrum, [204] proposes a critically sampled version. At the other end, the constraints thus laid on
the basis functions (Figs. 20(a)-20(b)) are relaxed by the design of a more redundant [154] version,
based on non-subsampled (Sec. 3.1.1 )pyramid and directional filters.

Figure 19: Contourlet decomposition of the Haar-Riesz Memorial plaque.

(a) (b) (c)

Figure 20: The contourlet transform. (a)-(b) Two typical atoms; (c) Frequency tiling.

3.3.4 Frames for Oscillating Textures.

While curvelets, contourlets and shearlets are optimized for the processing of edges, they are
not tailored for the processing of oscillating textures, because of their poor frequency localization.
Generic oscillating patterns can be captured using a local Fourier analysis on a regular segmentation
of the image in squares. This corresponds to an expansion in a Gabor frame, see for instance [33].
The spatial segmentation can be optimized using a decomposition in a best cosine packet dictionary
as described in Section 4.2.

Wavelet packets, detailed in Section 4.2, have been used to process and compress oscillating
textures such as fingerprints. Brushlets [205], introduced by Meyer and Coifman, improve the
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frequency localization of wavelet packets.
Wave atoms [206] better capture geometric textures using an anisotropic scaling11. The wave-

length of wave-atom oscillations is proportional to the square of their diameter. This scaling allows
a thresholding in a wave atom frame to optimally approximate textures obtained by a smooth
warping of a sinusoidal profile, see [206].

4 Redundancy and Adaptivity

Highly redundant representations allow us to improve the representation of complicated images
with edges and textures. However, as described hereafter, computing efficient image representations
in such dictionaries sometimes requires approximations.

4.1 Pursuits in Redundant Dictionaries

An approximation fM of an image f with M atoms from a highly redundant dictionary B =
{ψmj : 1 6 j 6 P} is written

fM = Ψa =
∑
j

aj ψmj , with ‖a‖0 = # {j : aj 6= 0} 6M.

Computing the M -sparse coefficients a that produce the smallest error ‖f − fM‖ in a generic
dictionary is NP-hard [207]. Furthermore, the M -terms approximation fM = HT (f,B) computed
by thresholding (2) might be quite far from the best M -terms approximation. One thus has to use
approximate schemes in order to compute an efficient approximation in a reasonable time.

4.1.1 Matching Pursuits

Matching pursuit [208] computes fM from fM−1 by choosing the atom ψm that minimizes the
correlation |〈ψm, f − fM−1〉|. Orthogonal matching pursuit [33, 209] further reduces the approxi-
mation error by projecting f on the M chosen atoms to compute fM .

Under restrictive conditions on the dictionary B, these greedy algorithms compute an approx-
imation fM that is close to the best M -term approximation, see for instance [210, 211]. These
conditions typically require the correlation |〈ψm, ψm′〉| to be small for m 6= m′, which is not
applicable to highly redundant dictionaries typically used in image processing.

4.1.2 Basis Pursuit

A sparse approximation is obtained by convexifying the `0N pseudo norm, and solving the
following basis pursuit denoising convex problem [212]

fM = Ψa =
∑
j

ajψmj where a ∈ argmin
ã∈RP

1
2‖f −

∑
j

ãjψmj‖2 + µ‖ã‖1, (18)

where µ > 0 is adapted so that ‖a‖0 = M . This problem (18) is minimized, for instance, using
iterative thresholding methods [213, 214]. Algorithmic solutions to its generalized form as sums of

11See http://www.waveatom.org
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convex functions (a common formulation to many data processing problems) may be solved with
great flexibility in the framework of proximity operators [215].

Similarly to matching pursuit algorithms, this `1N approximation can be shown to be close to
the best M -term approximation if the atoms of B are not too correlated, see for instance [216, 211].

4.1.3 Pursuits in Parametric Dictionaries

Parametric dictionaries are obtained from basic operations (like rotation, translation, dilation,
shearing, modulation, etc.) applied to a continuous mother function. Even if such dictionaries
also define redundant bases similar to those introduced earlier, they deserve a separate description
since their parametric nature provides them with some particular properties. They are generally
created to provide a very rich and dense family of functions built from the geometrical features of
the analyzed image. They have applications in image and video coding [217], multi-modal signal
analysis (e.g., video plus audio) [218], and also for signal decomposition on non-Euclidean spaces
[219].

Formally, given a set of S transformations T imi for 1 6 i 6 S parameterized by mi ∈ Λi ⊂ Rni ,
the parametric dictionary is related to a certain discretization of Λd ⊂ Λ = Λ1 × · · · × ΛS , i.e.,

B = {ψm(x) = [T 1
m1
· · ·TSmSψ](x) ∈ L2(R2) : m = (m1, · · · ,mS) ∈ Λd}.

The directional wavelets described in Sec. 3.2.3 and the subsequent frames built from them
are actually an example of parametric dictionaries with the translations T 1

m1
T 2
m2

= T 1
b1
T 2
b2

, the
rotation T 3

m3
= Rθ and the dilation T 4

m4
= Da operations. For these wavelets, the decompo-

sition/reconstruction methods are relatively easy to formulate, due to the continuous inversion
formula or using the frame condition.

However, checking the frame condition may sometimes become tedious. In addition, more
transformations of the mother function may be added in order to enlarge the family of functions,
further worsening the frame bounds.

Figure 21: Explanation of the optimization in Λ starting from a point in Λd.

Fortunately, as described in Sec. 4.1 it is still possible to find good description of images in very
general family of functions. Most of the time, since the Parametric Dictionaries are much larger
than other dictionaries of controlled redundancy, the (Orthogonal) Matching Pursuit decomposition
(Sec. 4.1.1) is used to find a sparse representation of signals.
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(a) (b) (c)

Figure 22: (a) Original image. (b) Reconstruction with 300 atoms for a rich parametric dictionary
containing 5×5 anisotropic scales, 8 orientations, and N translations. PSNR : 26.63 dB (CT: 4634s).
(c) Optimized Reconstruction at 300 atoms starting from a dictionary with only 3 × 3 scales, 4
directions and N translations, PSNR : 26.68 dB (CT: 949s).

Interestingly, thanks to the parametric nature of B, the dictionary discretization can be refined
during the Matching Pursuit iterations. Indeed, since B is the discretization of the continuous
manifold M = {ψm : m ∈ Λ} ⊂ L2(R2) generated by all the transformations of ψ, at each
iteration of MP in the decomposition of a signal f ∈ L2(R2) the refinement is performed as follows.
As illustrated on Fig. 21, given the best atom ψm found in B, a gradient ascent respecting the
(Riemannian) geometry ofM is run on Λ to maximize the correlation S(m′) = |〈ψm′ , Rnf 〉| between
the current MP residual Rnf = f − fn at step n and the atom ψm′ . A new parameter m∗ is then
used instead of m in the signal representation and the next iteration is realized on the residual
Rn+1
f = Rnf − 〈ψm∗ , Rnf 〉ψm∗ [220] .

Fig. 22 presents the result of such an improvement for two different decompositions of the
Barbara image (with N = 1282 pixels) with similar qualities (expressed using the Peak Signal-to-
Noise Ratio - PSNR). The first one (Fig. 22(b)) is obtained by a rich parametric dictionary defined
by anisotropic dilations, rotations, and translations of a 2-D second order directional derivative of
a Gaussian. The second decomposition uses a poorer dictionary with the same parameterization
and mother function but with a manifold optimization on the atom parameters. The interest of
the latter method is to provide a similar quality for a smaller Computational Time (CT).

4.1.4 Processing with Highly Redundant Dictionaries

Compression with Sparse Expansions Dictionaries with oriented atoms have proven to be
successful for improving the JPEG 2000 compression standard at low bit rates [221, 222]. The
approximation of the image is computed using the matching pursuit algorithm. Matching pursuit
in Gabor dictionaries, i.e., dictionaries made of Gabor wavelets (Sec. 3.2.3), have been used for
coding the motion residual in video compression schemes [223].

Inverse Problem Regularization Data acquisition devices usually only acquire S noisy low
resolution measurements y = Φf0 + w ∈ RS of a high resolution image f0 ∈ RN of N � S pixels.
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(a) (b) (c)

Figure 23: Example of deconvolution using `1N regularization in a frame of translation invariant
wavelets. (a) Original f0. (b) Observation y = Φf0 + w. (c) Deconvolution f .

The linear operator Φ models the acquisition and might include some blurring and sub-sampling
of the high resolution data.

Recovering a good approximation f ∈ RN of f0 from these measurements y corresponds to
solving a difficult ill-posed inverse problem, that requires the use of efficient priors to model the
regularity of the image. Early priors include the Sobolev prior that enforces smoothness of the
image, and the non-linear total variation [224] that can produce sharper edges.

More recently, `1N sparse priors in redundant dictionaries B have been proved to be efficient in
order to solve several ill-posed problems, see for instance [33] and references therein. In this setting,
one computes the coefficients a of f = Ψa =

∑
j ajψmj in a frame B of P atoms by solving a `1N

augmented Lagrangian form

a ∈ argmin
ã∈RP

1
2‖y − ΦΨã‖2 + µ‖ã‖1 where Ψã =

∑
j

ãjψmj (19)

where µ should be adapted to the noise level ‖w‖ that is supposed to be known. This minimization
problem corresponds to computing the basis pursuit approximation (18) of the measurements y in
the highly redundant dictionary {Φψmj : 1 6 j 6 P} of RS . It can thus be solved using the same
algorithms.

Figure 23 shows the use of this sparse regularization method when solving a deconvolution
problem. In this application, the operator is a convolution Φf = f ?Gσ with a Gaussian kernel Gσ
as defined in Sec. 1.3.1. The redundant dictionary B is a translation invariant wavelet frame.

4.1.5 Source Separation

Sparse representations can be used to separate sources that are known to be sparse in different
dictionaries. This corresponds to the morphological component analysis (MCA) of Starck et al.
[225]. In its simplest setting, it can be used to separate a single noisy image y into a sum y =
fG + fT + w of a cartoon-like component fG (or geometric component), a texture component fT
and residual noise w. One can use a dictionary B = BG ∪ BT union of wavelets (BG) and local
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Figure 24: Example of cartoon+texture decomposition using the MCA algorithm. (a) Original y.
(b) Geometry layer fG. (c) Texture layer fT .

cosine (BT ), and compute a sparse approximation f of y

f = Ψa = ΨGaG + ΨTaT (20)

where a = [aG; aT ] is the solution of the `1N basis pursuit (18) applied to y. The separation, obtained
using fG = ΨGaG and fT = ΨTaT , is illustrated in Fig. 24.

The modeling of natural images as a sum of a cartoon layer and an oscillating texture layer has
been initiated by Y. Meyer in his book [12]. Beside sparsity-based approaches such as (20), other
variational methods have been proposed, see for instance the work of J.-F. Aujol et al. [13].

4.2 Tree-structured Best Basis Representations

Pursuit algorithms are quite slow and face difficulties in order to compute provably efficient
approximations when the dictionary is too redundant. In order to avoid these bottlenecks, one
needs to consider more structured representations, that allow one to use fast and provably efficient
approximation strategies. The structuring of the representation can be implemented by computing
an adapted basis Bλ parameterized by a geometric parameter λ that captures the local direction
of edges or textures. This section details best basis schemes: they introduce the desired adaptivity
together with fast algorithms employing the hierarchical structure of parameters λ.

4.2.1 Quadtree-based Dictionaries

A dictionary of orthonormal bases is a set DΛ = {Bλ}λ∈Λ of orthonormal bases Bλ = {ψλm}m
of RN , where N is the number of pixels in the image. Instead of using an a priori fixed basis such
as the wavelet or Fourier basis, one chooses a parameter λ? ∈ Λ adapted to the structure of the
image to process and then uses the optimized basis Bλ? .

In order to enable the fast optimization of a parameter λ? adapted to a given signal or image
f to process, each λ ∈ Λ is constrained to be a quadtree. The quadtree λ that parameterizes a
basis Bλ defines a dyadic segmentation of the square [0, 1]2 =

⋃
(j,i)∈L(λ) Sj,i, where L(λ) are the

leaves of the trees, as shown on Fig. 25. Each square Sj,i is recursively split into four sub-squares
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Figure 25: Left: example of dyadic subdivision of [0, 1]2 in squares Sj,i ; right: corresponding
quad-tree λ.

Sj+1,4i+k for k = 0, · · · , 3. In order to enrich the representation parameterized by a quadtree, we
attach to each leave of the tree a geometric token, and denote as τ the number of tokens. A token
indicates the direction of the image geometry in a square of the segmentation.

4.2.2 Best Basis Selection

Given a number M of coefficients, the best basis Bλ? ∈ DΛ adapted to f ∈ RN minimizes the
best M -terms approximation error. This can be equivalently obtained by minimizing a penalized
Lagrangian that weights the approximation error with the number of coefficients

λ? ∈ argmin
λ∈Λ

L(f,Bλ, T ) = ‖f − fλM‖2 +MλT 2, (21)

where fλM is the best Mλ-term approximation in Bλ computed by thresholding at T > 0

fλM = HT (f,Bλ, T ) =
∑

|〈ψλm, f〉|>T

〈ψλm, f〉ψλm and Mλ = #
{
m : |〈ψλm, f〉| > T

}
, (22)

since Bλ is orthonormal. This Lagrangian can be re-written as a sum over each coefficient in the
basis

L(f,Bλ, T ) =
∑
m

max(|〈ψλm, f〉|2, T 2). (23)

This kind of Lagrangian can be efficiently optimized using a dynamic search algorithm, originally
presented by Coifman et al. [226], which is a particular instance of the Classification and Regression
Tree (CART) algorithm of Breiman et al. [227] as explained by Donoho [228]. It is possible to
consider other criteria for best basis selection, such as for instance the entropy of the coefficients.
This leads different Lagrangians that can be minimized with the same method [226].

The complexity of the algorithm is proportional to the complexity of computing the whole
set of inner products

{
〈ψλm, f〉 : λ ∈ Λ

}
in the dictionary. For several dictionaries, such as those

considered in this section, a fast algorithm performs this computation in O(P ) operations, where
P is the total number of atoms in DΛ. For tree-structured dictionaries, this complexity is thus
O(τN log2(N)), where τ is the number of tokens associated to each leaf of the tree. This is much
smaller than the total number of basis Bλ in DΛ, that grows exponentially with N .

32



4.2.3 Wavelet and Cosine Packets

A basis Bλ with oscillating atoms is defined using a separable cosine basis over each square of
the dyadic segmentation. In this case no geometry is used, the oscillation of the atoms does not
follow the geometry of the image, and τ = 1. An approximation in an adapted cosine basis Bλ
allows one to capture the spatial variations of a texture [33].

A wavelet packet basis Bλ defines a dyadic subdivision of the 2-D frequency domain [229]. The
projection of an image on the atoms of Bλ is computed through a pyramidal decomposition that
generalizes the orthogonal wavelet transform, adding flexibility to overcome its dyadic frequency de-
composition. Uniform dyadic wavelet packet decompositions generate a subset of M -band wavelets
with equal-span frequency subbands obtained from J decomposition levels, with M = 2J . In order
to adapt to the specific frequency content of the image, the resulting tree is parsed through a best
basis selection procedure [226], reminiscent of the subdivision in Fig. 25.

This construction is generalized by considering non-stationary wavelet packets [230], that apply
different quadrature mirror filters at each scale of the tree. A dynamic programming algorithm
detailed in [231] computes an adapted non-stationary basis.

4.2.4 Adaptive Approximation

Wedgelets A geometric approximation is obtained by considering for each node of the dyadic
segmentation a collection of τ different low-dimensional discontinuous approximation spaces [232].
For each node of the quadtree, a token indicates the local direction and position of the edge. The
low-dimensional approximation spaces are piecewise polynomials over each of the two wedges.

The wedgelets introduced by Donoho [232] rely on piecewise constant approximation. This
scheme is efficient when approximating a piecewise constant image f whose edges are C2 curves.
For such cartoon images, the approximation error decays like ‖f − fM‖2 = M−2, see [232, 21]. It is
also possible to consider approximation spaces with higher-order polynomials in order to capture
arbitrary cartoon images [233], see also [234] for a related construction. The computation of the
low-dimensional projection can be significantly accelerated, see [235].

The piecewise constant model for images being relatively simplistic, wedgelets have been up-
graded to platelets [236] and surflets [237]. They aim at improving the management of smooth
intensity variations, since they rely on planar or even smoother approximation on dyadic square or
wedge based grids.

Bandlets For coding, orthogonal expansions are preferred over low-dimensional approximations
as considered by wedgelets. Switching to non-linear approximation in bases also better handles
directional textures that do not correspond to a fixed low-dimensional space parameterized by a
wedge.

The bandlet bases dictionary is introduced by Le Pennec and Mallat [238]. Bandlets perform
an efficient adaptive approximation of images with geometric singularities. An anisotropic basis
with a preferred orientation is defined over each square of the dyadic segmentation. Fig. 26 (a)
shows an example of bandlet atom. The orientation is parameterized with the token stored in the
leaf of tree. Keeping only a few bandlet coefficients and setting the others to zero performs an
approximation of the original image that follows the local orientation indicated by the token.
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(a) (b)

Figure 26: Example of a bandlet atom. (a) Atom in the spatial domain. (b) Wavelet-bandelet
atom.

Adaptive Approximation over the Wavelet Domain Applying such an adaptive geometric
approximation directly on the image leads to unpleasant visual artifacts. In order to overcome this
issue, one applies a tree-structured approximation or a best basis computation on the discrete set
of wavelet coefficients. The wedgeprint of Wakin et al. [239] uses a vector quantization to extend
the wedgelet scheme to the wavelet domain. The second generation bandlets of Peyré and Mallat
[240] use an adaptive bandlet basis for each scale of the wavelet transform. All these methods
benefit from the same approximation error decay as their single scale predecessors, but work better
in practice.

Fig. 26 shows how a bandlet atom (a) is mapped to a wavelet-bandlet atom (b). Decomposing
an image over a bandlet basis composed of atoms of type (b) is equivalent to applying first a wavelet
transform, and then decomposing the wavelet coefficients over atoms of type (a).

Another adaptive approximation relying on the processing of the wavelet domain is the easy
path wavelet transform (EPWT) [241]. It provides a hybrid and adaptive approach exploiting the
local correlations of images along path vectors through index subsets in the Wavelet domain.

4.2.5 Adaptive Tree-structured Processing

For compression and denoising applications, one computes the best basis Bλ? adapted to the
image f to compress or denoise by minimizing the corresponding Lagrangian (23). The coefficients
〈ψλm, f〉 are then binary coded (for compression) or thresholded (for denoising). The resulting
improvement of the best basis approximation error over wavelets translates into improvement in
the rate distortion (for compression) or average risk (for denoising) of the best basis method, see
for instance [239, 240].

One can also use best bases to recover an image from noisy low-dimensional measurements
y = Φf + w where Φ is an ill-conditioned linear mapping. For some problems such as inpainting,
small missing regions or light blur removal, the best basis λ can be estimated directly from the
observation y.

An example of inverse problem where sparsity in a best basis significantly improves over sparsity
in a fixed basis is compressed sensing. Compressed sensing is a new data sampling strategy, where
the measurement operator Φ of size P × N is generally the realization of some random matrix
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(a’) (b’) (c’)

Figure 27: (a,a’) original image ; (b) compressed sensing reconstruction using a translation invariant
wavelet frame (PSNR=37.1dB) ; (c) reconstruction using a best bandlet basis (PSNR=39.3dB).
(b’) wavelet frame, PSNR=22.1dB, (c’) bandlet basis, PSNR=23.9dB.

ensemble. The sampling operations y = Φf +w ∈ RP allows one to acquire a high resolution signal
f ∈ RN directly in a compressed format of P < N measurements. Compressed sensing theory
ensures that if the number of measurements P is large enough with respect to the sparsity K of the
signal f in a basis B, typically, P = O(K logN/K) for Gaussian random matrix Φ, one recovers
a good approximation of the signal using a `1N sparse regularization as in (19). It can be shown
that the quality of the reconstruction depends both on the sensing noise power ‖w‖ and on the
“compressibility” of f , that is, its deviation from the strictly sparse case. We refer to the review
paper of Candès [242] and the references therein for more details. Fig. 27 shows a comparison of
compressed sensing recovery from P = N/6 measurements using a redundant frame B of translation
invariant wavelets, and a best bandlet basis. In this last result, it is necessary to use an iterative
algorithm that progressively improves the quality of the estimated geometry, see [243]. As explained
in this last reference, the same technique can be used for inpainting large holes in images.

4.2.6 Adaptive Segmentations and Triangulations

In order to enhance the quality of the representation, it is possible to consider tree-structured
segmentations [0, 1]2 =

⋃
β∈λ β of the image where the boundaries of the sub-domains β ∈ λ are not

restricted to be axis-aligned. The advantage is that such an adaptive segmentation defines regions
β ∈ λ with arbitrary complicated boundaries. Unfortunately, the combinatorial explosion of the
set of all possible λ forbids the search for an optimal segmentation with a fast algorithm. One has
thus to use a greedy scheme that selects at each step a split to reduce the approximation error.

Recursive Splitting and Approximation Spaces A greedy scheme computes an embedded
segmentation λ = {λj}j , where λj+1 ⊂ λj is obtained by splitting a region β ∈ λj . The full
segmentation λ can thus be represented and coded using a binary tree. This defines multiresolution
spaces Vλj+1

⊂ Vλj where Vλj is composed, for instance, of piecewise polynomial functions on each
region β ∈ λj .
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It is possible to compute a single-scale orthogonal projection fM = PVλj (f) of an image f on

a fixed resolution space Vλj in order to perform image approximation or compression. It is also

possible to define a detail space Vλj+1
= Vλj ⊕Wλj . A wavelet basis Bλ can be built by considering

a basis for each Wλj . A non-linear thresholding approximation fM = HT (f,Bλ, T ) provides an
additional degree of adaptivity and reduces the approximation error ‖f − fM‖. Wavelet bases on
adaptive segmentations also enable a progressive coding of the coefficients by decaying T , which is
important for image compression applications.

Adaptive Segmentation A popular splitting rule is the binary space tiling, that splits a region
β ∈ λj according to a straight line, see for instance [244].

Other popular approaches restrict the regions β ∈ λj to triangles, so that λj is a triangulation
of the domain [0, 1]2. It is possible to refine the triangulation by adding new vertices, or on the
contrary to remove vertices to go from λj+1 to λj . These vertex-based schemes do not satisfy
λj+1 ⊂ λj , so one cannot build a wavelet basis using such triangulations. These vertex refinement
methods generate a single scale approximation PVλj (f) and lead to efficient image coders, see for

instance [245].
To generate embedded approximation spaces λj+1 ⊂ λj , one needs to split the triangles β ∈ λj .

Regular split of orthogonal triangles leads to isotropic adaptive triangulations [246]. Splitting
triangles according to a well chosen median leads to anisotropic triangulations that exhibit optimal
aspect ratio for smooth images, see [247]. More complicated, non-linear coding schemes are possible,
for instance using normal meshes [248], that treat an image as an height field.

4.3 Lifting Representations

To enhance the wavelet representation, the wavelet filters can be adapted to the image content.
The lifting scheme, popularized by Sweldens [249] and latent in earlier works [250, 251, 252], is an
unifying framework to design adaptive biorthogonal wavelets, through the use of spatially varying
local interpolations. While it can typically reduce the computation of the wavelet transform by a
factor of about two in 1-D, it also guarantees perfect reconstruction for arbitrary filters, and can
be used (Sec. 5.3) on non-translation invariant grids to build wavelets on surfaces, see Sec. 5.

4.3.1 Lifting Scheme

At each scale j, the scaling coefficients aj−1 are evenly split into two groups aoj and doj . The
wavelet coefficients dj and the coarse scale coefficients aj are obtained by applying linear operators

P
λj
j and U

λj
j parameterized by λj

dj = doj − P
λj
j aoj and aj = aoj + U

λj
j dj . (24)

The resulting lifted wavelet coefficients {dj}j are thresholded or quantized to achieve denoising or
compression. These two lifting or ladder steps are easily inverted by reverting the order of the

operations. The predictor P
λj
j interpolates the sub-sampled values aoj in order to reduce the am-

plitude of the wavelet coefficients dj , while the update mapping U
λj
j stabilizes the transform by

maintaining certain quantities such as the mean of the scaling coefficients. By applying sequen-
tially several predict and one update operators, one can recover arbitrary biorthogonal wavelets on
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Figure 28: (a) Predict and update lifting steps (b) MaxMin lifting of the Haar-Riesz Memorial
plaque.

uniform 1-D grid [253], speeding up the wavelet decomposition algorithm by a factor of about two
in 1-D. The lifting structure in Fig. 28(a) corresponds to the 5/3 lifted wavelet. Such structures
may furthermore adapt to non-linear filters and morphological operations [254, 255]. An example12

of lifting based quincunx scheme example from [256, 257] is displayed in Fig. 28(b).

4.3.2 Adaptive Predictions

It is possible to design the set of parameter λ = {λj}j to adapt the transform to the geometry
of the image. We call λj an association field, since it typically links a coefficient of aoj to a few
neighboring coefficients in doj . Each association is optimized to reduce, as much as possible, the
magnitude of wavelet coefficients dj , and should thus follow the geometric structures in the image.
One can compute these associations to reduce the length of the wavelet filter near the edges, using
the information from the coarser scale [258]. Locally adaptive schemes have proven efficient in
stereo and video coding [259, 260, 261, 262].

Such schemes are related to adaptive non-linear subdivision [263]. To further reduce the distor-
tion of geometric images, the orientations of the association fields {λj}j can be optimized though
the scales. Because of the lack of structure of the set of bases Bλ, computing the field λj that
produces the best non-linear approximation is intractable. These flows are thus usually computed
using heuristics to detect the local orientation of edges, see for instance [264, 265, 165, 266]. These
adaptive lifting schemes are extended to perform adaptive video transforms where the lifting steps
operate in time by following the optical flow λj , see for instance [267, 268].

4.3.3 Grouplets

A difficulty with lifted transforms is that they do not guarantee the orthogonality of the resulting
wavelet frame. The stability of the transform thus tends to degrade for complicated association

12LISQ toolbox: http://www.mathworks.com/matlabcentral/fileexchange/13507.
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fields {λj}j . The grouplet transform, introduced by Mallat [269], also makes use of association fields,
but it replaces the lifting computation of wavelet coefficients by an extended Haar transform, where
coefficients in doj are processed in sequential order to maintain orthogonality.

Grouplets defined over each scale of the wavelet transform have been used to perform image
denoising, super-resolution [269] and inpainting [270] by solving a `1N regularization similar to (19).
Grouplets can also be used to solve computer graphics problems such as texture synthesis. Classical
approaches to texture synthesis use statistical models over a fixed representation such as a wavelet
basis, see for instance [271, 272]. Building similar statistical models over a grouplet basis [270]
allows one to better synthesize the geometry of some textures, and gives results similar to state
of the art computer graphics approaches such as texture quilting [273]. Furthermore, the explicit
parameterization of the geometry though the association fields λ allows the user to modify this
geometry and synthesize dynamic textures. A comparison of these different approaches on one
texture synthesis example is given in Fig. 29.

(a) (b) (c) (d)

Figure 29: Example of texture synthesis by statistical modeling of grouplet coefficients. (a) Exem-
plar. (b) Wavelet [272]. (c) Quilting [273]. (d) Grouplets [270].

5 Transformations on Non-Euclidean Geometries

In this section we describe how the concepts of frequency, scale and even directionality have
been extended to the processing of data on non-euclidean geometries like the sphere and other
manifolds.

5.1 Data Processing on the Sphere

The unit sphere S2 = {x ∈ R3 : ‖x‖ = 1} ⊂ R3 is one of the most natural non-Euclidean spaces.
Very early, possibly due to influences for astronomy and geosciences, many data processing tech-
niques have been developed for this surface. Many filtering, multiscale, directional and hierarchical
methods have been designed, either in the spherical frequency domain induced by the spherical
harmonics basis — often following the spirit of some Euclidean techniques exposed in the previ-
ous sections — or on the sphere itself thanks to some geometrical tools such as the stereographic
dilation or the lifting schemes for wavelet analysis.
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5.1.1 Filtering

As for the plane, filtering operations may be defined on S2. Given the common two-angle
spherical parameterization ξ = (θ, ϕ) ∈ S2 with the co-latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π),
this operation is realized through spherical convolution evaluated on SO(3) (the group of rotations
in R3). For a function f ∈ L2(S2) = {g : ‖g‖22 =

∫
S2 |g|2 < ∞} and a filter h ∈ L2(S2), the

convolution is

(f ? h)(ρ) =

∫
S2

h(ρξ)f(ξ) dµ(ξ),

where ρ ∈ SO(3) is a rotation (driven by three angles) applied to the point ξ ∈ S2 and dµ(ξ) =
sin θdθdϕ. For an axisymmetric filter, i.e., if h(ξ) = h(θ), the convolution reduces to (f ∗ h)(ξ′) =∫
S2 h(ξ′ · ξ)f(ξ) dµ(ξ), where ξ′ · ξ is the common 3-D scalar product between ξ′ and ξ seen as

unit vectors.

5.1.2 Fourier Transform

The Fourier transform of a function f ∈ L2(S2) is defined by

f̂`m = 〈Y`m, f〉 =

∫
S2

Y ∗`m(ξ) f(ξ) dµ(ξ), f(ξ) =
∑
`,m

f̂`m Y`m(ξ)

with respect to orthonormal basis of spherical harmonics Y = {Y`m(ξ) : ` > 0, |m| 6 `}, i.e., the
eigenvectors of the spherical Laplacian [274].

The frequency content of f is thus represented by the value of f̂`m on the order ` ∈ N, which
basically counts the number of oscillations on the latitudes, and the moment m ∈ {−`, · · · , `}
counting longitude oscillations. Numerically, only certain discretizations of the sphere can provide
perfect quadrature formulae to compute the Fourier coefficients of band-limited functions on the
sphere, sometimes with very efficient algorithms [274, 275].

5.1.3 Spherical Scale-Space

Similarly to what happened for signals or images, the first notion of “scale” on the sphere was
imported from the Heat Dynamic that is also known on this space. In that framework, if a spherical
function f ∈ L2(S2) is considered the initial heat configuration, the spherical heat dynamics smooth
it with time τ > 0, conferring a scaling notion on this parameter.

Interestingly, as for Euclidean spaces, the solution at time τ > 0 of the heat equation initialized
to some function f ∈ L2(S2) is simply f(ξ, τ) =

∑
`,m f̂`m(τ)Y`m(ξ), with f̂`m(τ) = f̂`m e

−`(`+1) τ

and f(ξ, 0) = f(ξ). Alternatively, since for an axisymmetric filter h we have the spherical convolu-
tion theorem

(̂f ∗ h)`m =
√

4π
2`+1 f̂`m ĥl0,

the solution of the Heat Equation can also be obtained by a convolution by a specific kernel G◦τ (ξ),

coined spherical Gaussian of width
√
τ . It is defined in frequency by (̂G◦τ )`m =

√
(2`+ 1)/4π e−`(`+1) τ .

The link between the heat dynamics and the spherical convolution with the axisymmetric fil-
ter G◦τ has been exploited by Bülow [276] to develop several specific spherical filters for feature
detection, such as the Laplacian of Gaussian or the directional derivative of Gaussian.
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5.1.4 Spectral Wavelets

Freeden et al. [277, 278] have fully exploited the connection between convolution and frequency
filtering on the sphere to develop a continuous wavelet transform on the sphere. This is done
by introducing a family of axisymmetric functions ψa(ξ), coined spherical wavelet, continuously

indexed by a > 0, and such that
∫
R+
|(̂ψa)`0|2 da/a = 1, (̂ψa)00 = 0, plus additional regularity

conditions. The wavelet coefficients of a function f ∈ L2(S2) are then defined as Wf (a, ξ) =
(f ∗ ψa)(ξ). The reconstruction is possible (almost everywhere) by

f(ξ′) = 〈f〉 +

∫
R+

∫
S2

Wf (a, ξ)ψa(ξ
′ · ξ) da

a dξ,

with 〈f〉 = 1
4π

∫
S2 f(ξ) dµ(ξ).

In [277, 278], an MRA on the sphere is also built by defining Quadrature Mirror Filters in the
frequency domain. A spatial sub-sampling of the different subspaces of the MRA can also decrease
the redundancy of the basis hence created.

Following a similar approach, (isotropic) needlet frames introduced in [279, 280, 281] represent
another example of spectral wavelets, i.e., wavelets shaped in the Fourier domain. Needlets addi-
tionaly offer relationships with quadrature formulae used to turn integrals of bandlimited functions
into discrete summations.

5.1.5 Stereographic Wavelets

In the previous sections, the notion of scale in the processing of spherical data was always
defined in the frequency domain, i.e., by dilating the frequency domain by a parameter, preventing
a fine control of the spatial support of the filter.

An alternative approach introduced by Antoine and Vandergheynst [282, 283] defines the dila-
tion directly in the spatial domain. The compactness of S2 is respected, by introducing a stereo-
graphic dilation. As illustrated on Fig. 30-(a) for point dilation, the stereographic dilation Da of a
function g ∈ L2(S2) amounts to projecting g on the plane tangent at the North Pole by the stereo-
graphic projection Π, to applying there a Euclidean dilation da by a scale a > 0, and to lifting the
resulting function back to the sphere by Π−1 [284]. Mathematically, [Dag](θ, ϕ) = λ(a, θ) g(θ1/a, ϕ),
with tan θα/2 = α tan θ/2 and where λ is a normalizing function such that ‖Dag‖2 = ‖g‖.

Given a mother wavelet ψ ∈ L2(S2) centered on the North pole, the proposed approach considers
the joint action of translations, i.e., rotation operators Rρ in SO(3), and of the dilations Da on ψ.
The wavelet transform of f is therefore:

Wf (ρ, a) = 〈ψ(ρ,a), f〉, ρ ∈ SO(3), a > 0,

with ψ(ρ,a) = RρDaψ. If the wavelet is admissible, which is nearly equivalent to impose
∫
S2 dµ(θ, ϕ) ψ(θ,ϕ)

1+cos θ =
0, the reconstruction of f is possible through

f(ξ) = 〈f〉 +

∫
R∗+

∫
SO(3)

dadν(ρ)
a3

Wf (ρ, a) [RρL
−1
ψ Daψ](ξ),

where ν is the Lebesgue measure on SO(3) and Lψ is a multiplicative operator function of ψ only
and expressed in the Fourier domain [282]. For axisymmetric wavelets, this result simplifies by the
fact that the action of Rρ on ψ is controlled by two angles only.
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Figure 30: (a) Stereographic dilation on S2. On the right, the (steerable) second directional
derivative of Gaussian. The three images (b)-(d) are the basis elements, while the fourth in (e) is
a linear combination of the first three yielding a rotation of π/4 around the North pole.

Many wavelets may be defined on the sphere since it has been proved in [284] that any admissible
wavelet on the plane L2(R2) can be imported by inverse stereographic projection Π−1. A Laplacian
of Gaussian (LoG), difference of Gaussians (DoG), Morlet Wavelet, and many other are generally
used [282, 285, 286]. Numerically, this spherical CWT is obtained thanks to the convolution theorem
mentionned previously. This transform has been for instance intensively used in the analysis of the
Cosmic Microwave Background (CMB), an astronomical signal remnant of some specific evolution
phase of the Big Bang [287, 288, 289].

Wavelet frames can be developed in this theory by discretizing the scaling parameter a [285].
These frames, that do not subsample the spherical positions, have successfully served for the con-
struction of invertible filter banks on the 2-Sphere [290] even if the stereographic dilation is not
really compatible with the frequency description of the wavelets.

5.1.6 Haar Transform on the Sphere

The constructions of spherical wavelets described in the previous section make use of the Fourier
decomposition on the sphere. It is possible to define wavelets directly over the spherical domain
without Fourier analysis, using for instance the lifting scheme method [291], see Sec. 5.3. This allows
one to define spherical wavelets with a compact support, although the stability of the resulting
transform is more difficult to control than over the planar domain.

Inspired by this lifting scheme [291], one can easily define a Haar basis on the sphere by consid-
ering a family {Mj}J6j60 of embedded spherical triangulations that approximate a sphere [292].
These triangulations are obtained by a regular 1:4 refinement rule starting from an initial regular
polyhedron M0, and the edges are projected on the sphere to define spherical triangles.

The corresponding spherical multiresolution defines Vj ⊂ L2(S2) as the set of functions that
are constant on each triangle of Mj . Figure 31 shows the linear projection of a spherical function
on some of these multiresolution spaces.
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j = 5 j = 4 j = 3 j = 2

Figure 31: Projection on the spherical Haar multiresolution.

Following the usual definition (Sec. 2.3.1), a Haar wavelet basis {ψj,n}n is an orthogonal basis
of the detail space Wj such that Vj+1 = Vj ⊕Wj . The wavelet coefficients 〈ψj,n, f〉 are computed
using a pyramid algorithm that mimics the usual Haar transform, except that for each triangle,
one gathers three detail coefficients and one coarse scale coefficient. Figure 32 shows these Haar
coefficients together with a comparison between spherical and planar non-linear approximations
HT (f).

f {〈ψj,n, f〉}j,n HT (f) (spherical) HT (f) (planar)

Figure 32: Comparison of spherical and planar Haar approximations. The threshold T is adjusted
so that HT (f) is an approximation with a number of coefficients equal to 5% of the number of
pixels in the high resolution planar image.

5.1.7 Steerable Wavelets on the Sphere

Finally, the sphere is compatible with the definition of steerable filters similarly to those defined
in Sec. 3.2.2 for the plane. In particular, using the stereographic projection Π introduced in the
previous section, steerability on the sphere is also imported from the plane. This fact has been
used in [284, 293, 294] to define differential and steerable filters useful to detect directional features
in the Cosmic Microwave Background. An example of a steerable wavelet is given in Fig. 30(b-e).
Spherical steerability may also be directly studied in the frequency domain with spectral dilation
[295].
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5.1.8 Other Constructions

It is impossible to cite the vast literature on multiscale decomposition on the sphere. Let us
just quote some of them. Wavelets, ridgelets and curvelets have been translated on the sphere by
Starck et al. [296] by using a particular spherical sampling, called HEALPix, locally similar to a
square discretization. Locally supported biorthogonal wavelet bases have been also realized thanks
to some radial projections of the planar faces of a cube on S2 in [297].

5.2 Wavelets on General 2-Manifolds

Given a two-dimensional manifold M, i.e., locally isomorphic to R2, authors in [298] describe
how to define a Continuous Wavelet Transform (CWT) for function f :M→ C.

Similarly to the way the stereographic dilation is defined for the sphere, the local dilation of
a function ψ around the point ξ ∈ M relies on the knowledge of a local and invertible projection
Πξ between M and its tangent plane TξM on ξ. The desired dilation of scale a > 0 therefore
factorizes as D(ξ,a) = Π−1

ξ daΠξ with da the common Euclidean dilation of function in TξM' R2.

Given the Hilbert space H = L2(M,dµ) of square integrable function on M, for a proper
measure dµ, the CWT of a function f onM is then formally defined by correlating f with a set of
prototype wavelets ψ(ξ) ∈ H localized around any ξ ∈M, i.e.,

Wf (ξ, a) = 〈ψ(ξ,a), f〉H ,
∫
M

dµ(ξ′) f(ξ′)ψ(ξ,a)(ξ
′), ψ(ξ,a) = D(ξ,a)ψ(ξ).

The theoretical invertibility of this transform has however to be studied specifically in each case,
i.e., givenM and Πξ. Results exist for instance for the two-sheeted hyperboloid and the paraboloid
in R3 [299].

5.3 Lifting Scheme Wavelets on Meshed Surfaces

The lifting scheme of Sweldens [300], described in Sec. 4.3, can be used to define wavelets on non-
translation invariant geometries, including surfaces with complicated topologies. Lifted wavelets
on surfaces are usually built on a semi-regular mesh grid, was first considered by Lounsbery et al.
[301], and then refined within the lifting framework by Schröder and Sweldens [291].

Semi-regular meshes {Mj}J6j60 are obtained by a regular 1:4 refinement rule starting from an
arbitrary control mesh M0. Each edge of Mj is split into two sub-edges by vertex insertion to
obtain the refined mesh Mj−1. The fine mesh MJ is the sampling grid that stores the position of
the surface points in space, and a signal f sampled at each grid point. Fig. 33, top row, shows an
example of such a multiresolution mesh, obtained by a semi-regular remeshing of a high resolution
input mesh.

The lifting scheme described in Sec. 4.3 can be applied by storing the scaling coefficients aj on
the grid point of the meshMj , while the detail coefficients are stored on the complementary detail
grid Dj whereMj−1 =Mj ∪Dj . The splitting of aj−1 into aoj and doj corresponds to assigning the

values stored in Mj−1 to either Mj or Dj . The predict operator Pj used to compute the wavelet
coefficients dj stored in Dj is a local polynomial interpolator on a triangulation grid. The update
operator Uj is computed by solving a linear system, to impose that moments of low orders, such as
the mean, are preserved when moving from aj−1 to aj .
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This lifting wavelet transform computes the coefficients dj [n] = 〈ψ(j,n), f〉 for all scales 0 <
j < J and grid points n ∈ Dj . It corresponds to the projection of the signal f defined on
the triangulated surface Mj onto a discrete biorthogonal wavelet frame B = {ψ(j,n)}j,n. These
coefficients can be thresholded, and inverting the lifting steps creates an approximated signal fM
with M non-zero coefficients. Although this approach works well in practice, the frame bounds of
the resulting wavelet frame B are difficult to control, and fM might be far from the best M -terms
approximation. It is also difficult to guarantee the convergence of the wavelet atoms ψ(j,n) to

smooth functions, when J tends to −∞, and the mesh MJ approximates a smooth surface.
To perform surface approximation, one defines the signal aJ at the finest scale as the position

of the nodes on the surface. Each coefficient aJ [n] ∈ R3 is thus a point in 3D space. The lifting
transform can be applied to this vector-valued signal. Thresholding the resulting wavelet coefficients
allows one to approximate the surface using few coefficients, as shown on Fig. 33, bottom row. If
the lifting operators Pj and Uj do not depend on the position of the points on the surface, the
resulting lifting wavelets can be used to perform 3D mesh compression [301, 291].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 33: Top row: example of semi-regular mesh {Mj}j . Bottom row: example of surface
approximation fM obtained by thresholding the lifted wavelets coefficients, where N is the number
of vertices in MJ . (a) Mj , j = −4. (b) Mj , j = −5. (c) Mj , j = −6. (d) Mj , j = −7. (e)
M/N = 100%. (f) M/N = 10%. (g) M/N = 5% (h) M/N = 2%.
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5.4 Wavelets on Graphs

Let us finally mention that wavelet transform has been extended to functions defined on the ver-
tices of an arbitrary finite weighted graph. The latter may for instance generalize standard picture
definition by describing two-dimensional pixel adjacencies. Maggioni et al. introduced “diffusion
wavelets” [302], a general theory for wavelet decompositions based on compressed representations
of powers of a diffusion operator such as the graph Laplacian. The constructed wavelet basis is
made orthogonal by combining graph subsampling and Gram-Schmidt orthogonalization on each
subsampled space.

More recently, Hammond et al. [303] developed a general wavelet frame theory on such graphs
thanks to the graph analogue of the Fourier domain, namely the spectral decomposition of the
discrete graph Laplacian. Wavelets are defined in this frequency domain by dilating an “admissible”
generating kernel. The final representation is redundant but wavelets can be shaped by changing the
generating kernel. Moreover, for sparse graph Laplacian matrix, a fast wavelet transform avoiding
the Laplacian spectral decomposition is developed.

6 Conclusion

A century after the discovery by Alfréd Haar, and twenty years after the emergence of wavelets
as genuine processing tools, major advances have been made in the improvement of natural images
representations, aiming at enhanced understanding.

Their common characteristic resides in uncovering multiscale and oriented features of natural
images, through projections on a specific set of elongated atoms. The resulting dictionaries are
thus often redundant, and may be coupled with sparsity enforcing priors, or adaptivity. They
reveal a striking similarity with low level vision, where similar strategies are used to build powerful
processing architectures.

The availability of such a large number of transformations, that potentially extend the standard
wavelet framework, leaves open the question of the best representation to process a given image.
This choice is unfortunately data dependent, since the geometry of edges and textures varies sig-
nificantly from natural to seismic or medical images. Selection of a representation, as well as its
parameterization (number of scales, span of orientations, support in space or frequency), is also
application dependent, and applications to inverse problems or pattern recognition typically im-
pose strong design requirements on the dictionary. Their exhaustive comparison thus remains out
of reach, with traditional methods from image processing or approximation theory only providing
a partial answer.

As a humble contribution to a subjective comparison, additional materials, full scale decompo-
sition images, related links and associated toolboxes necessary to reproduce illustrations provided
in this paper are available at [26]. Oddly enough, a common etymology of Szeged resides in an old
Hungarian word for corner (szeg). At a turn in a wavelet century, A. Haar and F. Riesz might not
have foreseen the harvest from their mathematical seeds. Image understanding is at the beginning
of reaping their fruits.
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[122] T. Bülow and G. Sommer. Hypercomplex signals — a novel extension of the analytic signal
to the multidimensional case. IEEE Trans. Signal Process., 49(11):2844–2852, Nov. 2001.

[123] W. Chan, H. Choi, and R. G. Baraniuk. Directional hypercomplex wavelets for multidimen-
sional signal analysis and processing. In Proc. Int. Conf. Acoust. Speech Signal Process.,
volume 3, pages 996–999, May 2004.

[124] J. Wedekind, B. P. Amavasai, and K. Dutton. Steerable filters generated with the hyper-
complex dual-tree wavelet transform. In Proc. IEEE Int. Conf. Signal Process. Commun.
(ICSPC), pages 1291–1294, Dubai, United Arab Emirates, Nov. 24-27, 2007.

[125] M. Unser, D. Sage, and D. Van De Ville. Multiresolution monogenic signal analysis using the
Riesz-Laplace wavelet transform. IEEE Trans. Image Process., 18(11):2402–2418, Nov. 2009.

[126] M. Unser and D. Van De Ville. Higher-order Riesz transforms and steerable wavelet frames.
In Proc. Int. Conf. Image Process., pages 3757–3760, Cairo, Egypt, Nov. 7-10 2009.

[127] M. Felsberg. Low-level image processing with the structure multivector. Technical Report
Bericht Nr. 0203, Christian-Albrechts-Universität, Kiel, Germany, Mar. 15, 2002.

53



[128] S. C. Olhede and G. Metikas. The monogenic wavelet transform. IEEE Trans. Signal Process.,
57(9):3426–3441, Sep. 2009.

[129] S. Held, M. Storath, P. Massopust, and B. Forster. Steerable wavelet frames based on the
Riesz transform. IEEE Trans. Image Process., 19(3):653–667, Mar. 2010.

[130] R. van Spaendonck, F. Fernandes, M. Coates, and C. Burrus. Non-redundant, directionally
selective, complex wavelets. In Proc. Int. Conf. Image Process., volume 2, pages 379–382,
Istanbul, Turkey, Sep. 2000.

[131] F. C. A. Fernandes, R. L. C. van Spaendonck, and C. S. Burrus. A directional, shift insensitive,
low-redundancy, wavelet transform. In Proc. Int. Conf. Image Process., volume 1, pages 618–
621, Thessaloniki, Greece, Oct. 2001.

[132] F. C. A. Fernandes, R. L. C. van Spaendonck, and C. S. Burrus. A new framework for
complex wavelet transforms. IEEE Trans. Signal Process., 51(7):1825–1837, Jul. 2003.

[133] F. C. A. Fernandes, M. Wakin, and R. Baraniuk. Non-redundant, linear-phase, semi-
orthogonal, directional complex wavelets. In Proc. Int. Conf. Acoust. Speech Signal Process.,
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(geo)applications. Rev. Matemática Complutense, 16(1):277–310, 2003.

[279] F. J. Narcowich, P. Petrushev, and J. D. Ward. Localized tight frames on spheres. SIAM J.
Math. Anal., 38(2):574–594, 2006.

[280] G. Kerkyacharian, P. Petrushev, D. Picard, and T. Willer. Needlet algorithms for estimation
in inverse problems. Electron. J. Stat., 1:30–76, 2007.
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