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Abstract— Solving large sparse linear systems is a time-consuming step in basin modeling or reservoir
simulation. The choice of a robust preconditioner strongly impact the performance of the overall
simulation. Heterogeneous architectures based on General Purpose computing on Graphic
Processing Units (GPGPU) or many-core architectures introduce programming challenges which
can be managed in a transparent way for developer with the use of runtime systems. Nevertheless,
algorithms need to be well suited for these massively parallel architectures. In this paper, we present
preconditioning techniques which enable to take advantage of emerging architectures. We also
present our task-based implementations through the use of the HARTS (Heterogeneous Abstract
RunTime System) runtime system, which aims to manage the recent architectures. We focus on two
preconditoners. The first is ILU(0) preconditioner implemented on distributing memory systems. The
second one is a multi-level domain decomposition method implemented on a shared-memory system.
Obtained results are then presented on corresponding architectures, which open the way to discuss
on the scalability of such methods according to numerical performances while keeping in mind that
the next step is to propose a massively parallel implementations of these techniques.

Résumé—Utilisation de moteurs exécutifs pour une implémentation efficace de préconditionneurs
sur architectures hétérogènes — La résolution de grands systèmes linéaires creux est une étape
coûteuse de la modélisation de bassin ou la simulation de réservoir, et le choix de préconditionneurs
robustes impacte fortement la performance de ceux-ci. Les architectures hétérogènes à base
d’architectures de type General Purpose computing on Graphic Processing Units (GPGPU) ou many-
cœurs introduisent de nouveaux challenges de programmation qui peuvent être gérés de manière
transparente pour le développeur grâce à l’utilisation de moteurs exécutifs. Il faut néanmoins que les
algorithmes soient adaptés à ce type d’architectures massivement parallèles. Nous présentons dans cet
article les méthodes de préconditionnement permettant de tirer au maximum avantage des
architectures émergentes. Nous présentons également une implémentation de celles-ci avec le moteur
exécutif HARTS (Heterogeneous Abstract RunTime System) conçu pour gérer de manière efficace les
architectures hétérogènes. Nous détaillons les implémentations de deux préconditionneurs. L’un est un
préconditionneur ILU(0) porté sur architecture distribuée. L’autre est une méthode de décomposition
de domaines multi-niveaux implémentée sur architecture à mémoire partagée. Après avoir détaillé ces
deux préconditionneurs, une étude sur la portabilité de telles méthodes et leur scalabilité sur différents
modèles d’architectures sera menée.
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INTRODUCTION

In basin modeling or reservoir simulations, multiphase por-
ous media flowmodels lead to solve complex non-linear Par-
tial Differential Equations (PDE) systems. These PDE are
discretized following a Finite Volume (FV) scheme which
lead to a non-linear system solved with an iterative Newton
solver. At each Newton step, the system is linearized and
then solved with an iterative method such as BiConjugate
Gradient Stabilized (BiCGStab) [1] or Generalized Minimal
RESidual (GMRES) [1] algorithms, well suited for large
sparse and unstructured systems. This resolution part is the
most time consuming part and represents 60% to 80% of
the global simulation time. Simulator’s performance
depends on the efficiency of the linear solver. As the cost
of such iterative methods strongly depends on the number
of iterations required to converge, the choice of a robust pre-
conditioner is important.

In High Performance Computing (HPC), hardware tech-
nologies advances led to a popularization of multi-core
architectures enhanced by accelerators such as General Pur-
pose computing on Graphic Processing Units (GPGPU) or
many-core architectures. Taking advantage of this kind of
computer nodes introduces new challenges in terms of data
locality, memory coherency, load balancing between compu-
tational units and scheduling. To deal with it, various
approaches appeared to manage different levels of paral-
lelism: programming models, programming environments,
schedulers, data management solution or runtime systems.
Runtime systems represent a layer between hardware and
application in the way that a developer does not need to con-
sider the hardware layer to program efficiently. It enables to
manage hardware architecture and take advantage of differ-
ent kind of technologies that compose such systems. HARTS
(Heterogeneous Abstract RunTime System) [2] is a runtime
system providing abstract concepts to distribute tasks on
available computational units in an efficient way. Its purpose
is to take advantage of heterogeneous architectures.

Whereas different algorithms exist for multi-core
architectures, programming efficiently for heterogeneous
architectures requires much more effort. A good precondi-
tioner must reduce significantly the conditioning of the
matrix, and to be easy to apply. Considering new challenges,
the extraction of even more parallelism of algorithms is
essential to program efficiently massively parallel architec-
tures. In this way, some preconditioning techniques present
interesting characteristics because of their natural partition-
ing. Multi-Level Domain Decomposition (DDML) methods
present such properties. Due to their parallel nature, such a
method can be split in independent coarse grained tasks in
which we can introduce fine grained tasks to obtain different
levels of parallelism. Contrary to Incomplete LU Factoriza-
tion with no-fill, ILU(0), which require much more effort in

order to reorganize the algorithm’s structure to be efficient
on parallel machines.

Anciaux-Sedrakian et al. [3] review some of existing
preconditioning techniques on recent massively parallel
architectures by using GPGPU features. In this paper, we
extend it and we focus on scalability on such methods
according to their numerical performances and on their
implementations with HARTS runtime system. A task-based
implementation of preconditioners and a solver is presented
in this paper to provide a convenient way to distribute work
among processing units. We show the importance of the
choice of a preconditioner according to the underlying
architecture. We compare two distinct preconditioning
techniques and study their scalability taking advantage of
different levels of parallelism and memory, but also their
numerical performances by increasing the number of
partitions. We limit our study on a quite moderate number
of cores to take fully advantage of a computational node
before going on a next level of parallelism.

In the first section, we review hardware technologies and
give an detailed overview of HARTS which provide signif-
icant performances on parallel architectures with task-based
algorithms.

The second section is dedicated to data partitioning taking
advantage of different levels of memory.

An abstract linear algebra Application Programming
Interface (API) implemented with various technologies in
a transparent way for users is presented in the third section.

The fourth section is focused on preconditioners and their
parallel algorithms.

Results according to different programming models are
gathered and analyzed in the fifth section.

Weconclude thisworkin the last section,andgivesomeper-
spectives for the future on heterogeneous computing nodes.

1 HARDWARE CONTEXT

Computer architectures are increasingly complex, and appli-
cations that would follow the hardware evolution has to
adapt their algorithms to extract even more parallelism.
In this section, we will review the main features of recent
hardware technologies and how it is possible to take advan-
tage of them. We will first remind the main characteristics of
heterogeneous architectures and the importance to adapt
algorithms to be well-suited for gain in scalability. We then
explain one of the available ways to program efficiently such
architectures with the use of runtime systems.

1.1 Massively Parallel Architectures

Current computer architectures are mostly hierarchical.
Nowadays, clusters are composed of several nodes which
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contain several sockets where can be found multi-core
processors and accelerators. It involves a memory hierarchy,
and the way of binding cores should be determinant, specif-
ically when it involves communication, synchronization.

Parallelism can be expressed at a coarse grained level
between nodes, and at a finer grained size all cores of a node
can cooperate to achieve tasks by the use of shared-level
parallelism. Moreover, the democratization of heteroge-
neous architectures highlights that data locality considera-
tion grows and it is now applied to I/O devices such as
accelerators or network interfaces [4].

Data transfers between local memories have a cost and
could be a bottleneck for memory bound applications. In that
case, it is important to minimize them by reusing data when
possible while maintaining memory coherency. The distribu-
tion of work between available computing units and the load
balance are also some key issues. There is no unique solution
to schedule pieces of work, and each of them may be more or
less adapted to each specific architecture.

Both of accelerators’ architectures present interesting fea-
tures for HPC, but impose to applications to extract more par-
allelism than multi-core architectures. For instance, the
Simple Instruction Multiple Threads (SIMT) model of GPU
accelerators enables application to process the same instruc-
tion onmany concurrent threads, sowe need to process a large
amount of data to benefit of this feature. Parallel applications
arenot necessary ready to take advantageofmassivelyparallel
architectures so they need to be modified according to new
imposed challenges.

Programming efficiently such architectures becomes
more and more complex for application’s developers.
Various approaches emerged to help them and to manage
this complexity. Programming models like CUDA [5],
OpenCL [6] enable to develop applications for accelerators.
OpenMP [7] programming standard shows its interest since
the version 4.0 by enabling computational offloading on
accelerators by the use of specific directives.

1.2 Heterogeneous Abstract RunTime System (HARTS)

The popularization of runtime systems such as X-Kaapi [8],
StarPU [9] or OmpSs [10] have proven their efficiency on
heterogeneous architectures. Among them, HARTS [2]
relies on abstract concepts between application and
hardware to distribute and manage the work flow and the
associated data movements. We present in this section,
HARTS’ key features and give some details of the underly-
ing abstract concepts.

1.2.1 Hardware Topology for Heterogeneous Architectures

Thanks to the Hardware Locality software Hwloc [11],
HARTS has a global view of hardware components. Figure 1

illustrates a hardware topology obtained from a computa-
tional node with two sockets which each one contains a
octo-core processor with 16 Gb of memory. In such an
architecture, data access time depends on memory location
so the illustrated architectures is composed of two NUMA
(stands for Non Uniform Memory Access) nodes. Static
information, which can be used at compile time to generate
the appropriate algorithms with the right optimization, lead
to a tree generation, where each node is a hardware element.
Dynamic information can be used during run time for low-
level features and optimization. It is represented as argument
of a node. It enables to instantiate algorithms with dynamic
optimization parameters.

1.2.2 Task-Based Algorithms and Task Management

Task-Based Algorithms

The work unit in HARTS is the task, which represents a
small piece of work. It is a function call without any return
statement except through its effective parameter. Tasks are

Machine (32GB total)

NUMANode P#0 (16GB)

Socket P#0

Core P#0

PU P#0

Core P#1

PU P#1

Core P#2

PU P#2

Core P#3

PU P#3

Core P#4

PU P#4

Core P#5

PU P#5

Core P#6

PU P#6

Core P#7

PU P#7

NUMANode P#1 (16GB)

Socket P#1

Core P#0

PU P#8

Core P#1

PU P#9

Core P#2

PU P#10

Core P#3

PU P#11

Core P#4

PU P#12

Core P#5

PU P#13

Core P#6

PU P#14

Core P#7

PU P#15

Figure 1

Hwloc illustration on a dual-socket machine.
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stored in a task pool on which a thread can push or extract
them. When the pool is empty and all threads finish their
work, the execution stops. HARTS enables tasks to have
multiple representations depending on which hardware
resources will execute it. New children tasks can be
created during task’s execution and can be inserted to the
task pool.

Tasks are organized in a centralized task manager which
maintains the centralized collection of created tasks. Each
task is associated to an unique identifier. The centralized task
pool uses a public task pool which can be operate by all the
working threads, where each of them has a list of tasks’ ids
they have to process.

Data Flow Paradigm, Direct Acyclic Graph (DAG)

The work flow of an application can be described as a Direct
Acyclic Graph (DAG) and then processed by HARTS,
which manage the dependencies between tasks. Such depen-
dencies may come from the data flow graph analysis accord-
ing to task input and output data and their associated access
modes. Dependencies can also be expressed explicitly at
tasks’ creation. A DAG is represented by a collection of root
tasks. The addchild method help to create relationship
dependencies between tasks. Walking along the graph
consists in iterating on each task and on its children.

1.2.3 Data Management

Manipulated data in a task need a particular attention in their
management. With HARTS, pieces of data manipulated by
task objects are encapsulated in DataHandler objects,
managed by a centralized data manager, with an unique
identifier. A piece of data is describe following its access
mode (Read, Write, ReadWrite). The data management layer
provides also tools to split data with partitioners and to
manipulate part of these data with partial views of them.

1.2.4 Scheduling Strategies

Scheduling strategy refers to the way of work distribution
among available computation units. Even if it exists no
unique solution to efficiently schedule tasks, the main goal
remains to obtain an optimal work load for each threads.

Until now, implemented schedulers are static. It imposes a
good weight estimation of the work flow, due to the static
distribution of work among the computational resources.
At execution time, roots of different DAG are given to the
scheduler to dispatch tasks and balance them between com-
putation units. Scheduler can be used in conjunction with
Driver concept to implement a specific parallel behavior,
such as the ForkJoin concept to execute a collection of inde-
pendant tasks or the Pipeline concepts to execute an ordered

collection of tasks differing the management of their chil-
dren tasks at the end of the collection process.

1.2.5 Executing Model

Now we have explained all the components and the abstrac-
tion provided by the runtime, we can present the executing
model of HARTS, illustrated in Figure 2. First, a scheduler
object processes a DAG of tasks belonging to the centralized
task manager. Ready tasks are pushed back in a task pool and
they are then dispatched on idle computational units follow-
ing the scheduler behavior to enhance the global
performances. Tasks are dispatched on hardware devices
through a Driver object. Driver concept implement specific
behavior such as ForkJoin or Pipeline behaviors. A DAG
is completely processed once the task pool is empty.

2 ITERATIVE METHODS FOR LARGE SPARSE SYSTEMS

The efficiency of the linear solvers is a key point of the
simulator’s performance. Each iteration of these algorithms
are based on a sequence of algebraic operations on matrices
and vectors. Among these operations we focus on the most
widely used, usually provided by libraries implementing
the BLAS (Basic Linear Algebra Subprograms) level 1
and 2 [12].

We first discuss of the data structure used to represent
large sparse and untructured Matrix and Vector. We present
the way we manage multi-level parallelisms both at a coarse
and a fine grain parallelism. As these techniques are well
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HARTS’s executing model.
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suited to task centric programmingmodel and data flow para-
digm, we discuss on how we have implemented them with
different runtime system tools. We focus in particular on the
implementation of the SparseMatrixVector product (SpMV),
of some preconditioners. Finally we discuss on specific issues
due to the iterative characteristic of the algorithms.

2.1 Large Sparse Matrices, Data Structures

Our work is based on large unstructured matrices. Common
data structures are inefficient to store them. As there is many
zero entries which are not necessary to keep in memory, we
need a specific structure for sparse matrices which store only
non-zero values. We describe our matrices following the
Compressed Sparse Row (CSR) format. This structure, well
described in [1], reduces memory footprint to store elements
of sparse matrices while storing only non-zero entries.

2.2 Multi-Level Parallelisation of Linear Algebra
Operation

2.2.1 Linear System Dual Graph, Graph Partitions

Let consider a matrix A and its coefficients (ai,j) with
0 � i < n and 0 � j < n. Let GA = (V, S) be the dual graph
of Awhere V = (vi) is the set of vertices representing the rows
of A, and S = (si,j) the set of edges connecting vertices vi and
vj such that ai,j 6¼ 0.

We define a partition P of GA in p sub-parts as the set
(Vk)0�k<p of subsets of V where Vk � V and
Vk1 \ Vk2 ¼ ; if k1 6¼ k2 and V = [ (Vk)0�k<p.

For each Vk, we define Vik the set of interior vertices
vi 2 Vk such as if ai,j 6¼ 0 then vj 2 Vik and Vbk the set of
boundary vertices vi 2 Vk such as there is at least one
k2 6¼ k and one vj 2 Vk2 such as ai,j 6¼ 0. We have clearly
Vk = Vik [ Vbk.

Let consider a vector x and its components (xi) with
0 � i < n. The vector components xi are associated to the
vertices vi of GAwhile the non zero entries ai,j of A are asso-
ciated to the edges si,j of GA.

2.2.2 Data Distribution

In modern heterogeneous hardware architecture, we have
often several nodes connected by an external network inter-
connection like for instance an Infiniband network. Each
node can be composed of several sockets connected by a
Quick Path Interconnect (QPI) link for example. On each
socket we have a multi-core processor where each core has
his own L1 cache memory – the closest cache memory level
to the core – and share or not the over level of cache memory.
We classically need to handle 3 levels of memory, a dis-
tributed memory at the cluster level, connected memories

at the multi-sockets node level, and finally a cache memory
hierarchy at the multi-core processor level. To handle these
3 level memory hierarchy, we use multi-level domain
decomposition techniques (Fig. 3) based on a hierarchical
partition of the dual graph of our linear system. A first par-
tition P0 of GA enable to distribute at a first level the data
on the distributed memory of the cluster nodes. For each
sub part Vk level 1, we can consider the sub graph GikA com-
posed with the vertices vi 2 Vik. Gik can be partition in a
number of sub-parts level 2 regarding the number of sockets
of the node and then recursively each of them partitioned in
sub-parts level 3 regarding the number of cores on each
sockets. We use some 3 level hierarchical partitioner
algorithms, which are aimed to reduce the amount of data
transferred in the external network between interconnected
nodes by minimizing the size of the sets Vbkl1, then with
the second level, to reduce the amount of transferred data
through the QPI link between the different sockets of each
nodes minimizing the size of the sets of Vbkl2. Finally the last
level partition ensure cache memory locality of the data
processed by threads with their core affinity, avoiding
concurrency of data belonging to the same cache lines.

At an algebraic level, linear systems with a matrix and
vectors are associated to their dual graphs. The components
of vectors represent the scalar data associated to the vertices
of the graph while the non zero entries of the matrix are
associated to the edges of the graphs. The partition of the
dual graph enables to partition the vectors and the matrices
data, and gather them contiguously in the memory.

Figure 3

Hierarchical domain partition for multi-level parallelism.
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2.2.3 Parallelism

The dual graph hierarchical partition enables to handle
different levels of parallelism. We use an hybrid parallelism
based on MPI (Message Passing Interface) parallelism at the
coarse level to handle the distributed memory architecture
and the data distribution at the node level, and thread paral-
lelisms inside each nodes. This one is better appropriate to
handle shared memory architecture and to reduce the
memory footprint which is all the more important when the
number of cores increases for a limited local memory size.

2.2.4 Data Flow and Task Centric Implementation

Considering the partition of the matrices and vectors data
regarding the graph partition in Vik and Vbk, we split any
algebraic algorithms processing these data in tasks grouping
elementary operations processing the piece of data associ-
ated to the set of vertices Vik and Vbk. Internal tasks ðTik1Þ
processing data of Vk1 are clearly independent of the internal
tasks ðTik2Þ processing data of Vk2 with k1 6¼ k2. They can
only depend of other tasks ðTik1Þ and ðTbk1Þ of the same
domain. Boundary tasks ðTbk1Þ can depend of other
boundary tasks ðTbk2Þ of other domains Vk2 . The data flow
paradigm enables to manage the dependencies between tasks
processing the data of the same sub sets of vertices Vk. The
global algorithm is based on a DAG of these tasks Tik and
Tbk. The dependencies between data of different sub sets
Vbk are managed by boundary tasks Tbk which precede
them. As partitioners are aimed to minimize the size of
sub sets Vbk, we can fancy that the DAG of algorithms is
composed of different independent tasks, linked by
boundary tasks Tbk with reduced cost.

3 ABSTRACT LINEAR ALGEBRA API

We start here from a mathematical view of linear algebra
algorithms. We describe such algorithms to take advantage
of multi-level parallelism in a transparent way for users.
In this section, we present an abstract linear algebra API
aimed to implement common linear algebra algorithms with
a high level formalism. We illustrate how we handle paral-
lelism and the data distribution early described with the
example of the multiplication between a sparse matrix and
a vector.

3.1 Linear Algebra Algorithms and API’s Description

Linear algebra algorithms can often been described as
sequences of matrices and vectors algebraic operations.
These operations are mostly BLAS [12] level 1 and 2 vector
operations, some sparse matrix-vector products or specific

preconditioning operations. For example, we can consider
in Algorithm 1, one step of the BiConjugate Gradient Stabi-
lized (BiCGStab [1]), the Krylov methods for solving large
sparse linear systems.

Algorithm 1: BiCGStab Algorithm

Matrix A;
Vector b, p, pp, r, v;
Scalar a;
do

pp = inv(precond).p;
v = A.p;
r + = v;
a = dot(p,r);
if (a == 0) break;
...;

while(|r|<tol*|b|);

To implement a parallel version of such algorithms in a
transparent way, we have defined an abstract algebraic API
detailled in Listing 1 aimed: (i) to hide hardware specifici-
ties; (ii) to manage memory allocation and locality; (iii) to
manage parallel loops; (iv) to provide most BLAS 1 and 2
functionalities; (v) to provide tools to split vectors and man-
age vector views and range iterators, to manage transpar-
ently data according to their distribution.

Listing 1: Linear Algebra API.

class AlgebraKernel
{

void allocate (Vector & v,
std : : size_talloc_size);

void assign (Vector & v, LambdaT op);
void axpy (ValueT const &a,

Vector const& x,
Vector const& y);

doubledot (Vector const& x,
Vector const& y);

void mult (Matrix const& A,
Vector const& x,
Vector const& y);

void exec (Precond const & P,
Vector const& x,
Vector const& y);

void assertNull (double const& value);
};

Algorithm’s step are then implemented as a DAG of
operations, associated to a Sequence objects. These objects
refer to a sequence of algebraic operation organized in a
persistent data structure. In this way, they can be replayed
several time which is in particular interesting for iterative
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methods implementations. Listing 2 illustrates the imple-
mentation of the Algorithm 1 with our API’s formalism.

Listing 2: BiCGStab sequence.

Algebr aKernelType alg;
Matrix A; Vector p, pp, r, v;
double alpha;
SequenceType seq = alg.newSequence ();
alg.exec (precond, p, pp, seq);
alg.mult (A, pp, v, seq);
alg.axpy (1., r, v, seq);
alg.dot (p, r, alpha, seq);
alg.assertNull (alpha, seq);
while (!iter. stop ())
{

alg. process (seq);
}

We have implemented this API with HARTS and with
various other runtime system layers like XKaapi, OmpSS
and OpenMP runtime systems.

4 PARALLEL PRECONDITIONERS

As the cost of these iterative algorithms depends directly on
the number of iterations required for convergence, the choice
of a robust parallel preconditioner and appropriate solver
options is important as they have a strong impact on the
cumulative number of iterations for the whole simulation.
It is important to parallelize preconditioner to take advantage
of new recent architectures. We now review some parallel
preconditioners developed in the MCGSolver library,
and explain how they have been parallelized. We first
introduce ILU(0) then present a multi-level domain decom-
position methods.

4.1 Incomplete LU Factorization (ILU)

Given a factorization of a large sparse matrix A, in such a
way that

A ¼ LU ð1Þ

where L is a lower triangular matrix, and U an upper triangu-
lar matrix. It is well known that usually in the factorization
procedure, the matrices L and U have more non zero entries
than A. These extra entries are called fill-in elements. The
incomplete factorization consists in dropping some of these
elements. An incomplete factorization preconditioner con-
sists in taking M ¼ �L �U � A, where �L and �U stand for the

incomplete LU factors of A. For an incomplete factorization
with no fill-in, so-called ILU(0), we take the zero pattern
of A.

Such an algorithm is not natively parallel, and a dis-
tributed graph decomposition is needed to perform it to
extract a limited amount of parallelism. This defines interior
nodes in a subgraph that do not depend on variables from
other node. These nodes can be independently eliminated
and the associated operations can be done in parallel. But
interface nodes are defined such as they are coupled with
rows which are located on another processor and need a
particular attention. The parallel algorithm is given by [1].
At each solver iterate, a backward and a forward steps are
requiring to perform ILU(0) preconditioning on which we
have to separate operations coming from interior and inter-
face nodes. In interface computation, some communications
are performed to receive updated values from neighbor
subdomains as illustrated in Figure 4 representing the
distributed DAG of the BiCGStab algorithm preconditioned
with a parallel ILU(0) preconditioner. Dependencies
between tasks involve synchronizations between processors
reducing the scalability of this preconditioner up to very
large number of cores.

As it is illustrated in this figure, the task programming
approach enables to overlap transparently communication
between processes minimizing in that way the overhead of
communication.

4.2 Multi-Level Domain Decomposition Preconditioner

Due to their parallel nature, domain decomposition
methods present interesting algorithmic features for parallel
architectures. Domain decomposition methods consist in
solving the problem in

X ¼
[p
i¼1

Xi ð2Þ

by solving the sub-problems on the p sub-domains Xi. These
kind of methods are interesting for parallel computer
architectures. The Additive Schwarz Method (ASM),
described in [1], consists in:

umþ1 ¼ um þ J�1 b� Aumð Þ ð3Þ

where J stands for the Jacobian matrix, which is the block
diagonal part of the matrix A. The Multiplicative Schwarz
Method (MSM) take for M the Gauss-Seidel matrix, MGS,
built from the block lower triangular part of A. Contrary to
this method, ASM is naturally parallel as it provides inde-
pendent tasks. At each step, a linear system for each sub-
domain has to be solved. Due to the shape of the matrix M
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and the domain partitioning, this operation can be done in
parallel with a direct method (because of the reduced size
of the problem). But ASM suffers from a lack of extensibil-
ity. In fact each sub-domains only communicate with their
neighbors at each step, which explains why the convergence
rate slow down when the number of sub-domains increases.
This problem is solved by the 2-level Additive Schwarz
Method (2-level ASM) reviewed by [13], described as
follows:

umþ1 ¼ um þ P�1 b� Aumð Þ

P�1 ¼ M�1
j I n þ AZE�1ZT
� �þ ZE�1ZT ð4Þ

where E = ZTAZ is the coarse operator computed from Z, the
deflation matrix. It imposes a global communication by
solving a coarse problem. Coarse operators may differ from
their property to converge more or less faster depending on
the structure of the matrix A. Figure 5 illustrates the DAG

of macro operations on which the synchronization is
well represented. However, the cost of the coarse resolution
is related to the size of coarse operators. This size has to be
adapted to ensure the extensibility while preserving
the parallel performance of the method. The rest of the work
flow is totally parallel which grants good performance
on parallel machines as tasks can be processed indepen-
dently.

For our work, we selected two coarse operators. The first
one, introduced in [14], is based on the indicator functions of
each sub-domain. We denote it by the Nicolaides coarse
operator. For homogeneous problems, this easy-to-compute
coarse operator offers good convergences rates while for
heterogeneous problems, these rates decreased. Inversely,
the second implemented coarse operator described in [15]
is proven to be numerically stable and robust. We denote it
by the GenEO coarse operator. It consists in solving an
eigenvalue problem in the overlaps and is built with the
lowest eigenvalues found.

Figure 4

DAG of ILU(0) preconditioner.
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4.3 Convergence Issues

Preconditioner aims to improve convergence rates of a linear
solver. In some cases, it is not sufficient and we have to
develop new algorithms to reach convergence criteria.
To be close to the physical phenomena involved in
petroleum reservoir simulator, we applied a permeability
field on the system obtained from a 2D discretization of
a Laplace problem on a unit cube mesh of size nx 9 ny.
The following permeability field was applied, where floor
(x) = [x]:

perm i; jð Þ¼
103 � ½10� j=ny� þ 1

if ½10� i=nx� � 0 2½ � and ½10� j=ny� � 0 2½ �
1 else

8><
>:

ð5Þ

We then study the speed of convergence of a BiCGStab
algorithm preconditioned with each preconditioning method
previously studied in Section 4. The evolution over
iterations of the relative error is illustrated in Figure 6, where
the application was performed with 40 sub-domains. In this
figure, ILU(0) stands for the Incomplete LU factorization
with no fill, while the “ASM” denomination stands for
1-level Additive Schwarz Method. We also compare several
coarse operators used with 2-level ASM preconditioners
mentioned in Section 5.3. We denote the Nicolaides coarse
operator by “Nicolaides”, and the GenEO coarse operator
by “GenEO(p)”, where p stands for the number of computed
eigenvalues for the eigen problem. For Domain Decomposi-
tion (1 and 2 level) preconditioner, we incorporate 10 steps
of the method as preconditioner.

The BiCGStab method failed to converge with ILU(0)
and ASM preconditioners. The same method preconditioned
with GenEO(1) or Nicolaides methods converge over more

than 103 iterates. On the other hand, GenEO(p) with p > 1
requires a small number of iterates to converge.

5 EXPERIMENTS

In this section, we benchmark the different implementations
of our linear solver described in the previous sections with
various linear systems on different hardware configurations.

The first benchmark consists in performing several SpMV
operations comparing the HARTS based implementation to
a hand written implementation with POSIX threads (i.e.
pthread library) in order to evaluate the overhead of the
runtime system layer.

We then present experimentation with the full BiCGStab
solver preconditioned with the DDML preconditioner.
We compare the different coarse operators described in
Section 5.3.

We finally expose results obtained on distributed memory
architecture with the full BiCGStab solver preconditioned
with ILU(0) preconditioner.

For all these experiments, we used the METIS [16] graph
partitioner. Tests are run on a Linux cluster system with
shared-memory dual-socket nodes, each socket equipped
with a octo-core Sandy Bridge processor.

Figure 5

Multi-level domain decomposition method DAG.
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Figure 6

Convergence status of preconditioned BiCGStab on a system
coming from laplacian 2D discretization.
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5.1 Sparse Matrix Vector Product

This benchmark consists in performing 103 SpMV products
with various matrices of distinct and representative sizes.
As the SpMV is one of the most important operation
performed in iterative linear solvers, the performance results
obtained in this benchmark are representative of that can be
expected for the whole solver. The METIS graph partitioner
has been used to partition data and parallelize algorithms
with tasks. We have used a round-robin affinity strategy to
bind threads to core. The performance results for each matrix
are gathered in Figure 7. We have tested a family of six linear
systems extracted from a reservoir simulator. We give for
each systems its size (the number of rows and unknowns).
For each linear system, the benchmark has been executed
with 1, 2, 4, 8, 10, 12, 14 and 16 threads. We compare the
performance of the HARTS implementation to a hand
written one with the pthread library.

For small benchmarks, even if threads can benefit from
cache effect, the performances are affected by the cost of
small data communication between threads. Increasing the
size of processed data highlights the performance of the
runtime system comparing to pthread implementation. Once
data are stored in cache memory, communication does not
impact any more the performance. Larger benchmarks
accentuate the fact that data locality is primordial for
parallelism. The peak of performance is reached for more
than eight threads as data is well distributed among sockets
and as the runtime system’s cost is negligible in comparison

of data computation. All the obtained results underline the
cost of the runtime systems, which overhead seems not
important even negligible for large linear systems.

5.2 Distributed ILU(0) Preconditioner

As early mentioned, ILU(0) preconditioner is not naturally
parallel. The algorithm is decomposed in several sequences
of operations with underlying dependencies. We present
here the distributed algorithm used with a BiCGStab solver,
taking advantage of different levels of parallelism, as
described in Section 2.2.2. The purpose of this test is to
evaluate the hybrid parallelization MPI + thread of this
preconditioner on a collection of linear systems coming
from a Finite Volume discretization of a 2D Laplace problem
on a unit cube with various sizes of mesh. In Figure 8,
we compare the performance of the solver in a full MPI
mode to the one in a full thread mode with HARTS.
We can notice that up to 10 cores, the behaviour of the
two modes is quite similar. For a number of cores larger
than 10, we observe a lack of scalability for the two modes,
mostly for the thread mode.

In Figure 9 we analyze the performance of the solver
preconditioned with the ILU(0) method with a multi-level
parallelization. For this test we use a mesh of size
20009 2000. For this benchmark, tests are run on up to four
nodes. We first experiment the configuration of one MPI
process per node, with 16 threads distributed among the
two sockets of the node. We then use two MPI processes

Figure 7

SpMV Performances - HARTS - Round Robin a nity.
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per node, each process is attached to a disjoint socket with
eight threads per socket. We finally experiment a full MPI
implementation, on which we associate 16 MPI processes
per node with one thread. For all of these configurations,
we use a coarse-grained size parallelism for each MPI
processes, and then a finer grain size parallelism with
HARTS threads at the socket level. As we can see on results,
the assignment of one partition per node (i.e. one MPI
process) presents a small overhead compared to other imple-
mentations. By adding more MPI processes, we can see that
communication between nodes does not have a significant
impact on results because of the small pieces of data to send
and receive. The scalability in a node is still not optimal, as
previously shown.

5.3 Shared-Memory Multi-Level Domain Decomposition
Methods

As early mentioned, domain decomposition methods
naturally fit on parallel architectures. This experiment aims
to reveal the advantages of this category of preconditioning
techniques on shared-memory systems. For this benchmark,
the data locality has a strong impact in the sense that
communication are only inside the node with shared
memory optimization. As these methods can be used both
as a solver or as a preconditioner, we evaluate first the
parallelization of the solver, then as a preconditioner for
the BiCGStab solver with 10 steps of DDML solver. For
our experiments, we use a fixed number of subdomains
equal to 40. For the 2-level ASM, we experiment the
Nicolaides and GenEO coarse operators described in this
section. For the GenEO coarse operator, we use different
number of computed eigenvalues.

Performance results are gathered in Figure 10. We can
notice that, contrary to ILU(0) in Figure 8, the speed up
keeps on growing up to 16 cores. The scalability declines
for more than 10 cores for both benchmarks with the
GenEO(10) coarse operator. This degradation is due to the
fact that the coarse system’s size grows with the increasing
number of computed eigenvalues while the resolution of this
system remains sequential as illustrated in Figure 5. In spite
of this sequential part, the parallel implementation of the
2-level ASM remains quite as efficient as the 1-level ASM
with only independent tasks.

Figure 8

ILU(0) preconditioner within one node.

Figure 9

ILU(0) preconditioner on multi nodes architectures.
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Figure 11 refers to the implementation of DDML
algorithms used as a preconditioner of the BiCGStab solver.
We can notice that the speed-up keeps on growing up to

16 cores whatever is the size of the linear system. As a
preconditioner the DDML method seems more scalable than
the ILU(0) preconditioner.

Figure 11

Speed-Up – laplacian 2D sparse system – BiCGStab solver with
DDML preconditioner. Test performed with 40 sub-domains.

Figure 10

Speed-Up – laplacian 2D sparse system – DDML solver using
a 1-level ASM and 2-level ASM with GenEO and Nicolaides
coarse operators. Test performed with 40 sub-domains.
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CONCLUSION AND PERSPECTIVES

In this paper we have presented the implementation of
iterative linear solvers for large and sparse linear systems
with runtime system tools to handle efficiently and seam-
lessly the complexity of new heterogenous architectures.
We have introduced an abstract linear algebra API that
enables to write at a high level algebraic algorithms hiding
the use at a low level of the task programming paradigm
leading to Direct Acyclic Graph processed by schedulers
that distribute tasks among available resources. We have
detailed the implementation of the sparse matrix-vector
product, the ILU(0) preconditioner and the Multi-Level
Domain Decomposition preconditioner. We have focused
on multi-level parallelization strategies using threads at a
fine level and MPI at a coarse level. We have validated
our approach with some experiments with various linear
systems comparing different implementations on different
hardware configurations, evaluating the runtime system
overhead and the efficiency of the implemented algorithms.
According to the performance results, our implementation
seems efficient even for not naturally parallel algorithms like
the ILU(0) factorization. We have obtained interesting
scalability for the DDML preconditioner. The whole precon-
ditioned BiCGStab algorithm turns to be scale not only
within one node using all the cores, but also on several nodes
with the muti-level hybrid parallelism using MPI at the
coarse level and threads with HARTS at a finer level.

In future work, thanks to our abstract linear algebra API,
we plan to benchmark other runtime systems like XKaapi,
OmpSS or OpenMP runtime, and other hardware configura-
tions with many integrated core processors like the Intel
Xeon-Phi processor.
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