Laurent Jacques 
  
Laurent Duval 
  
Caroline Chaux 
  
Gabriel Peyré 
  
A panorama on

Keywords: Review, Multiscale, Geometric representations, Oriented decompositions, Scale-space, Wavelets, Atoms, Sparsity, Redundancy, Bases, Frames, Edges, Textures, Image processing, Haar wavelet, non-Euclidean wavelets

come   L'archive ouverte pluridisciplinaire

1 Introduction: Vision Aspects, Scope and Notations

Background on Vision Aspects of Scale

Many natural-world object features are substantive only over a certain spatial extent. In other words, the scale of observation is crucial in object recognition and understanding. For instance, a chair would be easily recognizable in the scale of a few meters. But neither at a centimeter scale which captures the chair's texture and not its object appearance, or at a hectometer scale, where the chair's appearance is hardly distinguished from other surrounding objects.

Accordingly, early neurophysiological studies in biologic perception reveal that those objects are generally apprehended differently according to the scale of observation by the sensory receptors and the cortex of mammalians [START_REF] Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by twodimensional visual cortical filters[END_REF][START_REF] De | Spatial frequency selectivity of cells in macaque visual cortex[END_REF]. Efficient information extraction is thus required for artificial sensing systems to mimic standard biologic tasks such as object recognition.

Pixel-based representations as linear combinations of "delta" functions suffice for simple data manipulation but are very limited for higher level tasks. Only assuming some sufficient resolution in the data, the lack of prior knowledge in the extent of objects to be analyzed calls for tools able to unveil the appropriate scales and to allow a hierarchical representation of the underlying features [START_REF] Hildreth | Implementation of a theory of edge detection[END_REF][START_REF] Marr | A computational theory of human stereo vision[END_REF][START_REF] Marr | Theory of edge detection[END_REF]. Disregarding the peculiar fractal formalism [START_REF] Massopust | Fractal Functions, Fractal Surfaces, and Wavelets[END_REF][START_REF] Wornell | Signal Processing with Fractals: A Wavelet Based Approach[END_REF] where similar phenomena appear at different scales (what is called self-similarity), special attention has been paid to data transformations able to capture object features over a range of scales in a more compact form. Sparsity, amounting to a reduced number of parameters in a suitable domain, is thus used as a heuristic guide to image understanding. Bearing analogies with findings in vision processes [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF], several sparse decompositions have proven efficient in image compression, with the discrete wavelet transform (DWT) as their most well-known avatar, often intermingled with information theory and technical wizardry, from bit plane arithmetic coding [START_REF] Shapiro | Embedded image coding using zerotrees of wavelet coefficients[END_REF] to trellis coded quantization. A compact history and a paper collection are given in [START_REF] Davis | Wavelet-based image coding: An overview[END_REF][START_REF] Topiwala | Wavelet image and video compression[END_REF], respectively.

Yet, beyond image compression transforms, other decomposition techniques are needed, with more resolving power in complex scene detection, denoising, segmentation or, in a broad sense, scene understanding. As a matter of fact, standard separable wavelet transforms appropriately detect point-like (0-D) singularities and address mild noise levels. Still they generally lack performance in dealing with higher dimensional features combining both regularity and singularity such as edges, contours or regular textures, that may also be anisotropic. Amongst their limitations are shift sensitivity, limited orientation selectivity, rigid and uneven atom shapes (e.g., fractal-looking asymmetric Daubechies wavelets), crude frequency direction selection. Major challenges reside in a proper definition of the underlying regularity (with respect to each feature) and corresponding singularities. These challenges are amplified by additional degradations from which acquired data may suffer such as blur, jitter and noise. Descriptive mathematical models of images combining cartoon and textures become increasingly popular [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF][START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF] and progressively yield tractable algorithms. We note that there exists a continuum of real-world images between cartoon and textures, ranging from cartoon-ish Yogi bear in Fig. 1(a) to "textural" fingerprints in Fig. 1(b). In between these two extreme image types, there exists many possible variations in image object complexity.

Moreover, both contours and (even regular) textures are known to be ill-defined. They are indeed viewer-and scale-dependent concepts in discrete images or volumes. Consider an image resulting from a combination of piecewise smooth components, contours, geometrical textures and noise. Their discrimination is required for high level image processing tasks. Each of these four components could be detected, described and modeled by different formalisms: smooth curves or polynomials, oriented regularized derivatives, discrete geometry, parametric curve detectors (such as the Hough transform), mathematical morphology, local frequency estimators, optical flow approaches, smoothed random models, etc. They have progressively influenced the hybridization of standard multiscale transforms towards more geometric and sparser representations of such components, with improved localization, orientation sensitivity, frequency selectivity or noise robustness.

Scope of the Paper

Geometry driven " -let" transforms [START_REF] Duval | WITS: Where Is The Star let?[END_REF] have been popular in the past decade, with a seminal ancestor in [START_REF] Daugman | Two-dimensional spectral analysis of cortical receptive field profile[END_REF]. Early [START_REF] Candès | Curvelets -a surprisingly effective nonadaptive representation for objects with edges[END_REF], a debate opened on the relative strength of Eulerian (non-adaptive) versus Lagrangian (adaptive) representation, now pursued with the growing interest in dictionary learning [START_REF] Rubinstein | Dictionaries for sparse representation modeling[END_REF].

As of today, the authors believe that the discussion is not fully settled in the various different uses of sparsity in images. Neither has the trade-off between redundancy and sparsity. A number of early papers on geometric multiscale methods appear in [START_REF] Welland | Beyond wavelets[END_REF]. Comparisons are drawn in [START_REF] Romberg | Multiscale geometric image processing[END_REF][START_REF] Lisowska | Geometrical wavelets and their generalizations in digital image coding and processing[END_REF], while [START_REF] Führ | Beyond wavelets: New image representation paradigms[END_REF][START_REF] Ma | The curvelet transform -a review of recent applications[END_REF][START_REF] Fadili | Curvelets and ridgelets[END_REF][START_REF] Ma | The curvelet transform -a review of recent applications[END_REF][START_REF] Starck | Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity[END_REF] focus on ridgelets, curvelets and wedgelets, as representative of fixed and adaptive decompositions. The present paper aims at providing a broader panorama of the recent developments in multiscale decompositions targeted to efficient representation of geometric features in images: smooth content (multiscale or hierarchical), edges and contours (locally spatial) and textures (locally spectral). We emphasize the main characteristics and differences pertaining to spatial, directional and frequency selectivity of the selected methods. The paper therefore cites a dense set of references, ranging from continuous to discrete representations, from (nearly) orthogonal to (fully) redundant. As a guiding thread to this panorama, we illustrate some of the reviewed geometric multiscale decompositions on a memorial plaque1 in Szeged University, Hungary, depicted in Fig. 2. It features simple objects (embedded rectangles and a disk), a few differently oriented features and regular textures at different scales. Since some of the illustrations have been slightly enhanced to improve the clarity of details, they are available in original resolution online [START_REF] Jacques | Addendum to "A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF]. This picture finally honors Alfréd Haar's originative paper [START_REF] Haar | Zur Theory der orthogalen Funktionen Systeme[END_REF] Zur Theory der orthogalen Funktionen Systeme (On the Theory of Orthogonal Function Systems) and his eponymous wavelet. He also founded Acta Scientiarum Mathematicarum together with Frigyes Riesz, whose works percolated wavelet theory [START_REF] Christensen | Frames, Riesz bases, and discrete Gabor/wavelet expansions[END_REF]. The paper is organized as follows: the remaining of Section 1 is devoted to context and notations for image representations. Then, as a preliminary to geometric tools, a quick survey of early multiscale decompositions is presented in Section 2. More recent transforms, termed directional or geometrical, circumventing aforementioned drawbacks, are discussed in Section 3. Owing to the additional degrees of freedom provided by these representations, a discussion is carried out in Section 4 on redundancy and adaptivity. The extension of frequency, scale and directionality to non-Euclidean spaces or grids such as the sphere, are presented in Section 5. Finally, concluding remarks are given in Section 6.

Mathematical Framework

Notations and Conventions

This paper describes numerous mathematical methods designed for different spaces and geometries. We have tried therefore to adopt coherent representations for the many mathematical notions that coexist in this text. For instance, functions and vectors in high dimensional spaces are generally referring to some signal of interest (e.g., 1-D signals or images). They must therefore share the same notations and we thus decided to write them as simple lowercase Roman or Greek letters. However, coordinate systems, vectors in 2 or 3 dimensions and multi-indices are denoted in bold symbols.

The (Hilbert) space L2 (X ) is the space of square integrable functions on the space X , i.e., given the (Lebesgue) integration measure dρ on that space,

L 2 (X ) = L 2 (X , dρ) = {f : X → C : f 2 := X |f (u)| 2 dρ(u) < ∞}.
In L 2 (X ) the inner product between two functions g, h ∈ L 2 (X ) is denoted by g, h = X g * (u) h(u) dρ(u) with * the complex conjugation. By extension, for p 1, we also use the (Banach) spaces

L p (X ) = L p (X , dρ) = {f : X → C : f p p := X |f (u)| p dρ(u) < ∞}, with • 2 = • .
We also use some discrete spaces as the common p

N = (C N , • p ) with v p p := i |v i | p for p 1 and v ∈ C N , with again the shorthand • = • 2 . In 2 N , the inner product between u, v ∈ 2 N is written u, v = u • v = u * i v i .
Whether the overused notations •, • or • p are applied to continuous or discrete mathematical objects will remain clear from the context. The spaces p are the generalization of the previous finite spaces to infinite sequences, i.e., p = {v = (v i ) i∈N :

v p p = i 0 |v i | < ∞}.
For functions f ∈ L 2 (X ) or discrete sequences v ∈ 2 N , f and v denote the Fourier transform of f or v respectively. For instance, for

X = R and f ∈ L 2 (R), f (ω) = 1 √ 2π R f (t) e -iωt dt and f (t) = 1 √ 2π R f (ω) e iωt
dω are the Forward and Inverse Fourier transform respectively. For

f ∈ L 2 (R 2 ) and x, ω ∈ R 2 , the same transforms are f (ω) = 1 2π R 2 f (x) e -iω•x d 2 x and f (x) = 1 2π R 2 f (ω) e iω•x d 2 ω. For v ∈ 2 N , the same transforms are vk = 1 √ N j v j exp(-2πi jk/N ) and v j = 1 √ N
k vk exp(2πi jk/N ). In matrix algebra notations, this can be rewritten as v = F v and v = F * v, where the Fourier matrix F ∈ C N ×N is given by F jk = 1 √ N exp(2πi jk/N ), and F * is its complex adjoint. The convolution by time-invariant filter h operates as

(f h)(t) = ∞ -∞ f (u)h * (t - u)du and (v h) n = n h * n v n-n
in continuous and discrete sample domain 2 respectively. The ubiquitous Gaussian kernel with scale parameter σ > 0 is denoted by

G σ (x) = exp(-1 2σ 2 x 2 ), with G(x) = G 1 (x).

Image Representations in Bases and Frames

Stability and Frames This paper describes processing methods that make use of a decomposition of the image f ∈ L 2 ([0, 1] 2 ) into a family of atoms B = {ψ m } m . Each atom ψ m ∈ L 2 ([0, 1] 2 ) is parameterized by a multi-index m (that might take into account its frequency, position, scale and orientation). Numerical processing is performed on discretized images which are vectors f ∈ R N , where N stands for the number of pixels. The atoms of B are also discretized and the continuous inner products are replaced by the standard discrete inner product in R N .

To guarantee a stable reconstruction from the coefficients { ψ m , f } m , the family B is assumed to be a frame [START_REF] Duffin | A class of non-harmonic Fourier series[END_REF][START_REF] Casazza | The art of frame theory[END_REF][START_REF] Christensen | Frames, Riesz bases, and discrete Gabor/wavelet expansions[END_REF][START_REF] Kovačević | Life beyond bases: The advent of frames (part I)[END_REF][START_REF] Kovačević | Life beyond bases: The advent of frames (part II)[END_REF] of L 2 ([0, 1] 2 ) or R N , which means that there exist two constants 0

< µ 1 µ 2 < ∞ such that for all f µ 1 f 2 m | ψ m , f | 2 µ 2 f 2 .
(

) 1 
Atoms are allowed to be linearly dependent, thus corresponding to a redundant representation. Redundancy enables atoms to meet certain additional constraints, for instance smoothness, symmetry and invariance to translation or rotation.

Thresholding for Approximation and Processing Using a dual frame { ψm } m [START_REF] Christensen | Frames, Riesz bases, and discrete Gabor/wavelet expansions[END_REF], an image is recovered from the set of coefficients as f = m ψ m , f ψm . The computation of the set of coefficients { ψ m , f } m for a discrete image f ∈ R N is usually performed using a fast algorithm, that also enables a fast reconstruction of an image from coefficients.

The basic processing operation, used in denoising and compression applications, is the thresholding

f M = H T (f, B) = m : | ψm, f |>T ψ m , f ψm (2) 
where M = # {m : | ψ m , f | > T } counts the number of non-zero coefficients in [START_REF] De | Spatial frequency selectivity of cells in macaque visual cortex[END_REF].

When µ 1 = µ 2 , the frame is said to be tight (Parseval tight frame). If furthermore µ 1 = µ 2 = 1, then one can choose ψm = ψ m , and B = {ψ m } m is then an orthonormal basis if ψ m = 1 for all m. In this last case, B performs the least energy reconstruction of f M in (2), or equivalently, f M is the best M -terms approximation of f . The decay of the approximation error ff M is related to both the average risk of a denoiser, and the distortion rate decay of a coder, see for instance [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. This motivates the search for bases or frames B which can efficiently approximate large classes of (natural) images. When the frame is redundant, more complicated decomposition methods improve the sparsity of the representation (see Sec. 4.1).

Early Scale-Related Representations

Frequency, Heat Kernel and Scale-Space Formalism

At the heart of modern signal processing techniques is the concept of signal representation, i.e., the selection of an efficient "point of view" in the study of signal properties that is not restricted to straightforward spatial descriptions.

The most obvious alternative signal representation is its frequency reading, i.e., the one provided by the Fourier transform of the signal explained in Sec. 1.3.1 [START_REF] Bracewell | The Fourier transform and its applications[END_REF][START_REF] Brémaud | Mathematical principles of signal processing: Fourier and wavelet analysis[END_REF]. However, this representation is not sufficiently "local". It is indeed rather difficult to detect what spatial part of an image contributes to high peaks in the Fourier spectrum. Fig. 3 represents the amplitude spectrum3 of the luminance component from Fig. 2. It exhibits a mixture of prominent vertical and horizontal directions with tiny fuzzy diagonal ones. An approach for obtaining a better localization is to introduce a notion of "scale" in the image observation. This has been performed very early in image and signal processing by either windowing or introducing scales in the Fourier transform [START_REF] Allen | Short-term spectral analysis, synthesis, and modification by discrete Fourier transform[END_REF][START_REF] Wilson | A generalized wavelet transform for Fourier analysis: the multiresolution Fourier transform and its application to image and audio signal analysis[END_REF] or observing a well-known diffusion process like the heat dynamics governed by the famous Heat equation. The idea relies on considering the image as an initial configuration of heat that is diffused with a time variable τ > 0 and in interpreting this time parameter as the "scale". Indeed, in this dynamic diffusion, small image structures will be smoothed early at small evolution time while larger ones persist for a larger duration. Interestingly, this diffusion is equivalently described by a filtering process: the convolution of the image by a Gaussian function G σ of width σ = √ 2τ [START_REF] Witkin | Scale-space filtering: A new approach to multi-scale description[END_REF][START_REF] Babaud | Uniqueness of the Gaussian kernel for scale-space filtering[END_REF][START_REF] Bredies | Mathematical concepts of multiscale smoothing[END_REF]. This image unfolding into a scale-space domain has led to many new image processing techniques such as edge, ridge and feature detection [START_REF] Lindeberg | Discrete derivative approximations with scale-space properties: A basis for low-level feature extraction[END_REF][START_REF] Florack | The topological structure of scale-space images[END_REF]. This is illustrated in Fig. 4, where the original image is convolved with three different Gaussian kernels in dyadic progression. Large objects such as the white rectangular plaques persist across all scales, while brick and grid textures vanish in Fig. 4(c). The overall redundancy of the Gaussian pyramid is given by the number of smoothing kernels. Taking advantage of the resolution loss, the redundancy factor may be reduced by sub-sampling, leading to the "Gaussian pyramid" construction.

The scale content of the image can be decomposed further by computing, for instance, differences between two filterings performed at two different scales. This led to the famous Littlewood-Paley decomposition, or to the (invertible) Laplacian pyramid conveniently combining multiple sub-sampled low-pass filterings of images, creating a pyramidal scale hierarchy [START_REF] Burt | The Laplacian pyramid as a compact image code[END_REF]. Interestingly, the resulting decomposition represented in Fig. 5 is a complete image representation that can advantageously be processed before reconstructing a new "restored" image (e.g., in image denoising). Additionally, image singularities are enhanced at fine scales, with low activity regions associated with coefficients being close to zero. Fast implementations of deformable (steerable or scalable) decompositions [START_REF] Treitel | The design of multistage separable planar filters[END_REF] are available for instance with recursive filters [START_REF] Deriche | Recursively implementing the Gaussian and its derivative[END_REF] or efficient multirate filter banks [START_REF] Manduchi | Efficient deformable filter banks[END_REF][START_REF] Adelson | Pyramid method in image processing[END_REF][START_REF] Ogden | Pyramid-based computer graphics[END_REF][START_REF] Do | Framing pyramids[END_REF]. Remarkably, the notion of Scale-Space has been defined and "axiomatized" more than 50 years ago by the Japanese mathematicians Iijima and Otsu, as presented in [START_REF] Weickert | Scale-space has been discovered in Japan[END_REF]. As we will realize throughout this paper, this scale-space representation (refer to [START_REF] Lindeberg | Generalized gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space[END_REF] for a recent overview and axiomatic generalization) was the starting point of many new ways to represent images.

Isotropic Continuous Wavelet Transform

The continuous wavelet transform somehow generalizes the previous scale-space formalism driven by the Gaussian kernel to any "function" with enough regularity. The continuous wavelet transform was initially developed for the transformation of 1-D signals [START_REF] Grossman | Decompositions of functions into wavelets of constant shape, and related transforms[END_REF] and further extended in 2-D first with isotropic wavelets. The case of non-isotropic (directional) wavelets was defined later [START_REF] Antoine | Image analysis with two-dimensional continuous wavelet transform[END_REF] (see Sec. 3.2.3). In one dimension, a wavelet ψ is an integrable and well-localized function of L 2 (R), generally described as locally oscillating, i.e., R ψ(t)dt = 0. It may be dilated or contracted by a scale factor a > 0 and translated to a position b ∈ R:

ψ (b,a) (t) = 1 √ a ψ( t-b a )
. The continuous wavelet transform of a signal f ∈ L 2 (R) probes its content with a "lens" ψ (b,a) of zoom factor a and location b. Mathematically,

W f (b, a) = R f (t) 1 √ a ψ * ( t-b a ) dt = ψ (b,a) , f . (3) 
Interestingly, provided that ψ is admissible, i.e., when the two constants c ± ψ = 2π

+∞ 0 | ψ(±ω)| 2 ω
dω < ∞ are finite and equal 4 , that is, c + ψ = c - ψ = c ψ < ∞, the signal f may be recovered from the coefficients W f (b, a):

f (t) = 1 c ψ +∞ 0 R W f (b, a) ψ (b,a) (t) db da a 2 . (4) 
This integral representation involves wavelets at every location and all positive dilations, i.e., f is decomposed on the continuous set of functions {ψ (b,a) : a ∈ R * + , b ∈ R}. Many different kinds of (admissible) wavelets may be selected. We may cite the derivatives of Gaussian (DoG), the Morlet and the Cauchy wavelets, etc. Their selection is driven by the features to be elucidated in the data, e.g., frequency content with the Morlet wavelet or singularities with DoGs (Fig. 6(a)) as illustrated 5in Fig. 6(b).

In two dimensions, the most natural extension of the 1-D-CWT is obtained by considering isotropic wavelets, i.e., wavelets ψ ∈ L 2 (R 2 ) such that ψ(x) = ψ rad ( x ), with x = (x 1 , x 2 ), for some radial function ψ rad : R + → R. In that case, the wavelet family is generated by 2-D dilations and translations, i.e., we work with ψ (b,a)

(x) = 1 a ψ( x-b a ) that are copies of ψ translated to b = (b 1 , b 2 ) ∈ R 2 and dilated by a > 0. The 2-D CWT of the image f ∈ L 2 (R 2 ) is then simply W f (b, a) = ψ (b,a)
, f and the reconstruction of f is guaranteed by

f (x) = 2π c ψ +∞ 0 R 2 W f (b, a) ψ (b,a) (x) d 2 b da a 3 , (5) 
if

c ψ = (2π) 2 R 2 | ψ(k)| 2 / k 2 d 2 k < ∞.
The isotropic CWT is a useful analysis tool for edge detection in images. For instance, by taking the (admissible) Marr Wavelet ψ(x) = ∆[exp - 1 2 x 2 ] (with ∆ the 2-D Laplacian) also called Laplacian of Gaussian or Mexican Hat (see Fig. 6(a)), the CWT of an image f acts as a multiscale edge detector. The topic of 1-D and 2-D continuous wavelet transforms is covered in more details in [START_REF] Grossman | Decompositions of functions into wavelets of constant shape, and related transforms[END_REF][START_REF] Antoine | Image analysis with two-dimensional continuous wavelet transform[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets. CBMS-NSF[END_REF][START_REF] Holschneider | Wavelets, an analysis tool[END_REF][START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF].

Discrete Scale-Space Representations

Numerical computation requires that continuous expansions such as (3) and (5) be discretized. In this section, we detail some parameter samplings, such as dyadic or translation invariant grids. Together with a suitable choice of the wavelet function, they lead to stable representations where the original signal can be perfectly reconstructed from its coefficients.

Multiresolution Analysis (MRA)

In the context of a dyadic sampling where a = 2 j and b = n2 j for j, n ∈ Z, the canonical way to design a suitable wavelet function ψ in 1-D makes use of a multi-resolution analysis (MRA). It is defined as a nested sequence of closed vector subspaces (V j ) j∈Z in L 2 (R) verifying standard properties [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF]. Multiresolution analysis of a signal f consists of successively projecting the signal onto subspaces V j in a series of increasingly coarser approximations as j grows. The difference between two successive approximations represents detail information. It amounts to the information loss between two consecutive scales, which lies in the subspace W j , the orthogonal complement of V j in V j-1 such that:

V j-1 = V j ⊕ W j .
Then, with additional stability properties, there exists a wavelet ψ ∈ L 2 (R) such that B = {2 -j/2 ψ(2 -j xn) : n ∈ N} is an orthonormal basis for W j .

Separable Orthogonal Wavelets

A 2-D orthogonal wavelet basis B = {ψ m } m of L 2 (R 2 ) for m = (j, n, k) is parameterized by a scale6 2 j (j ∈ Z), a translation 2 j n = 2 j (n 1 , n 2 ) (n ∈ Z 2 ) and one of three possible orientations k ∈ {V, H, D}, loosely denoting the vertical, horizontal and (bi) diagonal directions, the latter being poorly representative. Wavelet atoms are defined by dyadic scalings and translations

ψ m (x) = 2 -j ψ k (2 -j x -n) of three tensor-product 2-D wavelets ψ V (x) = ψ(x 1 )φ(x 2 ), ψ H (x) = φ(x 1 )ψ(x 2 ), and ψ D (x) = ψ(x 1 )ψ(x 2 ),
where φ and ψ are respectively 1-D orthogonal scaling and wavelet functions, see [START_REF] Daubechies | Ten Lectures on Wavelets. CBMS-NSF[END_REF][START_REF] Vetterli | Wavelets and Subband Coding[END_REF][START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. When the scale interval is limited to j < J for some J ∈ Z, the basis B is completed by the functional set A = {φ (J,n) } n , with the 2-D separable scaling function φ(x) = φ(x 1 )φ(x 2 ). This set gathers all the coarse scale wavelet atoms with j J. The standard cascade image is depicted in Fig. 7. It is now critically sampled, i.e., free from redundancy (compare Fig. 5 and6(b)). The approximation coefficients in A, a coarse image approximation at scale J, are represented in the bottom-left square of Fig. 7. The other squares in this picture, associated to the "bands" {V, H, D} for j < J, exhibit some sparsity (few important coefficients), and horizontal and vertical edges are relatively well captured. ). This result extends to functions with bounded variations [START_REF] Cohen | Non linear approximation and the space BV (R 2 )[END_REF], and is asymptotically optimal. This decay is nevertheless not improved when the edges are smooth curves, because of the fixed ratio between the horizontal and the vertical sizes of the orthogonal wavelet support.

Fast Algorithms for Finite Images

A finite discretized image f ∈ C N 1 ×N 2 of N = N 1 N 2 pixels
fits into the MRA framework by assuming that the pixel values of f n on n = (n 1 , n 2 ) are the coefficients φ (J,n) , f of some continuous function f ∈ L 2 (R 2 ) at a fixed resolution V J , where 2 2J = N .

The coefficients ψ k j,n , f of f for j J are computed from the discrete image f alone. This computation is performed using a cascade of filters interleaved with downsampling operators [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF]. For compactly supported wavelets, this requires O(N ) operations. Symmetric bi-orthogonal wavelet bases with compact support ease the implementation of non-periodic boundary conditions [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF]. For infinite impulse response (IIR) wavelet filters, computations in the Fourier domain require O(N log(N )) operations [START_REF] Rioul | Fast algorithms for discrete and continuous wavelet transforms[END_REF], while recursive implementations [START_REF] Smith | Recursive time-varying filter banks for subband image coding[END_REF] allow signal-adaptive implementation.

While separable wavelets are not optimal for approximating generic edges, they lie at the heart of early state-of-the-art methods for compression and denoising. The JPEG 2000 coding standard [START_REF] Taubman | JPEG2000: Image Compression Fundamentals, Standards and Practice[END_REF] performs an embedded quantization of wavelet coefficients, and uses an adaptive entropic coding scheme that takes into account the local dependencies across wavelet coefficients. The sub-optimality of wavelets for the sparse representation of edges can be alleviated using block thresholding of groups of wavelet coefficients [START_REF] Cai | Adaptive wavelet estimation: A block thresholding and oracle inequality approach[END_REF], that gives improvements over scalar thresholding. Advanced statistical modeling of wavelet coefficients leads to denoising methods close to the stateof-the-art, see for instance [START_REF] Müller | Bayesian Inference in Wavelet Based Models[END_REF][START_REF] Portilla | Image denoising using scale mixtures of Gaussians in the wavelet domain[END_REF][START_REF] Chaux | A nonlinear Stein based estimator for multichannel image denoising[END_REF].

Translation Invariant Wavelets

Given a discrete frame

B = {ψ m } m of C N , B is translation invariant if ψ(• -τ ) ∈ B
for any ψ ∈ B and any integer translation τ . This property tends to reduce artifacts in image restoration problems like denoising, since, for such invariant frame, the thresholding operator H T (f, B) becomes itself translation invariant. Discrete orthogonal wavelet bases described in the previous sections are not translation invariant and many authors have worked on recovering this useful capability.

For instance, cycle spinning, proposed by Coifman and Donoho in [START_REF] Coifman | Translation-invariant de-noising[END_REF], reduces wavelet artifacts by averaging the denoising result of all possible translates of the image, thus resulting in a translation invariant processing. For an orthogonal basis B = {ψ m } m , this is equivalent to considering a tight frame which is the union of all translated bases {ψ m (•-τ )} m,τ . For a generic basis, this frame has up to N 2 atoms. For a wavelet basis, the frame has O(N log(N )) atoms, and the coefficients are computed with the fast "à trous" algorithm in O(N log(N )) [START_REF] Rioul | Fast algorithms for discrete and continuous wavelet transforms[END_REF][START_REF] Shensa | The discrete wavelet transform: wedding the à trous and Mallat algorithms[END_REF]. The translation invariant paradigm additionally draws a connection between the scale-space formalism (Sec. 2.1) [START_REF] Chambolle | Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space[END_REF] and thresholding (Sec. 1.3.2). Several 2-D design described in the next sections attempt to (approximately) address invariance (translation/rotation) without sacrificing computational efficiency.

Oriented and Geometrical Multiscale Representations

The variety of oriented and geometric multiscale representations proposed over the last few years requires broad grouping, arranged as follows: Sec. 3.1 presents directional methods closely related to 1-D decompositions. In Sec. 3.2, the directionality is addressed with diverse non-separable schemes. Finally, in Sec. 3.3, directionality is attained by an anisotropic scaling of the atoms that yields various efficient edge and curve representations.

Directional Outcrops from Separable Representations

Improved Separable Selectivity by Relaxing Constraints

As discussed in Sec. 2.3.1, discrete orthogonal wavelets may be viewed as a peculiar instance of orthogonal filter banks [START_REF] Vaidyanathan | Multirate systems and filter banks[END_REF]. A well-known limitation in 1-D is that orthogonality (hence nonredundant), realness, symmetry and finite support properties cannot coexist with pairs of low-and high-pass filters, except for the Haar wavelet.

We decide to briefly mention here some of the early steps taken to tackle this limitation. These have also been employed in more genuine non-separable transforms, as seen later, typically relaxing one of the aforementioned properties, such as using infinite-support filters [START_REF] Blu | The fractional spline wavelet transform: Definition and implementation[END_REF], semi-or biorthogonal decompositions [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] or complex filter banks [START_REF] Zhang | Orthogonal complex filter banks and wavelets: some properties and design[END_REF].

For instance, instead of a two-band filter bank, M -band wavelets [START_REF] Steffen | Theory of regular M -band wavelet bases[END_REF] with M > 2 provide alternatives where symmetry, orthogonality and realness are compatible with finitely supported atoms. In this setting, the approximation and the M -band detail spaces are V j and (W m j ) m∈N M related through V j-1 = V j ⊕ M -1 m=1 W m j for a resolution level j. This versatile design provides filters that suffer less aliasing artifacts with increased regularity. Their finer subband decomposition is also beneficial for detecting orientations in a more subtle fashion than with the {V, H, D} quadrants obtained with standard wavelets (Sec. 2.3.2). Yet, more general M -adic MRAs are possible, for instance with a rational M = p/q, M > 1 [START_REF] Auscher | Wavelet bases for L 2 (R) with rational dilation factor[END_REF][START_REF] Blu | Iterated filter banks with rational rate changes connection with discrete wavelet transforms[END_REF][START_REF] Blu | A new design algorithm for two-band orthonormal rational filterbanks and orthonormal rational wavelets[END_REF][START_REF] Baussard | Rational multiresolution analysis and fast wavelet transform: application to wavelet shrinkage denoising[END_REF][START_REF] Bayram | Frequency-domain design of overcomplete rational-dilation wavelet transforms[END_REF]. Note that for specific purposes such as compression, M -band filter banks with M = 2 J , J ∈ N may be treated like a J-level dyadic tree and combined in a hierarchical transform [START_REF] Xiong | A DCT-based embedded image coder[END_REF][START_REF] Malvar | Fast progressive image coding without wavelets[END_REF]. Satisfying the MRA axioms is not necessary in practice in order to yield high performance results. This is suggested by recent image and video coders focusing on "simpler" transforms, closer to ancient Walsh-Hadamard transforms than to more involved wavelets [START_REF] Malvar | Low-complexity transform and quantization in H.264/AVC[END_REF].

Alternatively, the 1-D decomposition on rows and columns of images may be performed in a more anisotropic manner, as in [START_REF] Rosiene | Tensor-product wavelet vs. Mallat decomposition: a comparative analysis[END_REF][START_REF] Xu | Anisotropic 2D wavelet packets and rectangular tiling: theory and algorithms[END_REF]. An additional relaxation comes from lifting the critically sampled scheme, yielding oversampled, translation-invariant (see Sec. 4.2.3) multiscale wavelets, wavelet/cosine packets or frames [START_REF] Coifman | Translation-invariant de-noising[END_REF][START_REF] Nason | The stationary wavelet transform and some statistical applications[END_REF][START_REF] Pesquet | Time-invariant orthogonal wavelet representations[END_REF][START_REF] Cohen | Orthonormal shift-invariant adaptive local trigonometric decomposition[END_REF][START_REF] Chui | Compactly supported tight and sibling frames with maximum vanishing moments[END_REF][START_REF] Daubechies | Framelets: MRA-based constructions of wavelet frames[END_REF]. Multidimensional oversampled filter banks in n-D with limited redundancy may be designed as well [START_REF] Aach | A lapped directional transform for spectral image analysis and its application to restoration and enhancement[END_REF][START_REF] Tanaka | The generalized lapped pseudo-biorthogonal transform: Oversampled linear-phase perfect reconstruction filter banks with lattice structures[END_REF][START_REF] Zhou | Multidimensional oversampled filter banks[END_REF][START_REF] Tanaka | A direct design of oversampled perfect reconstruction FIR filter banks of 50%overlapping filters[END_REF][START_REF] Gauthier | Optimization of synthesis oversampled complex filter banks[END_REF].

Pyramid-related wavelets

Notably influenced by [START_REF] Simoncelli | Shiftable multi-scale transforms[END_REF][START_REF] Simoncelli | The steerable pyramid: a flexible architecture for multiscale derivative computation[END_REF], Unser and Van de Ville propose a slightly redundant transform [START_REF] Unser | The pairing of a wavelet basis with a mildly redundant analysis via subband regression[END_REF] based on a pyramid-like wavelet analysis. This decomposition constitutes a wavelet frame with mild redundancy, which is nevertheless not steerable. Subsequently, the same authors propose a steerable analysis [START_REF] Van De Ville | Complex wavelet bases, steerability, and the Marr-like pyramid[END_REF] based on polyharmonic B-splines [START_REF] Forster | Shift-invariant spaces from rotationcovariant functions[END_REF] and the Maar-like [START_REF] Marr | Theory of edge detection[END_REF][START_REF] Marr | Vision: A Computational Investigation into the Human Representation and Processing of Visual Information[END_REF] wavelet pyramid. Such multiresolution analysis can easily be implemented via filter banks as detailed in [START_REF] Van De Ville | Complex wavelet bases, steerability, and the Marr-like pyramid[END_REF] and the total redundancy of this decomposition is 8/3 (a redundancy of 4/3 is introduced by the pyramid structure and the complex nature of the coefficients increases the redundancy by a factor of 2). A similar approach based on Riesz-Laplace wavelets is proposed in [START_REF] Unser | Steerable pyramids and tight wavelet frames in L 2 (R d )[END_REF]. The latter constructions are related to Hilbert and Riesz transforms.

Complexifying Discrete Wavelets with Hilbert and Riesz

Different kinds of complexification are indeed a possible option in order to tackle the problem of poor directionality with classical wavelet transforms. The common basic idea leans toward analytic wavelets and their combination to improve the 2-D directionality. Behind a generic notion of complex wavelets reside different approaches detailed hereafter, which require the definition of some basic tools.

We first introduce the Hilbert transform, termed "complex signal" in [START_REF] Gabor | Theory of communication[END_REF] and exhaustively mapped in [START_REF] King | Hilbert Transforms[END_REF]. While the 1-D Hilbert transform is unambiguously defined, there exists multidimensional extensions, often obtained by tensor products, thus leading to approximations. In order to increase the directionality property, other multidimensional constructions (discussed in [START_REF] Hahn | Multidimensional complex signals with single-orthant spectra[END_REF]) have also been proposed.

• The 1-D Hilbert transform H of a signal f is easily expressed in the Fourier domain as

H{f }(ω) = -i sign(ω) f (ω). (6) 
• The 1-D fractional Hilbert transform H θ of f is similarly defined in [START_REF] Chaudhury | On the shiftability of dual-tree complex wavelet transforms[END_REF] by

H θ {f }(ω) = exp(iπθ sign(ω)) f (ω). (7) 
• The 2-D directional Hilbert transform H θ of f is one of the 2-D extensions defined in [START_REF] Chaudhury | On the shiftability of dual-tree complex wavelet transforms[END_REF] as

H θ {f }(ω 1 , ω 2 ) = -i sign cos(θ)ω 1 + sin(θ)ω 2 f (ω 1 , ω 2 ). ( 8 
)
See also [START_REF] Antoine | Directional wavelets revisited: Cauchy wavelets and symmetry detection in patterns[END_REF].

The Hilbert transform was already associated with wavelets for transient detection by Abry et al. [START_REF] Abry | Multiresolution transient detection[END_REF]. Others early connections between wavelets and the Hilbert transform are drawn in [START_REF] Beylkin | Transformation de Hilbert et bancs de filtres[END_REF][START_REF] Weiss | The Hilbert transform of wavelets are wavelets[END_REF][START_REF] Beylkin | Implementation of operators via filter banks: Autocorrelation shell and Hardy wavelets[END_REF]. At the end of the 1990's, Kingsbury proposed the dual-tree transform based on even and odd filters [START_REF] Kingsbury | The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters[END_REF][START_REF] Kingsbury | Image processing with complex wavelets[END_REF]. An alternative construction is given by Selesnick [START_REF] Selesnick | Hilbert transform pairs of wavelet bases[END_REF]. It amounts to performing two discrete classical wavelet transforms in parallel, the wavelets generated by the trees forming Hilbert pairs. An atom of the corresponding basis (here the diagonal wavelet) and its corresponding frequency plane tiling are depicted in Fig. 9. The corresponding dual-tree of wavelet coefficients is represented in Fig. 8, which clearly shows the separation of oriented structures with different orientations. The resulting oriented wavelet dictionary has a small redundancy and is also computationally efficient. The corresponding wavelet is approximately shift invariant, see [START_REF] Selesnick | The dual-tree complex wavelet transform[END_REF] for more details. It is extended to the M -band setting by Chaux et al. [START_REF] Chaux | Image analysis using a dual-tree M -band wavelet transform[END_REF] and to wavelet packets in [START_REF] Jalobeanu | Image deconvolution using hidden Markov tree modeling of complex wavelet packets[END_REF][START_REF] Bayram | On the dual-tree complex wavelet packet and M -band transforms[END_REF]. In Fig. 10, one subband of the wavelet transform (red square in Fig. 7), two subbands (primal+dual) of the dyadic dual-tree transform (red squares in Fig. 8), as well as the corresponding eight subbands (4 primal+4 dual) of the 4-band dual-tree wavelet decomposition are depicted. In Fig. 10(d), the fine oriented textures from the left side of the image are (slightly) better separated in some non-horizontal subbands. The wavelet/frequency tiling corresponding to the 4-band dual-tree wavelet decomposition are depicted in Fig. 11. The main advantage of this decomposition is that it achieves a directional image analysis with a small redundancy of a factor 2 (4 for the complex transform).

Gopinath [START_REF] Gopinath | The phaselet transform -an integral redundancy nearly shift-invariant wavelet transform[END_REF][START_REF] Gopinath | Phaselets of framelets[END_REF] has designed phaselets which is an extension of the dyadic dual-tree wavelet transform [START_REF] Kingsbury | The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters[END_REF][START_REF] Selesnick | The characterization and design of Hilbert transform pairs of wavelet bases[END_REF]. They aim at improving translation invariance with a given redundancy, and are built by carefully observing the effects of shifts in a discrete wavelet transform. 2-D phaselets are easily obtained by tensor products.

More recently, the shiftability of the dual-tree transform has been studied by Chaudhury et al. [START_REF] Chaudhury | On the shiftability of dual-tree complex wavelet transforms[END_REF] by introducing the fractional Hilbert transform [START_REF] Wornell | Signal Processing with Fractals: A Wavelet Based Approach[END_REF]. A 2-D extension has been proposed in [START_REF] Chaudhury | Gabor wavelet analysis and the fractional Hilbert transform[END_REF] and the construction of Hilbert transform pairs of wavelet bases can be found in [START_REF] Chaudhury | Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms[END_REF]. Note that previous works dealing with multidimensional extensions have been first reported for instance in [START_REF] Bülow | Hypercomplex signals -a novel extension of the analytic signal to the multidimensional case[END_REF] and then in [START_REF] Chan | Directional hypercomplex wavelets for multidimensional signal analysis and processing[END_REF][START_REF] Wedekind | Steerable filters generated with the hypercomplex dual-tree wavelet transform[END_REF] using the notion of hypercomplex wavelets.

Numerous extension to multidimensional signals have been proposed, see for instance [START_REF] Unser | Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform[END_REF][START_REF] Unser | Higher-order Riesz transforms and steerable wavelet frames[END_REF]. They, for instance, use the Riesz transform R, which is defined in the frequency domain as follows:

R{f } = ( R 1 {f }, . . . , R N {f }). (9) 
where

∀n ∈ {1, • • • , N }, R n {f }(ω) = -i ω n ω f (ω). ( 10 
)
Other recent extensions of multidimensional oriented wavelets are based on the notion of monogenic signal/wavelet [START_REF] Felsberg | Low-level image processing with the structure multivector[END_REF][START_REF] Olhede | The monogenic wavelet transform[END_REF][START_REF] Held | Steerable wavelet frames based on the Riesz transform[END_REF]. We finally mention that other methods have been developed in order to achieve directional analytic wavelets such as softy space projections [START_REF] Van Spaendonck | Non-redundant, directionally selective, complex wavelets[END_REF][START_REF] Fernandes | A directional, shift insensitive, low-redundancy, wavelet transform[END_REF][START_REF] Fernandes | A new framework for complex wavelet transforms[END_REF][START_REF] Fernandes | Non-redundant, linear-phase, semiorthogonal, directional complex wavelets[END_REF][START_REF] Fernandes | Multidimensional, mappingbased complex wavelet transforms[END_REF] or the Daubechies complex wavelets [START_REF] Gagnon | Sharpening enhancement of digitized mammograms with complex symmetric Daubechies wavelets[END_REF][START_REF] Belzer | Complex, linear-phase filters for efficient image coding[END_REF][START_REF] Clonda | Complex Daubechies wavelets: properties and statistical image modelling[END_REF]. Complex wavelets have also been shown to provide robust image similarity measures [START_REF] Wang | Translation insensitive image similarity in complex wavelet domain[END_REF][START_REF] Sampat | Complex wavelet structural similarity: A new image similarity index[END_REF]. 

Non-Separable Directionality

Non-separable Decomposition Schemes

In contrast to the separable constructions detailed in Sec. 3.1.1 where n-D representations are composed of 1-D transforms applied separately along each dimension (sometimes recombined, as in the dual-tree wavelet case or in [START_REF] Shen | Image denoising using a tight frame[END_REF]), non-separable constructions are directly performed in n-D. Since the literature on this topic is large, this section is focussed on a limited number of references dealing with directional multiscale decompositions. These works are often related to non-diagonal subsampling operators, non-rectangular lattices (e.g., quincunx grids or integer lattices) [START_REF] Bamberger | A filter bank for the directional decomposition of images: theory and design[END_REF][START_REF] Smith | A procedure for designing exact reconstruction filter banks for tree structured subband coders[END_REF], or non-separable n-D windows [START_REF] Xia | A familly of two-dimensional nonseparable Malvar wavelets[END_REF][START_REF] Coulombe | Multidimensional windows over arbitrary lattices and their application to FIR filter design[END_REF]. Complementary standard references can be found in [70, p. 558 sq.] or [START_REF] Kovačević | Nonseparable multidimensional perfect reconstruction filters banks and wavelets bases for R n[END_REF][START_REF] Kovačević | Nonseparable two-and three-dimensional wavelets[END_REF][START_REF] Antoine | Two-dimensional wavelets and their relatives[END_REF]. Some of these constructions are defined using the lifting scheme, see Sec. 4.3 and 5.3 for more details. While directional filter banks do not provide a multiscale representation in general, 2-band [START_REF] Feauveau | Analyse multirésolution pour les images avec un facteur de résolution √ 2[END_REF][START_REF] Faugère | Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques[END_REF][START_REF] Ayache | Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases[END_REF] or even M -band non-redundant directional discrete wavelets [START_REF] Durand | M -band filtering and nonredundant directional wavelets[END_REF] have been proposed. Non-separable schemes are used for instance as building blocks for multiscale geometric decompositions such as:

• directional filter banks in [START_REF] Nguyen | A class of multiresolution directional filter banks[END_REF], and their combination with a Laplacian pyramid in contourlets [START_REF] Do | The contourlet transform: an efficient directional multiresolution image representation[END_REF][START_REF] Cunha | The nonsubsampled contourlet transform: theory, design, and applications[END_REF] or surfacelets [START_REF] Lu | Multidimensional directional filter banks and surfacelets[END_REF],

• (pseudo-) polar fast Fourier transform (FFT) [START_REF] Averbuch | Fast and accurate polar Fourier transform[END_REF] in first generation curvelets described in Sec. 3.3.2, or the loglets in [START_REF] Knutsson | Implications of invariance and uncertainty for local structure analysis filter sets[END_REF] that exhibit a polar separability.

In order to overcome the limited efficiency of the standard 2-D separable DWT for representing non-horizontally or vertically directed edges (see Sec. 2.3.2), several authors have adapted 1-D concepts for local edge representation. Reissell [START_REF] Reissell | Wavelet multiresolution representation of curves and surfaces[END_REF] develops, for instance, a pseudo-coiflet scheme that addresses numerically efficient interpolation for a parametric wavelet representation of curves. Moreover, for digital images it would be beneficial to follow contours on more appropriate discrete paths (see [START_REF] Taubman | Orientation adaptive subband coding of images[END_REF] for an early application) such as discrete lines [START_REF] Bresenham | Algorithm for computer control of a digital plotter[END_REF][START_REF] Rosenfeld | Digital straightness[END_REF][START_REF] Daragon | Discrete frontiers[END_REF]. While discrete lines are adapted to digital ridgelets in [START_REF] Andres | Ridgelet transform based on Reveillès discrete lines[END_REF], Velisavljević et al. propose multidirectional anisotropic directionlets [START_REF] Velisavljević | Directionlets: Anisotropic multi-directional representation with separable filtering[END_REF], based on skewed lattices, with directional vanishing moments along direction with rational slopes, still relying on a simple separable implementation. This approach is refined in [START_REF] Chappelier | Oriented wavelet transform for image compression and denoising[END_REF] by taking lifting steps of 1-D wavelets along an explicit orientation map defined on a quincunx multiresolution sampling grid, and in [START_REF] Chang | Direction-adaptive discrete wavelet transform for image compression[END_REF] with a more efficient representation for sharp features. A combination of 2-D filter banks and 1-D directional filter bank is devised in [START_REF] Tanaka | Multiresolution image representation using combined 2-D and 1-D directional filter banks[END_REF][START_REF] Tanaka | Adaptive directional wavelet transform based on directional prefiltering[END_REF]. Similar ideas have been recently applied to edge detection in [START_REF] Zhang | An edge detection approach based on directional wavelet transform[END_REF]. In [START_REF] Krommweh | Directional Haar wavelet frames on triangles[END_REF], non-adaptive directional wavelet frames are constructed with Haar wavelets and a finite collection of "shear" matrices. Krommweh also proposes tetrolets, an adaptive variation (akin to digital wedgelets) of Haar-like wavelets on compact tetrominoes (geometric shapes composed of four squares, connected orthogonally, see [START_REF] Golomb | Polyominoes[END_REF]). These last constructions may further sparkle the growing interest of the association of multiscale analysis and discrete geometry [START_REF] Said | Multiscale discrete geometry[END_REF].

Steerable Filters

Steerable filters [START_REF] Freeman | Steerable filters for early vision, image analysis and wavelet decomposition[END_REF][START_REF] Freeman | The design and use of steerable filters[END_REF][START_REF] Freeman | Steerable Filters and Local Analysis of Image Structure[END_REF] were developed in order to achieve more precise feature detectors adapted to image edge junctions (often termed "X", "T" and "L" junctions). Their construction allows one to compute multiscale derivatives at any orientation (steerability) from a linear combination of a small number of fixed filters. In [START_REF] Freeman | The design and use of steerable filters[END_REF], the construction starts from a bidimensional Gaussian G(x) = exp(-1 2 x 2 ) for x = (x 1 , x 2 ) with associated base (differential) filters

G 0 (x) = ∂ ∂x 1 G(x) and G π/2 (x) = ∂ ∂x 2 G(x).
From the properties of the directional derivative, filters "steered" at angle θ ∈ [0, 2π) are then built from

G θ (x) = cos(θ) G 0 (x) + sin(θ) G π/2 (x). ( 11 
)
where cos(θ) and sin(θ) may be interpreted as interpolators. Since the convolution is linear, the resulting steered decomposition arises from a combination of images that underwent G 0 or G π/2 filters. A larger class of asymmetric oriented filters is proposed in [START_REF] Simoncelli | Steerable wedge filters for local orientation analysis[END_REF]. Their angular parts are derived from even and odd functions:

∀ϕ ∈ [0, 2π), h e (ϕ) = N n=1 w n cos(nϕ) and h o (ϕ) = N n=1 w n sin(nϕ), (12) 
which form Hilbert transform pairs (see Sec. 3.1.3), unlike the resulting spatial filters. An angle θ rotation is obtained through:

h e (ϕ -θ) = k e (θ) T f (ϕ) and h o (ϕ -θ) = k o (θ) T f (ϕ), (13) 
where k e (θ) and k o (θ) are interpolating vectors and f (ϕ) is a weighted Fourier vector, namely:

k e (θ) = cos θ, sin θ, cos(2θ), sin(2θ), • • • , cos(N θ), sin(N θ) T , k o (θ) = -sin θ, cos θ, -sin(2θ), cos(2θ), • • • , -sin(N θ), cos(N θ) T , f (ϕ) = w 1 cos ϕ, w 1 sin ϕ, w 2 cos(2ϕ), w 2 sin(2ϕ), • • • , w N cos(N ϕ), w N sin(N ϕ) T . If we set θ = θ n = 2πn/N for 1 n N , filters h e (• -θ) and h o (• -θ) may be rewritten as a linear combination of h e (• -θ n ) and h o (• -θ n ), 1 n N .
An example of decomposition with four orientations and two scales is represented in Fig. 12, with corresponding projection atoms in Fig. 13. Steerable filters may be combined with discrete wavelets to improve their radial properties [START_REF] Bharath | A steerable complex wavelet construction and its application to image denoising[END_REF][START_REF] Shi | Rotational invariant operators based on steerable filter banks[END_REF]. 

Directional Wavelets and Frames

In Sec. 2.2, the two-dimensional Continuous Wavelet Transform (2-D CWT) was defined as a straightforward extension of the 1-D CWT using isotropic wavelets. It is however possible to make use of more complicated group actions to drive the CWT parameterization in the plane, such as rotations or the similitude group SIM(2), see [START_REF] Antoine | Two-dimensional wavelets and their relatives[END_REF].

Consequently, given a mother function ψ ∈ L 2 (R 2 ) that is well localized and oriented, we write

ψ (b,a,θ) (x) = 1 a ψ( 1 a R -1 θ x -b) ,
where R θ stands for the 2 × 2 rotation matrix. For a function

f ∈ L 2 (R 2 ), the 2-D CWT (non- isotropic) is thus W f (b, a, θ) = ψ (b,a,θ) , f . If the wavelet is admissible, i.e., if c ψ = (2π) 2 R 2 | ψ(ω)| 2 / ω 2 d 2 ω < ∞, then, the CWT may be inverted through f (x) = c -1 ψ ∞ 0 da a 3 2π 0 dθ R 2 d 2 b W f (b, a, θ) ψ (b,a,θ) (x),
the equality being valid almost everywhere on R 2 .

The selectivity power of the wavelet, that is, its ability to distinguish two close orientations in an image, may be measured in the Fourier domain. Typically, a good directional wavelet is thus a function whose Fourier transform is essentially or exactly contained in a cone with apex on the origin: the narrower the cone, the more selective the wavelet transform using that wavelet [START_REF] Antoine | Two-dimensional wavelets and their relatives[END_REF].

Practically, it is not satisfactory to manipulate a continuum of wavelets parameterized by continuous parameters. The question is therefore to know if it is possible to decompose and reconstruct an image from a discretized set of parameters, i.e., on the family G = {ψ (b,a,θ) : b ∈ P, a ∈ A, θ ∈ Θ} with P ⊂ R 2 , A ⊂ R * + and θ ⊂ [0, 2π) all discrete (countable) sets. As explained in Sec. 1.3.2, this question amounts to ask when G is a frame of L 2 (R 2 ).

Such frames have been built for the Morlet (or Gabor) wavelet [START_REF] Lee | Image representation using 2D Gabor wavelets[END_REF][START_REF] Nestares | Efficient spatial domain implementation of a multiscale image representation based on Gabor functions[END_REF]:

ψ(x) = G σ 0 (x) e iω 0 •x = e -x 2 /2σ 2 0 e iω 0 x , ψ(ω) ∝ G 1/σ 0 (ω -ω 0 ) = e -σ 2 0 ω-ω 0 2 /2 ,
where ω 0 ∈ R 2 defines the cone axis and σ 0 > 0 is related to the cone aperture, as represented in Fig. 14. Notice that approximate quadrature filters exist to accelerate the computation of the wavelet coefficients [START_REF] Vandergheynst | Directional dyadic wavelet transforms: design and algorithms[END_REF]. The Conic (or Cauchy) wavelet, whose spectral support is exactly contained into a cone, can also be used in order to define a frame [START_REF] Antoine | Directional wavelets revisited: Cauchy wavelets and symmetry detection in patterns[END_REF].

Finally, a multiresolution structure can also be put on the angular dependency of the conic wavelets in the frequency domain to define multiselective wavelets [START_REF] Jacques | Multiselective pyramidal decomposition of images: wavelets with adaptive angular selectivity[END_REF]. This generates a redundant basis that may represent jointly a large spectrum of features ranging from highly directional ones (e.g., edges) to isotropic elements (e.g., spots, corners) and including intermediate directional structures such as textures. 

Directionality in Anisotropic Scaling

Ridgelets

Ridgelets [START_REF] Candès | Ridgelets: a key to higher-dimensional intermittency? Phil[END_REF][START_REF] Donoho | Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R n[END_REF] and wavelet X-ray transforms [START_REF] Zuidwijk | Directional and time-scale wavelet analysis[END_REF] appear as a combination of a 1-D wavelet transform and the Radon transform [START_REF] Deans | The Radon transform and some of its applications[END_REF]. They are designed for efficient representation of discontinuities over straight lines. A bivariate ridgelet transform is constant along parameterized lines x 1 cos(θ) + x 2 sin(θ) = b and defined for a > 0, b ∈ R and θ ∈ [0, 2π), by

∀x = (x 1 , x 2 ) ∈ R 2 , ψ (b,a,θ) (x) = a -1/2 ψ((x 1 cos(θ) + x 2 sin(θ) -b)/a). (14) 
Ridgelet coefficients for the image f are given by

R f (b, a, θ) = ψ (b,a,θ) (x) f (x) d 2 x = R f (θ, t) a -1/2 ψ((t -b)/a) dt, (15) 
where R f (θ, t) represents the Radon transform of f defined by:

R f (θ, t) = f (x 1 , x 2 ) δ(x 1 cos(θ) + x 2 sin(θ) -t) dx 1 dx 2 , (16) 
with δ denoting the Dirac distribution. The ridgelet transform may be interpreted as a 1-D wavelet transform of Radon slices where the angle θ is constant and t varies. Several implementations and variations exist in order to overcome the issues raised by the Radon transform discretization, such as the finite ridgelet transform [START_REF] Do | The finite ridgelet transform for image representation[END_REF], the approximate digital ridgelet transform [START_REF] Starck | The curvelet transform for image denoising[END_REF] or the discrete analytical ridgelet transform [START_REF] Helbert | 3-D discrete analytical ridgelet transform[END_REF]. Their multiscale implementation [START_REF] Candès | Curvelets -a surprisingly effective nonadaptive representation for objects with edges[END_REF] is the basis for the first generation curvelets described in Sec. 3.3.2. A ridgelet decomposition7 [START_REF] Donoho | Digital ridgelet transform based on true ridge functions[END_REF] of the Haar-Riesz Memorial plaque is given in Fig. 15, with a typical atom along with a synthetic description of its implementation in Fig. 16. 

Curvelets

The curvelet representation, introduced by Candès and Donoho [START_REF] Candès | Curvelets -a surprisingly effective nonadaptive representation for objects with edges[END_REF][START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF], improves the approximation of cartoon images with C 2 edges with respect to wavelets. We review here the second generation of curvelets, as introduced in [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF].

Continuous Curvelet Transform A curvelet atom, with scale s, orientation θ ∈ [0, π), position y ∈ [0, 1] 2 is defined as

ψ s,y,θ (x) = ψ s (R -1 θ (x -y)) (17) 
where

ψ s (x) ≈ s -3/4 ψ(s -1/2 x 1 , s -1 x 2
) is approximately a parabolic stretch of a curvelet function ψ with vanishing moments in the vertical direction. At scale s, a curvelet atom is thus a needle oriented in the direction θ whose envelope is a specified ridge of effective length s 1/2 and width s, and which displays an oscillatory behavior transverse to the ridge. A curvelet atom thus benefits from a parabolic scaling property width = length 2 that is a major departure from oriented wavelets. Fig. 17 presents an example of a curvelet atom, together with its Fourier transform, for the second generation of curvelets. The resulting curvelet Fourier tiling resembles that of the Cortex transform [START_REF] Watson | The cortex transform: rapid computation of simulated neural images[END_REF].

The continuous curvelet transform computes the set of inner products ψ s,y,θ (•), f for all possible (s, y, θ). A careful design of ψ s [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF] enables a conservation of energy and a simple reconstruction formula. The decay of the curvelet transform as s decreases allows one to detect the position and orientation of contours [START_REF] Candès | Continuous curvelet transform: I. resolution of the wavefront set[END_REF].

Curvelet Frame

The continuous curvelet representation is sampled in order to obtain a curvelet frame B = {ψ m } m , [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF], see also [START_REF] Candès | Continuous curvelet transform: II. discretization and frames[END_REF] for the description of a complex curvelet tight frame. A curvelet atom, with scale 2 j , orientation θ ∈ [0, π), position x n ∈ [0, 1] 2 is defined from the continuous atom [START_REF] Rubinstein | Dictionaries for sparse representation modeling[END_REF] ψ m (x) = ψ 2 j ,θ ,xn (x) where m = (j, n, )

where the sampling locations are

θ = π2 j/2 -1 ∈ [0, π) and x n = R θ (2 j/2 n 1 , 2 j n 2 ) ∈ [0, 1] 2 .
The curvelet parameters are sampled using an increasing number of orientations at finer scales. This sampling is the key ingredient to ensure the tight frame property [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF], which provides a simple reconstruction formula.

A fast discrete curvelet transform computes the set of inner products { ψ m , f } m in O(N log(N )) operations for an image with N pixels, see [START_REF] Candès | Fast discrete curvelet transforms[END_REF]. The coronae and rotations of the continuous settings are replaced by their discrete Cartesian counterparts, i.e. concentric squares and shears. Candès and Donoho prove [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF] that the curvelet non-linear approximation f M = H T (f, B), where H T is defined in (2), ensures an approximation error decay ff M 2 = O(M -2 log 3 (M )) for a C 2 regular image outside C 2 regular edge curves. This is a significant improvement over the O(M -1 ) error decay of a wavelet approximation described in Sec. 2.3.2, and is achieved with a fast O(N log(N )) algorithm for discrete images. This asymptotic error decay is optimal (up to logarithmic factor) for the class of images that are C 2 regular outside C 2 regular edge curves, see [START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF]. Monogenic curvelets are proposed in [START_REF] Storath | Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform[END_REF] to obtain additional advantages over monogenic wavelets, described in Section 3.1.3.

Shearlet atoms [START_REF] Guo | Optimally sparse multidimensional representation using shearlets[END_REF][START_REF] Kittipoom | Irregular shearlet frames: Geometry and approximation properties[END_REF] are built similarly to curvelets, but they replace, in their continuous formulation, rotation and anisotropic stretch with anisotropic shears. The discrete shearlet transform [START_REF] Kutyniok | The construction of regular and irregular shearlet frames[END_REF][START_REF] Lim | The discrete shearlet transform: A new directional transform and compactly supported shearlet frames[END_REF] is thus implemented similarly to the discret curvelet transform [START_REF] Candès | Fast discrete curvelet transforms[END_REF] using discrete shears 9 . It provides the same approximation properties as curvelets, albeit with a different directional sensitivity (e.g., the number of orientations doubles at each scale). Recently a type-I ripplet transform [START_REF] Xu | Ripplet: A new transform for image processing[END_REF] has been proposed as an extension to curvelets with alternative scaling laws.

Contourlets

Contourlets [START_REF] Do | The contourlet transform: an efficient directional multiresolution image representation[END_REF] are sometimes considered a low-redundancy discrete approximation of curvelets. Actually, they are designed in the spatial domain (instead of the frequency plane), aiming at a closeto-critical directional representation. Their construction is based on a Laplacian Pyramid [START_REF] Burt | The Laplacian pyramid as a compact image code[END_REF] (see Fig. 5). The low-pass part of the pyramid is further decomposed with a biorthogoal 9/7 DWT. Each difference image obtained from the pyramid is subject to directional filter bank (see Sec. 3.2) (initially from [START_REF] Bamberger | A filter bank for the directional decomposition of images: theory and design[END_REF], [START_REF] Do | Contourlets[END_REF] proposes a simpler implementation based only on a quincunx structure). A contourlet decomposition is illustrated 10 in Fig. 19. The resulting frequency plane tiling is represented in Fig. 20(c). The contourlet inherits its redundancy of 4/3 from the pyramidal scheme. Its approximation rate is similar to that of curvelets (Sec. 3.3.2). At one end of the redundancy 

Frames for Oscillating Textures.

While curvelets, contourlets and shearlets are optimized for the processing of edges, they are not tailored for the processing of oscillating textures, because of their poor frequency localization. Generic oscillating patterns can be captured using a local Fourier analysis on a regular segmentation of the image in squares. This corresponds to an expansion in a Gabor frame, see for instance [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. The spatial segmentation can be optimized using a decomposition in a best cosine packet dictionary as described in Section 4.2.

Wavelet packets, detailed in Section 4.2, have been used to process and compress oscillating textures such as fingerprints. Brushlets [START_REF] Meyer | Brushlets: A tool for directional image analysis and image compression[END_REF], introduced by Meyer and Coifman, improve the frequency localization of wavelet packets.

Wave atoms [START_REF] Demanet | Wave atoms and sparsity of oscillatory patterns[END_REF] better capture geometric textures using an anisotropic scaling 11 . The wavelength of wave-atom oscillations is proportional to the square of their diameter. This scaling allows a thresholding in a wave atom frame to optimally approximate textures obtained by a smooth warping of a sinusoidal profile, see [START_REF] Demanet | Wave atoms and sparsity of oscillatory patterns[END_REF].

Redundancy and Adaptivity

Highly redundant representations allow us to improve the representation of complicated images with edges and textures. However, as described hereafter, computing efficient image representations in such dictionaries sometimes requires approximations.

Pursuits in Redundant Dictionaries

An approximation f M of an image f with M atoms from a highly redundant dictionary B = {ψ m j : 1 j P } is written

f M = Ψa = j a j ψ m j , with a 0 = # {j : a j = 0} M.
Computing the M -sparse coefficients a that produce the smallest error ff M in a generic dictionary is NP-hard [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF]. Furthermore, the M -terms approximation f M = H T (f, B) computed by thresholding (2) might be quite far from the best M -terms approximation. One thus has to use approximate schemes in order to compute an efficient approximation in a reasonable time.

Matching Pursuits

Matching pursuit [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] computes f M from f M -1 by choosing the atom ψ m that minimizes the correlation | ψ m , ff M -1 |. Orthogonal matching pursuit [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF][START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF] further reduces the approximation error by projecting f on the M chosen atoms to compute f M .

Under restrictive conditions on the dictionary B, these greedy algorithms compute an approximation f M that is close to the best M -term approximation, see for instance [START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF][START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF]. These conditions typically require the correlation | ψ m , ψ m | to be small for m = m , which is not applicable to highly redundant dictionaries typically used in image processing.

Basis Pursuit

A sparse approximation is obtained by convexifying the 0 N pseudo norm, and solving the following basis pursuit denoising convex problem [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] 

f M = Ψa = j a j ψ m j where a ∈ argmin ã ∈ R P 1 2 f - j ãj ψ m j 2 + µ ã 1 , (18) 
where µ > 0 is adapted so that a 0 = M . This problem ( 18) is minimized, for instance, using iterative thresholding methods [START_REF] Daubechies | Iteratively re-weighted least squares minimization for sparse recovery[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. Algorithmic solutions to its generalized form as sums of convex functions (a common formulation to many data processing problems) may be solved with great flexibility in the framework of proximity operators [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

Similarly to matching pursuit algorithms, this 1 N approximation can be shown to be close to the best M -term approximation if the atoms of B are not too correlated, see for instance [START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF][START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF].

Pursuits in Parametric Dictionaries

Parametric dictionaries are obtained from basic operations (like rotation, translation, dilation, shearing, modulation, etc.) applied to a continuous mother function. Even if such dictionaries also define redundant bases similar to those introduced earlier, they deserve a separate description since their parametric nature provides them with some particular properties. They are generally created to provide a very rich and dense family of functions built from the geometrical features of the analyzed image. They have applications in image and video coding [START_REF] Vandergheynst | Image coding using redundant dictionaries[END_REF], multi-modal signal analysis (e.g., video plus audio) [START_REF] Monaci | Analysis of multimodal sequences using geometric video representations[END_REF], and also for signal decomposition on non-Euclidean spaces [START_REF] Sala Llonch | 3D face recognition with sparse spherical representations[END_REF].

Formally, given a set of S transformations T i m i for 1 i S parameterized by

m i ∈ Λ i ⊂ R n i , the parametric dictionary is related to a certain discretization of Λ d ⊂ Λ = Λ 1 × • • • × Λ S , i.e., B = {ψ m (x) = [T 1 m 1 • • • T S m S ψ](x) ∈ L 2 (R 2 ) : m = (m 1 , • • • , m S ) ∈ Λ d }.
The directional wavelets described in Sec. 3.2.3 and the subsequent frames built from them are actually an example of parametric dictionaries with the translations

T 1 m 1 T 2 m 2 = T 1 b 1 T 2 b 2
, the rotation T 3 m 3 = R θ and the dilation T 4 m 4 = D a operations. For these wavelets, the decomposition/reconstruction methods are relatively easy to formulate, due to the continuous inversion formula or using the frame condition.

However, checking the frame condition may sometimes become tedious. In addition, more transformations of the mother function may be added in order to enlarge the family of functions, further worsening the frame bounds. Interestingly, thanks to the parametric nature of B, the dictionary discretization can be refined during the Matching Pursuit iterations. Indeed, since B is the discretization of the continuous manifold M = {ψ m : m ∈ Λ} ⊂ L 2 (R 2 ) generated by all the transformations of ψ, at each iteration of MP in the decomposition of a signal f ∈ L 2 (R 2 ) the refinement is performed as follows. As illustrated on Fig. 21, given the best atom ψ m found in B, a gradient ascent respecting the (Riemannian) geometry of M is run on Λ to maximize the correlation S(m ) = | ψ m , R n f | between the current MP residual R n f = ff n at step n and the atom ψ m . A new parameter m * is then used instead of m in the signal representation and the next iteration is realized on the residual

R n+1 f = R n f -ψ m * , R n f ψ m * [220]
. Fig. 22 presents the result of such an improvement for two different decompositions of the Barbara image (with N = 128 2 pixels) with similar qualities (expressed using the Peak Signal-to-Noise Ratio -PSNR). The first one (Fig. 22(b)) is obtained by a rich parametric dictionary defined by anisotropic dilations, rotations, and translations of a 2-D second order directional derivative of a Gaussian. The second decomposition uses a poorer dictionary with the same parameterization and mother function but with a manifold optimization on the atom parameters. The interest of the latter method is to provide a similar quality for a smaller Computational Time (CT).

Processing with Highly Redundant Dictionaries

Compression with Sparse Expansions Dictionaries with oriented atoms have proven to be successful for improving the JPEG 2000 compression standard at low bit rates [START_REF] Bergeaud | Matching pursuit: Adaptive representations of images and sounds[END_REF][START_REF] Figueras | Low rate and flexible image coding with redundant representations[END_REF]. The approximation of the image is computed using the matching pursuit algorithm. Matching pursuit in Gabor dictionaries, i.e., dictionaries made of Gabor wavelets (Sec. 3.2.3), have been used for coding the motion residual in video compression schemes [START_REF] Neff | Very-low bit-rate video coding based on matching pursuits[END_REF].

Inverse Problem Regularization Data acquisition devices usually only acquire S noisy low resolution measurements y = Φf 0 + w ∈ R S of a high resolution image f 0 ∈ R N of N S pixels. The linear operator Φ models the acquisition and might include some blurring and sub-sampling of the high resolution data.

Recovering a good approximation f ∈ R N of f 0 from these measurements y corresponds to solving a difficult ill-posed inverse problem, that requires the use of efficient priors to model the regularity of the image. Early priors include the Sobolev prior that enforces smoothness of the image, and the non-linear total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] that can produce sharper edges.

More recently, 1 N sparse priors in redundant dictionaries B have been proved to be efficient in order to solve several ill-posed problems, see for instance [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF] and references therein. In this setting, one computes the coefficients a of f = Ψa = j a j ψ m j in a frame B of P atoms by solving a where µ should be adapted to the noise level w that is supposed to be known. This minimization problem corresponds to computing the basis pursuit approximation [START_REF] Welland | Beyond wavelets[END_REF] of the measurements y in the highly redundant dictionary {Φψ m j : 1 j P } of R S . It can thus be solved using the same algorithms.

Figure 23 shows the use of this sparse regularization method when solving a deconvolution problem. In this application, the operator is a convolution Φf = f G σ with a Gaussian kernel G σ as defined in Sec. 1.3.1. The redundant dictionary B is a translation invariant wavelet frame.

Source Separation

Sparse representations can be used to separate sources that are known to be sparse in different dictionaries. This corresponds to the morphological component analysis (MCA) of Starck et al. [START_REF] Starck | Redundant multiscale transforms and their application for morphological component analysis[END_REF]. In its simplest setting, it can be used to separate a single noisy image y into a sum y = f G + f T + w of a cartoon-like component f G (or geometric component), a texture component f T and residual noise w. One can use a dictionary B = B G ∪ B T union of wavelets (B G ) and local 

f = Ψa = Ψ G a G + Ψ T a T ( 20 
)
where a = [a G ; a T ] is the solution of the 1 N basis pursuit ( 18) applied to y. The separation, obtained using f G = Ψ G a G and f T = Ψ T a T , is illustrated in Fig. 24.

The modeling of natural images as a sum of a cartoon layer and an oscillating texture layer has been initiated by Y. Meyer in his book [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF]. Beside sparsity-based approaches such as [START_REF] Lisowska | Geometrical wavelets and their generalizations in digital image coding and processing[END_REF], other variational methods have been proposed, see for instance the work of J.-F. Aujol et al. [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF].

Tree-structured Best Basis Representations

Pursuit algorithms are quite slow and face difficulties in order to compute provably efficient approximations when the dictionary is too redundant. In order to avoid these bottlenecks, one needs to consider more structured representations, that allow one to use fast and provably efficient approximation strategies. The structuring of the representation can be implemented by computing an adapted basis B λ parameterized by a geometric parameter λ that captures the local direction of edges or textures. This section details best basis schemes: they introduce the desired adaptivity together with fast algorithms employing the hierarchical structure of parameters λ.

Quadtree-based Dictionaries

A dictionary of orthonormal bases is a set

D Λ = {B λ } λ∈Λ of orthonormal bases B λ = {ψ λ m } m of R N ,
where N is the number of pixels in the image. Instead of using an a priori fixed basis such as the wavelet or Fourier basis, one chooses a parameter λ ∈ Λ adapted to the structure of the image to process and then uses the optimized basis B λ .

In order to enable the fast optimization of a parameter λ adapted to a given signal or image f to process, each λ ∈ Λ is constrained to be a quadtree. The quadtree λ that parameterizes a basis B λ defines a dyadic segmentation of the square [0, 1] 2 = (j,i)∈L(λ) S j,i , where L(λ) are the leaves of the trees, as shown on Fig. 25. Each square S j,i is recursively split into four sub-squares S j+1,4i+k for k = 0, • • • , 3. In order to enrich the representation parameterized by a quadtree, we attach to each leave of the tree a geometric token, and denote as τ the number of tokens. A token indicates the direction of the image geometry in a square of the segmentation.

Best Basis Selection

Given a number M of coefficients, the best basis B λ ∈ D Λ adapted to f ∈ R N minimizes the best M -terms approximation error. This can be equivalently obtained by minimizing a penalized Lagrangian that weights the approximation error with the number of coefficients

λ ∈ argmin λ∈Λ L(f, B λ , T ) = f -f λ M 2 + M λ T 2 , (21) 
where f λ M is the best M λ -term approximation in B λ computed by thresholding at T > 0

f λ M = H T (f, B λ , T ) = | ψ λ m , f |>T ψ λ m , f ψ λ m and M λ = # m : | ψ λ m , f | > T , (22) 
since B λ is orthonormal. This Lagrangian can be re-written as a sum over each coefficient in the basis

L(f, B λ , T ) = m max(| ψ λ m , f | 2 , T 2 ). ( 23 
)
This kind of Lagrangian can be efficiently optimized using a dynamic search algorithm, originally presented by Coifman et al. [START_REF] Coifman | Entropy-based algorithms for best-basis selection[END_REF], which is a particular instance of the Classification and Regression Tree (CART) algorithm of Breiman et al. [START_REF] Breiman | Classification and Regression Trees[END_REF] as explained by Donoho [START_REF] Donoho | CART and best-ortho-basis: A connection[END_REF]. It is possible to consider other criteria for best basis selection, such as for instance the entropy of the coefficients. This leads different Lagrangians that can be minimized with the same method [START_REF] Coifman | Entropy-based algorithms for best-basis selection[END_REF]. The complexity of the algorithm is proportional to the complexity of computing the whole set of inner products ψ λ m , f : λ ∈ Λ in the dictionary. For several dictionaries, such as those considered in this section, a fast algorithm performs this computation in O(P ) operations, where P is the total number of atoms in D Λ . For tree-structured dictionaries, this complexity is thus O(τ N log 2 (N )), where τ is the number of tokens associated to each leaf of the tree. This is much smaller than the total number of basis B λ in D Λ , that grows exponentially with N .

Wavelet and Cosine Packets

A basis B λ with oscillating atoms is defined using a separable cosine basis over each square of the dyadic segmentation. In this case no geometry is used, the oscillation of the atoms does not follow the geometry of the image, and τ = 1. An approximation in an adapted cosine basis B λ allows one to capture the spatial variations of a texture [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF].

A wavelet packet basis B λ defines a dyadic subdivision of the 2-D frequency domain [START_REF] Wickerhauser | INRIA lectures on wavelet packet algorithms[END_REF]. The projection of an image on the atoms of B λ is computed through a pyramidal decomposition that generalizes the orthogonal wavelet transform, adding flexibility to overcome its dyadic frequency decomposition. Uniform dyadic wavelet packet decompositions generate a subset of M -band wavelets with equal-span frequency subbands obtained from J decomposition levels, with M = 2 J . In order to adapt to the specific frequency content of the image, the resulting tree is parsed through a best basis selection procedure [START_REF] Coifman | Entropy-based algorithms for best-basis selection[END_REF], reminiscent of the subdivision in Fig. 25.

This construction is generalized by considering non-stationary wavelet packets [START_REF] Cohen | Nonstationary subdivision schemes, multiresolution analysis, and wavelet packets[END_REF], that apply different quadrature mirror filters at each scale of the tree. A dynamic programming algorithm detailed in [START_REF] Ouarti | Best basis search in a non-stationary wavelet packets dictionary[END_REF] computes an adapted non-stationary basis.

Adaptive Approximation

Wedgelets A geometric approximation is obtained by considering for each node of the dyadic segmentation a collection of τ different low-dimensional discontinuous approximation spaces [START_REF] Donoho | Wedgelets: nearly minimax estimation of edges[END_REF]. For each node of the quadtree, a token indicates the local direction and position of the edge. The low-dimensional approximation spaces are piecewise polynomials over each of the two wedges.

The wedgelets introduced by Donoho [START_REF] Donoho | Wedgelets: nearly minimax estimation of edges[END_REF] rely on piecewise constant approximation. This scheme is efficient when approximating a piecewise constant image f whose edges are C 2 curves. For such cartoon images, the approximation error decays like ff M 2 = M -2 , see [START_REF] Donoho | Wedgelets: nearly minimax estimation of edges[END_REF][START_REF] Führ | Beyond wavelets: New image representation paradigms[END_REF]. It is also possible to consider approximation spaces with higher-order polynomials in order to capture arbitrary cartoon images [START_REF] Shukla | Rate-distorsion optimized treestructured compression algorithms for piecewise polynomial images[END_REF], see also [START_REF] Kassim | Hierarchical segmentation-based image coding using hybrid quad-binary trees[END_REF] for a related construction. The computation of the low-dimensional projection can be significantly accelerated, see [START_REF] Friedrich | Efficient moment computation over polygonal domains with an application to rapid wedgelet approximation[END_REF].

The piecewise constant model for images being relatively simplistic, wedgelets have been upgraded to platelets [START_REF] Willett | Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging[END_REF] and surflets [START_REF] Chandrasekaran | Representation and compression of multidimensional piecewise functions using surflets[END_REF]. They aim at improving the management of smooth intensity variations, since they rely on planar or even smoother approximation on dyadic square or wedge based grids.

Bandlets For coding, orthogonal expansions are preferred over low-dimensional approximations as considered by wedgelets. Switching to non-linear approximation in bases also better handles directional textures that do not correspond to a fixed low-dimensional space parameterized by a wedge.

The bandlet bases dictionary is introduced by Le Pennec and Mallat [START_REF] Pennec | Bandelet image approximation and compression[END_REF]. Bandlets perform an efficient adaptive approximation of images with geometric singularities. An anisotropic basis with a preferred orientation is defined over each square of the dyadic segmentation. Fig. 26 (a) shows an example of bandlet atom. The orientation is parameterized with the token stored in the leaf of tree. Keeping only a few bandlet coefficients and setting the others to zero performs an approximation of the original image that follows the local orientation indicated by the token. Adaptive Approximation over the Wavelet Domain Applying such an adaptive geometric approximation directly on the image leads to unpleasant visual artifacts. In order to overcome this issue, one applies a tree-structured approximation or a best basis computation on the discrete set of wavelet coefficients. The wedgeprint of Wakin et al. [START_REF] Wakin | Wavelet-domain approximation and compression of piecewise smooth images[END_REF] uses a vector quantization to extend the wedgelet scheme to the wavelet domain. The second generation bandlets of Peyré and Mallat [START_REF] Peyré | Orthogonal bandlet bases for geometric images approximation[END_REF] use an adaptive bandlet basis for each scale of the wavelet transform. All these methods benefit from the same approximation error decay as their single scale predecessors, but work better in practice. Another adaptive approximation relying on the processing of the wavelet domain is the easy path wavelet transform (EPWT) [START_REF] Plonka | The easy path wavelet transform: A new adaptive wavelet transform for sparse representation of two-dimensional data[END_REF]. It provides a hybrid and adaptive approach exploiting the local correlations of images along path vectors through index subsets in the Wavelet domain.

Adaptive Tree-structured Processing

For compression and denoising applications, one computes the best basis B λ adapted to the image f to compress or denoise by minimizing the corresponding Lagrangian [START_REF] Fadili | Curvelets and ridgelets[END_REF]. The coefficients ψ λ m , f are then binary coded (for compression) or thresholded (for denoising). The resulting improvement of the best basis approximation error over wavelets translates into improvement in the rate distortion (for compression) or average risk (for denoising) of the best basis method, see for instance [START_REF] Wakin | Wavelet-domain approximation and compression of piecewise smooth images[END_REF][START_REF] Peyré | Orthogonal bandlet bases for geometric images approximation[END_REF].

One can also use best bases to recover an image from noisy low-dimensional measurements y = Φf + w where Φ is an ill-conditioned linear mapping. For some problems such as inpainting, small missing regions or light blur removal, the best basis λ can be estimated directly from the observation y.

An example of inverse problem where sparsity in a best basis significantly improves over sparsity in a fixed basis is compressed sensing. Compressed sensing is a new data sampling strategy, where the measurement operator Φ of size P × N is generally the realization of some random matrix ensemble. The sampling operations y = Φf + w ∈ R P allows one to acquire a high resolution signal f ∈ R N directly in a compressed format of P < N measurements. Compressed sensing theory ensures that if the number of measurements P is large enough with respect to the sparsity K of the signal f in a basis B, typically, P = O(K log N/K) for Gaussian random matrix Φ, one recovers a good approximation of the signal using a 1 N sparse regularization as in [START_REF] Romberg | Multiscale geometric image processing[END_REF]. It can be shown that the quality of the reconstruction depends both on the sensing noise power w and on the "compressibility" of f , that is, its deviation from the strictly sparse case. We refer to the review paper of Candès [START_REF] Candès | Compressive sampling[END_REF] and the references therein for more details. Fig. 27 shows a comparison of compressed sensing recovery from P = N/6 measurements using a redundant frame B of translation invariant wavelets, and a best bandlet basis. In this last result, it is necessary to use an iterative algorithm that progressively improves the quality of the estimated geometry, see [START_REF] Peyré | Best basis compressed sensing[END_REF]. As explained in this last reference, the same technique can be used for inpainting large holes in images.

Adaptive Segmentations and Triangulations

In order to enhance the quality of the representation, it is possible to consider tree-structured segmentations [0, 1] 2 = β∈λ β of the image where the boundaries of the sub-domains β ∈ λ are not restricted to be axis-aligned. The advantage is that such an adaptive segmentation defines regions β ∈ λ with arbitrary complicated boundaries. Unfortunately, the combinatorial explosion of the set of all possible λ forbids the search for an optimal segmentation with a fast algorithm. One has thus to use a greedy scheme that selects at each step a split to reduce the approximation error.

Recursive Splitting and Approximation Spaces A greedy scheme computes an embedded segmentation λ = {λ j } j , where λ j+1 ⊂ λ j is obtained by splitting a region β ∈ λ j . The full segmentation λ can thus be represented and coded using a binary tree. This defines multiresolution spaces V λ j+1 ⊂ V λ j where V λ j is composed, for instance, of piecewise polynomial functions on each region β ∈ λ j .

It is possible to compute a single-scale orthogonal projection f M = P V λ j (f ) of an image f on a fixed resolution space V λ j in order to perform image approximation or compression. It is also possible to define a detail space V λ j+1 = V λ j ⊕ W λ j . A wavelet basis B λ can be built by considering a basis for each W λ j . A non-linear thresholding approximation f M = H T (f, B λ , T ) provides an additional degree of adaptivity and reduces the approximation error ff M . Wavelet bases on adaptive segmentations also enable a progressive coding of the coefficients by decaying T , which is important for image compression applications.

Adaptive Segmentation A popular splitting rule is the binary space tiling, that splits a region β ∈ λ j according to a straight line, see for instance [START_REF] Dekel | Adaptive multivariate approximation using binary space partitions and geometric wavelets[END_REF].

Other popular approaches restrict the regions β ∈ λ j to triangles, so that λ j is a triangulation of the domain [0, 1] 2 . It is possible to refine the triangulation by adding new vertices, or on the contrary to remove vertices to go from λ j+1 to λ j . These vertex-based schemes do not satisfy λ j+1 ⊂ λ j , so one cannot build a wavelet basis using such triangulations. These vertex refinement methods generate a single scale approximation P V λ j (f ) and lead to efficient image coders, see for instance [START_REF] Demaret | Image compression by linear splines over adaptive triangulations[END_REF].

To generate embedded approximation spaces λ j+1 ⊂ λ j , one needs to split the triangles β ∈ λ j . Regular split of orthogonal triangles leads to isotropic adaptive triangulations [START_REF] Distasi | Image compression by B-tree triangular coding[END_REF]. Splitting triangles according to a well chosen median leads to anisotropic triangulations that exhibit optimal aspect ratio for smooth images, see [START_REF] Cohen | Adaptive multiresolution analysis based on anisotropic triangulations[END_REF]. More complicated, non-linear coding schemes are possible, for instance using normal meshes [START_REF] Jansen | Multiscale approximation of piecewise smooth two-dimensional function using normal triangulated meshes[END_REF], that treat an image as an height field.

Lifting Representations

To enhance the wavelet representation, the wavelet filters can be adapted to the image content. The lifting scheme, popularized by Sweldens [START_REF] Sweldens | The lifting scheme: a construction of second generation wavelets[END_REF] and latent in earlier works [START_REF] Dyn | A four-point interpolatory subdivision scheme for curve design[END_REF][START_REF] Bruekers | New networks for perfect inversion and perfect reconstruction[END_REF][START_REF] Hampson | m-band nonlinear subband decompositions with perfect reconstruction[END_REF], is an unifying framework to design adaptive biorthogonal wavelets, through the use of spatially varying local interpolations. While it can typically reduce the computation of the wavelet transform by a factor of about two in 1-D, it also guarantees perfect reconstruction for arbitrary filters, and can be used (Sec. 5.3) on non-translation invariant grids to build wavelets on surfaces, see Sec. 5.

Lifting Scheme

At each scale j, the scaling coefficients a j-1 are evenly split into two groups a o j and d o j . The wavelet coefficients d j and the coarse scale coefficients a j are obtained by applying linear operators P λ j j and U 

The resulting lifted wavelet coefficients {d j } j are thresholded or quantized to achieve denoising or compression. These two lifting or ladder steps are easily inverted by reverting the order of the operations. The predictor P λ j j interpolates the sub-sampled values a o j in order to reduce the amplitude of the wavelet coefficients d j , while the update mapping U uniform 1-D grid [START_REF] Daubechies | Factoring wavelet transforms into lifting steps[END_REF], speeding up the wavelet decomposition algorithm by a factor of about two in 1-D. The lifting structure in Fig. 28(a) corresponds to the 5/3 lifted wavelet. Such structures may furthermore adapt to non-linear filters and morphological operations [START_REF] Taubman | Adaptive, non-separable lifting transforms for image compression[END_REF][START_REF] Egger | High compression image coding using an adaptive morphological subband decomposition[END_REF]. An example12 of lifting based quincunx scheme example from [START_REF] Goutsias | Nonlinear multiresolution signal decomposition schemes. i. Morphological pyramids[END_REF][START_REF] Heijmans | Nonlinear multiresolution signal decomposition schemes. ii. Morphological wavelets[END_REF] is displayed in Fig. 28(b).

Adaptive Predictions

It is possible to design the set of parameter λ = {λ j } j to adapt the transform to the geometry of the image. We call λ j an association field, since it typically links a coefficient of a o j to a few neighboring coefficients in d o j . Each association is optimized to reduce, as much as possible, the magnitude of wavelet coefficients d j , and should thus follow the geometric structures in the image. One can compute these associations to reduce the length of the wavelet filter near the edges, using the information from the coarser scale [START_REF] Claypoole | Nonlinear wavelet transforms for image coding via lifting[END_REF]. Locally adaptive schemes have proven efficient in stereo and video coding [START_REF] Gouze | Design of signal-adapted multidimensional lifting scheme for lossy coding[END_REF][START_REF] Kâaniche | Vector lifting schemes for stereo image coding[END_REF][START_REF] Quellec | Adaptive nonseparable wavelet transform via lifting and its application to content-based image retrieval[END_REF][START_REF] Kâaniche | Non separable lifting scheme with adaptive update step for still and stereo image coding[END_REF].

Such schemes are related to adaptive non-linear subdivision [START_REF] Cohen | Nonlinear subdivision schemes: applications to image processing[END_REF]. To further reduce the distortion of geometric images, the orientations of the association fields {λ j } j can be optimized though the scales. Because of the lack of structure of the set of bases B λ , computing the field λ j that produces the best non-linear approximation is intractable. These flows are thus usually computed using heuristics to detect the local orientation of edges, see for instance [264,[START_REF] Yin | Directional lifting-based wavelet transform for multiple description image coding[END_REF][START_REF] Chappelier | Oriented wavelet transform for image compression and denoising[END_REF][START_REF] Heijmans | Building nonredundant adaptive wavelets by update lifting[END_REF]. These adaptive lifting schemes are extended to perform adaptive video transforms where the lifting steps operate in time by following the optical flow λ j , see for instance [START_REF] Pesquet-Popescu | Three-dimensional lifting schemes for motion compensated video compression[END_REF][START_REF] Secker | Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression[END_REF].

Grouplets

A difficulty with lifted transforms is that they do not guarantee the orthogonality of the resulting wavelet frame. The stability of the transform thus tends to degrade for complicated association fields {λ j } j . The grouplet transform, introduced by Mallat [START_REF] Mallat | Geometrical grouplets[END_REF], also makes use of association fields, but it replaces the lifting computation of wavelet coefficients by an extended Haar transform, where coefficients in d o j are processed in sequential order to maintain orthogonality. Grouplets defined over each scale of the wavelet transform have been used to perform image denoising, super-resolution [START_REF] Mallat | Geometrical grouplets[END_REF] and inpainting [START_REF] Peyré | Texture processing with grouplets[END_REF] by solving a 1 N regularization similar to [START_REF] Romberg | Multiscale geometric image processing[END_REF]. Grouplets can also be used to solve computer graphics problems such as texture synthesis. Classical approaches to texture synthesis use statistical models over a fixed representation such as a wavelet basis, see for instance [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF][START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF]. Building similar statistical models over a grouplet basis [START_REF] Peyré | Texture processing with grouplets[END_REF] allows one to better synthesize the geometry of some textures, and gives results similar to state of the art computer graphics approaches such as texture quilting [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF]. Furthermore, the explicit parameterization of the geometry though the association fields λ allows the user to modify this geometry and synthesize dynamic textures. A comparison of these different approaches on one texture synthesis example is given in Fig. 29. 

Transformations on Non-Euclidean Geometries

In this section we describe how the concepts of frequency, scale and even directionality have been extended to the processing of data on non-euclidean geometries like the sphere and other manifolds.

Data Processing on the Sphere

The unit sphere S 2 = {x ∈ R 3 : x = 1} ⊂ R 3 is one of the most natural non-Euclidean spaces. Very early, possibly due to influences for astronomy and geosciences, many data processing techniques have been developed for this surface. Many filtering, multiscale, directional and hierarchical methods have been designed, either in the spherical frequency domain induced by the spherical harmonics basis -often following the spirit of some Euclidean techniques exposed in the previous sections -or on the sphere itself thanks to some geometrical tools such as the stereographic dilation or the lifting schemes for wavelet analysis.

Filtering

As for the plane, filtering operations may be defined on S 2 . Given the common two-angle spherical parameterization ξ = (θ, ϕ) ∈ S 2 with the co-latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π), this operation is realized through spherical convolution evaluated on SO(3) (the group of rotations in R 3 ). For a function f ∈ L 2 (S 2 ) = {g : g 2 2 = S 2 |g| 2 < ∞} and a filter h ∈ L 2 (S 2 ), the convolution is

(f h)(ρ) = S 2 h(ρ ξ)f (ξ) dµ(ξ),
where ρ ∈ SO(3) is a rotation (driven by three angles) applied to the point ξ ∈ S 2 and dµ(ξ) = sin θdθdϕ. For an axisymmetric filter, i.e., if h(ξ) = h(θ), the convolution reduces to (f * h)(ξ ) =

S 2 h(ξ • ξ)f (ξ) dµ(ξ)
, where ξ • ξ is the common 3-D scalar product between ξ and ξ seen as unit vectors.

Fourier Transform

The Fourier transform of a function f ∈ L 2 (S 2 ) is defined by

f m = Y m , f = S 2 Y * m (ξ) f (ξ) dµ(ξ), f (ξ) = ,m f m Y m (ξ)
with respect to orthonormal basis of spherical harmonics Y = {Y m (ξ) : 0, |m| }, i.e., the eigenvectors of the spherical Laplacian [START_REF] Healy | FFTs for the 2-sphereimprovements and variations[END_REF].

The frequency content of f is thus represented by the value of f m on the order ∈ N, which basically counts the number of oscillations on the latitudes, and the moment m ∈ {-, • • • , } counting longitude oscillations. Numerically, only certain discretizations of the sphere can provide perfect quadrature formulae to compute the Fourier coefficients of band-limited functions on the sphere, sometimes with very efficient algorithms [START_REF] Healy | FFTs for the 2-sphereimprovements and variations[END_REF][START_REF] Driscoll | Computing Fourier transforms and convolutions on the 2-sphere[END_REF].

Spherical Scale-Space

Similarly to what happened for signals or images, the first notion of "scale" on the sphere was imported from the Heat Dynamic that is also known on this space. In that framework, if a spherical function f ∈ L 2 (S 2 ) is considered the initial heat configuration, the spherical heat dynamics smooth it with time τ > 0, conferring a scaling notion on this parameter.

Interestingly, as for Euclidean spaces, the solution at time τ > 0 of the heat equation initialized to some function

f ∈ L 2 (S 2 ) is simply f (ξ, τ ) = ,m f m (τ )Y m (ξ), with f m (τ ) = f m e -( +1) τ
and f (ξ, 0) = f (ξ). Alternatively, since for an axisymmetric filter h we have the spherical convolution theorem

(f * h) m = 4π 2 +1
f m ĥl0 , the solution of the Heat Equation can also be obtained by a convolution by a specific kernel G • τ (ξ), coined spherical Gaussian of width √ τ . It is defined in frequency by (G • τ ) m = (2 + 1)/4π e -( +1) τ . The link between the heat dynamics and the spherical convolution with the axisymmetric filter G • τ has been exploited by Bülow [START_REF] Bülow | Multiscale image processing on the sphere[END_REF] to develop several specific spherical filters for feature detection, such as the Laplacian of Gaussian or the directional derivative of Gaussian.

Spectral Wavelets

Freeden et al. [START_REF] Freeden | Spherical wavelet transform and its discretization[END_REF][START_REF] Freeden | A survey on wavelet methods for (geo)applications[END_REF] have fully exploited the connection between convolution and frequency filtering on the sphere to develop a continuous wavelet transform on the sphere. This is done by introducing a family of axisymmetric functions ψ a (ξ), coined spherical wavelet, continuously indexed by a > 0, and such that R + | (ψ a ) 0 | 2 da/a = 1, (ψ a ) 00 = 0, plus additional regularity conditions. The wavelet coefficients of a function f ∈ L 2 (S 2 ) are then defined as W f (a, ξ) = (f * ψ a )(ξ). The reconstruction is possible (almost everywhere) by

f (ξ ) = f + R + S 2 W f (a, ξ) ψ a (ξ • ξ) da a dξ, with f = 1 4π S 2 f (ξ) dµ(ξ).
In [START_REF] Freeden | Spherical wavelet transform and its discretization[END_REF][START_REF] Freeden | A survey on wavelet methods for (geo)applications[END_REF], an MRA on the sphere is also built by defining Quadrature Mirror Filters in the frequency domain. A spatial sub-sampling of the different subspaces of the MRA can also decrease the redundancy of the basis hence created.

Following a similar approach, (isotropic) needlet frames introduced in [START_REF] Narcowich | Localized tight frames on spheres[END_REF][START_REF] Kerkyacharian | Needlet algorithms for estimation in inverse problems[END_REF][START_REF] Guilloux | Practical wavelet design on the sphere[END_REF] represent another example of spectral wavelets, i.e., wavelets shaped in the Fourier domain. Needlets additionaly offer relationships with quadrature formulae used to turn integrals of bandlimited functions into discrete summations.

Stereographic Wavelets

In the previous sections, the notion of scale in the processing of spherical data was always defined in the frequency domain, i.e., by dilating the frequency domain by a parameter, preventing a fine control of the spatial support of the filter.

An alternative approach introduced by Antoine and Vandergheynst [START_REF] Antoine | Wavelets on the 2-sphere: A group-theoretical approach[END_REF][START_REF] Antoine | Wavelets on the sphere: implementation and approximations[END_REF] defines the dilation directly in the spatial domain. The compactness of S 2 is respected, by introducing a stereographic dilation. As illustrated on Fig. 30-(a) for point dilation, the stereographic dilation D a of a function g ∈ L 2 (S 2 ) amounts to projecting g on the plane tangent at the North Pole by the stereographic projection Π, to applying there a Euclidean dilation d a by a scale a > 0, and to lifting the resulting function back to the sphere by Π -1 [START_REF] Wiaux | Correspondence principle between spherical and Euclidean wavelets[END_REF]. Mathematically, [D a g](θ, ϕ) = λ(a, θ) g(θ 1/a , ϕ), with tan θ α /2 = α tan θ/2 and where λ is a normalizing function such that D a g 2 = g . Given a mother wavelet ψ ∈ L 2 (S 2 ) centered on the North pole, the proposed approach considers the joint action of translations, i.e., rotation operators R ρ in SO(3), and of the dilations D a on ψ. The wavelet transform of f is therefore:

W f (ρ, a) = ψ (ρ,a) , f , ρ ∈ SO(3), a > 0, with ψ (ρ,a) = R ρ D a ψ. If the wavelet is admissible, which is nearly equivalent to impose S 2 dµ(θ, ϕ) ψ(θ,ϕ) 1+cos θ = 0, the reconstruction of f is possible through f (ξ) = f + R * + SO(3) dadν(ρ) a 3 W f (ρ, a) [R ρ L -1 ψ D a ψ](ξ),
where ν is the Lebesgue measure on SO(3) and L ψ is a multiplicative operator function of ψ only and expressed in the Fourier domain [START_REF] Antoine | Wavelets on the 2-sphere: A group-theoretical approach[END_REF]. For axisymmetric wavelets, this result simplifies by the fact that the action of R ρ on ψ is controlled by two angles only. Many wavelets may be defined on the sphere since it has been proved in [START_REF] Wiaux | Correspondence principle between spherical and Euclidean wavelets[END_REF] that any admissible wavelet on the plane L 2 (R 2 ) can be imported by inverse stereographic projection Π -1 . A Laplacian of Gaussian (LoG), difference of Gaussians (DoG), Morlet Wavelet, and many other are generally used [START_REF] Antoine | Wavelets on the 2-sphere: A group-theoretical approach[END_REF][START_REF] Bogdanova | Stereographic wavelet frames on the sphere[END_REF][START_REF] Demanet | Gabor wavelets on the sphere[END_REF]. Numerically, this spherical CWT is obtained thanks to the convolution theorem mentionned previously. This transform has been for instance intensively used in the analysis of the Cosmic Microwave Background (CMB), an astronomical signal remnant of some specific evolution phase of the Big Bang [START_REF] Cayón | Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps[END_REF][START_REF] Abrial | Morphological component analysis and inpainting on the sphere: Application in physics and astrophysics[END_REF][START_REF] Wiaux | Non-Gaussianity analysis on local morphological measures of WMAP data[END_REF].

Wavelet frames can be developed in this theory by discretizing the scaling parameter a [START_REF] Bogdanova | Stereographic wavelet frames on the sphere[END_REF]. These frames, that do not subsample the spherical positions, have successfully served for the construction of invertible filter banks on the 2-Sphere [START_REF] Yeo | On the construction of invertible filter banks on the 2-sphere[END_REF] even if the stereographic dilation is not really compatible with the frequency description of the wavelets.

Haar Transform on the Sphere

The constructions of spherical wavelets described in the previous section make use of the Fourier decomposition on the sphere. It is possible to define wavelets directly over the spherical domain without Fourier analysis, using for instance the lifting scheme method [START_REF] Schröder | Spherical wavelets: efficiently representing functions on the sphere[END_REF], see Sec. 5.3. This allows one to define spherical wavelets with a compact support, although the stability of the resulting transform is more difficult to control than over the planar domain.

Inspired by this lifting scheme [START_REF] Schröder | Spherical wavelets: efficiently representing functions on the sphere[END_REF], one can easily define a Haar basis on the sphere by considering a family {M j } J j 0 of embedded spherical triangulations that approximate a sphere [START_REF] Lessig | SOHO: Orthogonal and symmetric Haar wavelets on the sphere[END_REF]. These triangulations are obtained by a regular 1:4 refinement rule starting from an initial regular polyhedron M 0 , and the edges are projected on the sphere to define spherical triangles.

The corresponding spherical multiresolution defines V j ⊂ L 2 (S 2 ) as the set of functions that are constant on each triangle of M j . Figure 31 shows the linear projection of a spherical function on some of these multiresolution spaces. Following the usual definition (Sec. 2.3.1), a Haar wavelet basis {ψ j,n } n is an orthogonal basis of the detail space W j such that V j+1 = V j ⊕ W j . The wavelet coefficients ψ j,n , f are computed using a pyramid algorithm that mimics the usual Haar transform, except that for each triangle, one gathers three detail coefficients and one coarse scale coefficient. Figure 32 shows these Haar coefficients together with a comparison between spherical and planar non-linear approximations

H T (f ). f { ψ j,n , f } j,n H T (f ) (spherical) H T (f ) (planar)
Figure 32: Comparison of spherical and planar Haar approximations. The threshold T is adjusted so that H T (f ) is an approximation with a number of coefficients equal to 5% of the number of pixels in the high resolution planar image.

Steerable Wavelets on the Sphere

Finally, the sphere is compatible with the definition of steerable filters similarly to those defined in Sec. 3.2.2 for the plane. In particular, using the stereographic projection Π introduced in the previous section, steerability on the sphere is also imported from the plane. This fact has been used in [START_REF] Wiaux | Correspondence principle between spherical and Euclidean wavelets[END_REF][START_REF] Wiaux | Fast directional correlation on the sphere with steerable filters[END_REF][START_REF] Vandergheynst | Wavelets on the sphere[END_REF] to define differential and steerable filters useful to detect directional features in the Cosmic Microwave Background. An example of a steerable wavelet is given in Fig. 30(b-e). Spherical steerability may also be directly studied in the frequency domain with spectral dilation [START_REF] Wiaux | Exact reconstruction with directional wavelets on the sphere[END_REF].

Other Constructions

It is impossible to cite the vast literature on multiscale decomposition on the sphere. Let us just quote some of them. Wavelets, ridgelets and curvelets have been translated on the sphere by Starck et al. [START_REF] Starck | Wavelets, ridgelets and curvelets on the sphere[END_REF] by using a particular spherical sampling, called HEALPix, locally similar to a square discretization. Locally supported biorthogonal wavelet bases have been also realized thanks to some radial projections of the planar faces of a cube on S 2 in [START_REF] Roşca | Wavelet bases on the sphere obtained by radial projection[END_REF].

Wavelets on General 2-Manifolds

Given a two-dimensional manifold M, i.e., locally isomorphic to R 2 , authors in [START_REF] Antoine | Wavelet transform on manifolds: Old and new approaches[END_REF] describe how to define a Continuous Wavelet Transform (CWT) for function f : M → C.

Similarly to the way the stereographic dilation is defined for the sphere, the local dilation of a function ψ around the point ξ ∈ M relies on the knowledge of a local and invertible projection Π ξ between M and its tangent plane T ξ M on ξ. The desired dilation of scale a > 0 therefore factorizes as D (ξ,a) = Π -1 ξ d a Π ξ with d a the common Euclidean dilation of function in T ξ M R 2 . Given the Hilbert space H = L 2 (M, dµ) of square integrable function on M, for a proper measure dµ, the CWT of a function f on M is then formally defined by correlating f with a set of prototype wavelets ψ (ξ) ∈ H localized around any ξ ∈ M, i.e., The theoretical invertibility of this transform has however to be studied specifically in each case, i.e., given M and Π ξ . Results exist for instance for the two-sheeted hyperboloid and the paraboloid in R 3 [299].

Lifting Scheme Wavelets on Meshed Surfaces

The lifting scheme of Sweldens [START_REF] Sweldens | The lifting scheme: a custom-design construction of biorthogonal wavelets[END_REF], described in Sec. 4.3, can be used to define wavelets on nontranslation invariant geometries, including surfaces with complicated topologies. Lifted wavelets on surfaces are usually built on a semi-regular mesh grid, was first considered by Lounsbery et al. [START_REF] Lounsbery | Multiresolution analysis for surfaces of arbitrary topological type[END_REF], and then refined within the lifting framework by Schröder and Sweldens [START_REF] Schröder | Spherical wavelets: efficiently representing functions on the sphere[END_REF].

Semi-regular meshes {M j } J j 0 are obtained by a regular 1:4 refinement rule starting from an arbitrary control mesh M 0 . Each edge of M j is split into two sub-edges by vertex insertion to obtain the refined mesh M j-1 . The fine mesh M J is the sampling grid that stores the position of the surface points in space, and a signal f sampled at each grid point. Fig. 33, top row, shows an example of such a multiresolution mesh, obtained by a semi-regular remeshing of a high resolution input mesh.

The lifting scheme described in Sec. 4.3 can be applied by storing the scaling coefficients a j on the grid point of the mesh M j , while the detail coefficients are stored on the complementary detail grid D j where M j-1 = M j ∪ D j . The splitting of a j-1 into a o j and d o j corresponds to assigning the values stored in M j-1 to either M j or D j . The predict operator P j used to compute the wavelet coefficients d j stored in D j is a local polynomial interpolator on a triangulation grid. The update operator U j is computed by solving a linear system, to impose that moments of low orders, such as the mean, are preserved when moving from a j-1 to a j . This lifting wavelet transform computes the coefficients d j [n] = ψ (j,n) , f for all scales 0 < j < J and grid points n ∈ D j . It corresponds to the projection of the signal f defined on the triangulated surface M j onto a discrete biorthogonal wavelet frame B = {ψ (j,n) } j,n . These coefficients can be thresholded, and inverting the lifting steps creates an approximated signal f M with M non-zero coefficients. Although this approach works well in practice, the frame bounds of the resulting wavelet frame B are difficult to control, and f M might be far from the best M -terms approximation. It is also difficult to guarantee the convergence of the wavelet atoms ψ (j,n) to smooth functions, when J tends to -∞, and the mesh M J approximates a smooth surface.

To perform surface approximation, one defines the signal a J at the finest scale as the position of the nodes on the surface. Each coefficient a J [n] ∈ R 3 is thus a point in 3D space. The lifting transform can be applied to this vector-valued signal. Thresholding the resulting wavelet coefficients allows one to approximate the surface using few coefficients, as shown on Fig. 33, bottom row. If the lifting operators P j and U j do not depend on the position of the points on the surface, the resulting lifting wavelets can be used to perform 3D mesh compression [START_REF] Lounsbery | Multiresolution analysis for surfaces of arbitrary topological type[END_REF][START_REF] Schröder | Spherical wavelets: efficiently representing functions on the sphere[END_REF]. 

Wavelets on Graphs

Let us finally mention that wavelet transform has been extended to functions defined on the vertices of an arbitrary finite weighted graph. The latter may for instance generalize standard picture definition by describing two-dimensional pixel adjacencies. Maggioni et al. introduced "diffusion wavelets" [START_REF] Coifman | Diffusion wavelets[END_REF], a general theory for wavelet decompositions based on compressed representations of powers of a diffusion operator such as the graph Laplacian. The constructed wavelet basis is made orthogonal by combining graph subsampling and Gram-Schmidt orthogonalization on each subsampled space.

More recently, Hammond et al. [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF] developed a general wavelet frame theory on such graphs thanks to the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian. Wavelets are defined in this frequency domain by dilating an "admissible" generating kernel. The final representation is redundant but wavelets can be shaped by changing the generating kernel. Moreover, for sparse graph Laplacian matrix, a fast wavelet transform avoiding the Laplacian spectral decomposition is developed.

Conclusion

A century after the discovery by Alfréd Haar, and twenty years after the emergence of wavelets as genuine processing tools, major advances have been made in the improvement of natural images representations, aiming at enhanced understanding.

Their common characteristic resides in uncovering multiscale and oriented features of natural images, through projections on a specific set of elongated atoms. The resulting dictionaries are thus often redundant, and may be coupled with sparsity enforcing priors, or adaptivity. They reveal a striking similarity with low level vision, where similar strategies are used to build powerful processing architectures.

The availability of such a large number of transformations, that potentially extend the standard wavelet framework, leaves open the question of the best representation to process a given image. This choice is unfortunately data dependent, since the geometry of edges and textures varies significantly from natural to seismic or medical images. Selection of a representation, as well as its parameterization (number of scales, span of orientations, support in space or frequency), is also application dependent, and applications to inverse problems or pattern recognition typically impose strong design requirements on the dictionary. Their exhaustive comparison thus remains out of reach, with traditional methods from image processing or approximation theory only providing a partial answer.

As a humble contribution to a subjective comparison, additional materials, full scale decomposition images, related links and associated toolboxes necessary to reproduce illustrations provided in this paper are available at [START_REF] Jacques | Addendum to "A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF]. Oddly enough, a common etymology of Szeged resides in an old Hungarian word for corner (szeg). At a turn in a wavelet century, A. Haar and F. Riesz might not have foreseen the harvest from their mathematical seeds. Image understanding is at the beginning of reaping their fruits.
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 1 Figure 1: Two faces of the cartoon-texture model: (a) Yogi bear (b) Fingerprint.
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 2 Figure 2: Szeged University Memorial plaque in honor of A. Haar and F. Riesz: A szegedi matematikai iskola világhírű megalapítói (The world-wide famous founders of the mathematical school in Szeged).

Figure 3 :

 3 Figure 3: Magnitude of the 2-D Fourier transform of the Haar-Riesz Memorial plaque in Fig. 2.
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 4 Figure 4: Gaussian scale-space decomposition of the Haar-Riesz Memorial plaque at three different scales.
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 5 Figure 5: Laplacian pyramid decomposition of the Haar-Riesz Memorial plaque.
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 6 Figure 6: (a) The Marr wavelet (or Mexican hat). (b) Marr Wavelet singularity detector of the Haar-Riesz Memorial plaque.

Figure 7 :

 7 Figure 7: Dyadic wavelet decomposition of the Haar-Riesz Memorial plaque. A non-linear approximation f M = H T (f, B) in an orthogonal separable wavelet basis is efficient for smooth images or images with point-wise singularities. The approximation of a piecewise smooth image with edges of finite length decays like ff M 2 = O(M -1). This result extends to functions with bounded variations[START_REF] Cohen | Non linear approximation and the space BV (R 2 )[END_REF], and is asymptotically optimal. This decay is nevertheless not improved when the edges are smooth curves, because of the fixed ratio between the horizontal and the vertical sizes of the orthogonal wavelet support.
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 8 Figure 8: Dyadic dual-tree wavelet decomposition of the Haar-Riesz Memorial plaque.
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 9 Figure 9: The dyadic dual-tree wavelet. (a) Example of atom (diagonal wavelet). (b) Associated frequency partitioning.
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 10 Figure 10: The original image (a) and the horizontal subband(s) at first resolution level for (b) Dyadic wavelet transform, (c) Dyadic dual-tree transform (primal+dual) and (d) M -band dual-tree wavelet decomposition (primal+dual) of the Haar-Riesz Memorial plaque.
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 11 Figure 11: The M -band dual-tree wavelet. (a) Example of atom. (b) Frequency partinioning.
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 12 Figure 12: Steerable pyramid decomposition of the Haar-Riesz Memorial plaque, over two scales, with four orientations.
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 13 Figure 13: Example of steerable pyramid atoms with four orientations.
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 14 Figure 14: The Morlet Wavelet. (a) Spatial representation (real part). (b) Fourier representation. Supporting cone and frequency axes are drawn for illustration.
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 15 Figure 15: Ridgelet decomposition (square root scale) of the Haar-Riesz Memorial plaque.
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 16 Figure 16: The Ridgelet transform. (a) Example of atoms. (b) Synthetic implementation description.
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 17 Figure 17: Left: Example of a curvelet ψ(x, s, y, θ). Right: the frequency support of ψ(ω, s, y, θ) is a wedge.

Figure 18

 18 Figure 18 shows an example of curvelets decomposition8 .Candès and Donoho prove[START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF] that the curvelet non-linear approximation f M = H T (f, B), where H T is defined in (2), ensures an approximation error decay ff M 2 = O(M -2 log 3 (M )) for a C 2 regular image outside C 2 regular edge curves. This is a significant improvement over the O(M -1 ) error decay of a wavelet approximation described in Sec. 2.3.2, and is achieved with a fast O(N log(N )) algorithm for discrete images. This asymptotic error decay is optimal (up to logarithmic factor) for the class of images that are C 2 regular outside C 2 regular edge curves, see[START_REF] Candès | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF]. Monogenic curvelets are proposed in[START_REF] Storath | Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform[END_REF] to obtain additional advantages over monogenic wavelets, described in Section 3.1.3.Shearlet atoms[START_REF] Guo | Optimally sparse multidimensional representation using shearlets[END_REF][START_REF] Kittipoom | Irregular shearlet frames: Geometry and approximation properties[END_REF] are built similarly to curvelets, but they replace, in their continuous formulation, rotation and anisotropic stretch with anisotropic shears. The discrete shearlet transform[START_REF] Kutyniok | The construction of regular and irregular shearlet frames[END_REF][START_REF] Lim | The discrete shearlet transform: A new directional transform and compactly supported shearlet frames[END_REF] is thus implemented similarly to the discret curvelet transform[START_REF] Candès | Fast discrete curvelet transforms[END_REF] using discrete shears9 . It provides the same approximation properties as curvelets, albeit with a different directional sensitivity (e.g., the number of orientations doubles at each scale). Recently a type-I ripplet transform[START_REF] Xu | Ripplet: A new transform for image processing[END_REF] has been proposed as an extension to curvelets with alternative scaling laws.
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 18 Figure 18: Curvelet decomposition of the Haar-Riesz Memorial plaque. The layout of the coefficients follows the frequency localization of curvelet atoms.
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 19 Figure 19: Contourlet decomposition of the Haar-Riesz Memorial plaque.

Figure 20 :

 20 Figure 20: The contourlet transform. (a)-(b) Two typical atoms; (c) Frequency tiling.

Figure 21 :

 21 Figure 21: Explanation of the optimization in Λ starting from a point in Λ d . Fortunately, as described in Sec. 4.1 it is still possible to find good description of images in very general family of functions. Most of the time, since the Parametric Dictionaries are much larger than other dictionaries of controlled redundancy, the (Orthogonal) Matching Pursuit decomposition (Sec. 4.1.1) is used to find a sparse representation of signals.

Figure 22 :

 22 Figure 22: (a) Original image. (b) Reconstruction with 300 atoms for a rich parametric dictionary containing 5×5 anisotropic scales, 8 orientations, and N translations. PSNR : 26.63 dB (CT: 4634s). (c) Optimized Reconstruction at 300 atoms starting from a dictionary with only 3 × 3 scales, 4 directions and N translations, PSNR : 26.68 dB (CT: 949s).

Figure 23 :

 23 Figure 23: Example of deconvolution using 1 N regularization in a frame of translation invariant wavelets. (a) Original f 0 . (b) Observation y = Φf 0 + w. (c) Deconvolution f .

1 N

 1 ΦΨã 2 + µ ã 1 where Ψã = j ãj ψ m j[START_REF] Romberg | Multiscale geometric image processing[END_REF] 

Figure 24 :

 24 Figure 24: Example of cartoon+texture decomposition using the MCA algorithm. (a) Original y. (b) Geometry layer f G . (c) Texture layer f T .

Figure 25 :

 25 Figure 25: Left: example of dyadic subdivision of [0, 1] 2 in squares S j,i ; right: corresponding quad-tree λ.

Figure 26 :

 26 Figure 26: Example of a bandlet atom. (a) Atom in the spatial domain. (b) Wavelet-bandelet atom.

Fig. 26

 26 shows how a bandlet atom (a) is mapped to a wavelet-bandlet atom (b). Decomposing an image over a bandlet basis composed of atoms of type (b) is equivalent to applying first a wavelet transform, and then decomposing the wavelet coefficients over atoms of type (a).

Figure 27 :

 27 Figure 27: (a,a') original image ; (b) compressed sensing reconstruction using a translation invariant wavelet frame (PSNR=37.1dB) ; (c) reconstruction using a best bandlet basis (PSNR=39.3dB). (b') wavelet frame, PSNR=22.1dB, (c') bandlet basis, PSNR=23.9dB.

λ j j parameterized by λ j d j = d o j -P λ j j a o j and a j = a o j + U λ j j d j .

  

jFigure 28 :

 28 Figure 28: (a) Predict and update lifting steps (b) MaxMin lifting of the Haar-Riesz Memorial plaque.

Figure 29 :

 29 Figure 29: Example of texture synthesis by statistical modeling of grouplet coefficients. (a) Exemplar. (b) Wavelet [272]. (c) Quilting [273]. (d) Grouplets [270].

Figure 30 :

 30 Figure 30: (a) Stereographic dilation on S 2 . On the right, the (steerable) second directional derivative of Gaussian. The three images (b)-(d) are the basis elements, while the fourth in (e) is a linear combination of the first three yielding a rotation of π/4 around the North pole.

Figure 31 :

 31 Figure 31: Projection on the spherical Haar multiresolution.

W

  f (ξ, a) = ψ (ξ,a) , f H M dµ(ξ ) f (ξ ) ψ (ξ,a) (ξ ), ψ (ξ,a) = D (ξ,a) ψ (ξ) .

Figure 33 :

 33 Figure 33: Top row: example of semi-regular mesh {M j } j . Bottom row: example of surface approximation f M obtained by thresholding the lifted wavelets coefficients, where N is the number of vertices in M J . (a) M j , j = -4. (b) M j , j = -5. (c) M j , j = -6. (d) M j , j = -7. (e) M/N = 100%. (f) M/N = 10%. (g) M/N = 5% (h) M/N = 2%.

Courtesy of Professor Károly Szatmáry, http://astro.u-szeged.hu/szatmary.html, who performed scalograms analysis of variable stars as early as in 1992[START_REF] Szatmáry | Periodicities of the light curve of the semiregular variable star Y Lyncis[END_REF].

With periodization for finite length vectors.

The original image has been multiplied by a 2-D raised-cosine type apodizing window in order to reduce border discontinuity effects.

When ψ is sufficiently regular, this condition reduces to a zero-average requirement, that is, R ψ(t) dt = 0

The YAWTb toolbox has been used, see http://rhea.tele.ucl.ac.be/yawtb/.

Here and throughout the rest of the paper, we use the convention that scale increases with j, as in s = 2 j . The converse convention is also often used in the literature.

BeamLab toolbox: http://www-stat.stanford.edu/ ~beamlab/.

The Curvelab toolbox has been used, see http://www.curvelet.org/.

An implementation is available at http://www.shearlab.org

The contourlet toolbox has been used, see http://www.ifp.illinois.edu/ ~minhdo/software/.

See http://www.waveatom.org

LISQ toolbox: http://www.mathworks.com/matlabcentral/fileexchange/13507.
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