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Rond-point de l’échangeur de Solaize
BP 369360 Solaize, France

Email: name.surname@ifpen.fr

Morten Mejlhede Kramer
Aalborg University

Department of Civil Engineering
Wave Energy Research Group

Sofiendalsvej 11
DK-9200 Aalborg, Denmark
Email: mmk@civil.aau.dk

Enrique Vidal Sanchez
Wave Star A/S
Park All 350E

DK-2605 Brndby, Denmark
Email: evs@wavestarenergy.com

ABSTRACT
One of the major limitations to the development of advanced

wave energy converters (WECs) control strategies are the asso-
ciated computational costs. For instance, model predictive con-
trol (MPC) strategies have the potential to obtain almost optimal
performance, provided that the imperfect power conversion in
the power take-off (PTO) system is correctly taken into account
in the optimization criterion and that the incoming wave force
can be estimated and forecast. However, demanding computa-
tional requirements as well as the unresolved issue of wave force
estimation have so far prevented real-time implementation and
validation of such MPC strategies. In this paper, we present the
successful experimental results obtained on a scaled-down pro-
totype of the well-known Wavestar machine. Performance com-
parisons are provided for nonlinear MPC versus a reference PI
controller.

INTRODUCTION
A wave energy converter (WEC) is a device used to produce

electricity, or other forms of usable energy, from wave motion.
The main challenge faced by the developers of wave energy tech-
nologies is the reduction of the levelized cost of energy (LCOE)
to a competitive level. A key driver to achieve such a goal is the
improvement of “wave-to-wire” efficiency, which, especially for
point absorbers of the heaving-buoy type, depends on:

• their architecture (geometry, mechanics),
• the efficiency of the power take-off (PTO) system
• the performance of the PTO control system [1].

∗Address all correspondence to this author.

In order to deal with the naturally narrow-banded frequency
response of such dynamic systems, and the continuously chang-
ing sea state, flexible PTOs capable of both harvesting and draw-
ing power from the grid (respectively in generator and motor
modes) are promising actuator candidates. A flexible PTO along
with reactive control allows the absorber to be more often in
phase with the incoming waves. It can achieve that, by investing
some energy (drawn from the grid) to eventually get a larger en-
ergy payback than it would be possible to obtain by just braking
the absorber via the PTO force. Indeed, many studies have shown
that one of the key aspects for maximizing the energy yield of a
WEC is the way of controlling the device. The Proportional-
Integral (PI) velocity feedback controller is the current state of
the art for WECs as far as practical implementation is concerned.
The integral action is a position feedback implementing a simple
form of reactive control, while the proportional velocity feedback
provides the basic linear damping which is found in most WEC
control system. This strategy is very robust and simple to im-
plement, since it uses only position and velocity measurements
to compute the control action. The PI control law shows a rea-
sonable energy conversion rate, but is still far below the theoreti-
cal optimum discussed in [2]. Moreover, additional performance
loss is to be expected because the sea state changes and the feed-
back coefficients must be modified online to take into account
this variation.

Of course, alternatives to PI control do exist. Latching con-
trol has been proposed for WECs equipped with a position lock-
ing mechanism [3–5]. The basic idea is to lock the point absorber
when its velocity is zero, and wait for the most favorable moment
to release it again. In this way, the velocity of the point absorber
can be brought in phase with the wave excitation force, and the
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system is in resonance. When the point absorber is unlatched,
energy is recovered via proportional velocity feedback. In [6],
by combining latching control and short term wave prediction,
it was shown that the performance can be improved up to 20%
compared to the classical PI control law.

Another solution, that has been drawing a lot of attention
in the last decade, is Model Predictive Control (MPC) [7–9]. In
MPC, a system model is used to predict the future response of
a plant. At each control interval, the algorithm attempts to op-
timize future plant behavior by computing a sequence of future
control actions. The first input in the optimal control sequence is
then applied to the plant, and the entire calculation is repeated at
subsequent control intervals. The main advantage of MPC is that
it is capable of energy conversion rates close to the theoretical op-
timum. In addition, state and input constraints can be considered
in a natural way. However, MPC is computationally demanding,
since a wave prediction procedure and an iterative optimization
have to be carried out for each control interval. Up to now, only
linear MPC algorithms using precomputed predictions have been
implemented in real-time on WECs [10].

In [11], another approach to improve performance is pro-
posed, the so called simple and effective real-time control. Based
on the assumption of the availability of wave excitation force,
the basic idea is to calculate a reference optimal velocity. Then
a control law is designed to make the float velocity follow the
reference one. By simulation, it was reported that performance
can be improved up to 25% compared to the PI control law.

To achieve optimal energy conversion, the three aforemen-
tioned strategies rely on the assumption that the instantaneous
wave excitation force is available. However, this is not the case in
practical WEC implementations, since this force cannot be mea-
sured directly when the WECs are in operation. Therefore, the
force has to be estimated using other quantities, e.g. the modeled
radiation force, or via an observer.

In [12], using a combination of a bank of independent har-
monic oscillators and a Luenberger observer, an estimation algo-
rithm is proposed. The strategy was tested on a real WEC system,
but the experimental results showed a significant phase lag in the
estimated signal compared to the measured signal.

In [13], by considering the wave excitation torque as a time-
varying sinusoid, an extended Kalman filter approach is pre-
sented. However, no experimental results are reported. In ad-
dition, it is obvious that the approach may only be effective for
very narrow-banded wave forces.

In this paper, the implementation of a complete nonlinear
MPC control control system on a point-absorber WEC is pre-
sented and discussed. The emphasis is placed on experimental
results collected in the wave basin of Aalborg University, in June
2015, on a small-scale wave energy converter prototype, manu-
factured by the Wavestar company. All the implementation as-
pects, from computational complexity to accuracy, are investi-
gated. First, the main building blocks of the MPC control system

are briefly introduced including:

• an online wave excitation torque estimation algorithm us-
ing only available measurements (float position and veloc-
ity, PTO force) yielding estimations with no significant time
delay (contrary to [12]),
• an accurate and self-adaptive short-term wave force predic-

tion algorithm,
• a real-time compatible nonlinear MPC algorithm taking into

account PTO conversion efficiency.

Then, experimental results are presented and analyzed.
MPC performance is compared against the performance of a ref-
erence PI control scheme on a time-varying sea state in terms of
harvested power and control input signal.

The paper is organized as follows. Section 1 introduces the
model of the wave energy converter considered in this study. In
section 2 the different building blocks listed above are briefly
described. Experimental setup and results are presented in sec-
tion 3. Finally, section 4 summarizes the overall conclusions and
proposes further stages of investigation.

1 WEC modeling
The Wavestar device extracts energy from the pivoting mo-

tion of buoys connected to a platform. In the following we con-
sider a single-float configuration. It is assumed that the float mo-
tion can be described by a simple model derived from linear wave
theory:

Jθ̈(t) = Mex(t)−MPTO(t)−Mhyd(t)−Mrad(t) (1)

where J is the total moment of inertia of arm and float, θ is
the float angular position, Mex is the wave excitation moment of
force, including diffraction effects, MPTO is the moment of force
applied by the PTO, Mhyd is the hydrostatic restoring moment of
force and Mrad the radiation moment of force. In the following
we will use the term “torque” for moment of force.

For small θ(t), Mhd(t) = −Kresθ(t), where Kres is the hy-
drostatic stiffness coefficient.

The radiation term is written as by

Mrad(t) =−J∞θ̈(t)−Mr(t) (2)

where J∞ is the added inertia at infinitely high frequency, and

Mr(t) =
∫ t

0
h(t− τ)θ̇(τ)dτ (3)

where h(t) is the impulse response function of the radiation mo-
ment, obtained by boundary element methods.
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Introducing a linear time invariant realization for Eqn. 3, via
the transfer function Wr(s)

Mr(s) =Wr(s)θ̇(s) (4)

the system model can be written in the Laplace domain as

(
(J+ J∞)s+

Kres

s
+Wr(s)

)
θ̇(s) = Mex(s)−Mu(s) (5)

Introducing Jeq = J+ J∞, the resulting system model can be rep-
resented in block-diagram form as shown in Fig. 1.

1/Jeq
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s
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θ(t)
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−

FIGURE 1: SYSTEM MODEL IN BLOCK-DIAGRAM FORM

2 NON LINEAR MODEL PREDICTIVE APPROACH
2.1 Wave Torque Estimation And Prediction

If the wave excitation torque is known and it is possible to
predict its future evolution over a short time horizon, then the
whole future dynamic behavior of the WEC can be predicted as-
suming that its motion can be described by Eqn. (1).

Unfortunately, wave excitation torque Mext(t) is not directly
available online during normal WEC operation (it is usually mea-
sured offline using a dedicated experiment where the float is
blocked and a force/torque sensor measures the effect of the wave
on the WEC). Thus, an algorithm is needed which performs the
estimation of wave excitation torque from standard WEC mea-
surements.

The estimation method developed by the authors to tackle
this issue considers the variation of the excitation moment as a
random signal. Based on a Kalman filter and a random walk
model for the wave excitation torque, the estimation problem is
transformed into a classical state estimation problem.

The main features of this estimation method are:

1. estimated wave torque values do not show any significant
lag compared to “true” values, which is not the case for the
approach in [12];

2. in contrast to [12], no (implicit) unrealistic assumption about
the time-invariant nature of the sea state is made, hence any
operating condition can be efficiently dealt with;

3. state and control constraints can be considered;
4. in addition to the wave excitation torque, the estimates of

the state of the system can also be provided, to be used for
advanced control algorithms such as MPC.

The above-mentioned algorithm makes an estimated wave
force (moment) value available at each instant k. The present
and past values of (estimated) wave torque can be used to form
a time series, whose future evolution can be predicted via an au-
toregressive model:

Mex(k)= a1Mex(k−1)+a2Mex(k−2)+. . .+apMex(k− p)+w(k)
(6)

where w(k) is a stochastic uncertainty, a random noise with zero
mean. As the sea state is not stationary, we cannot expect good
prediction results by simply estimating the AR model parame-
ters via the minimization of the one-step ahead prediction error.
One possible strategy (proposed by F. Fusco and J. Ringwood
of the University of Maynooth in [14]) consists in finding the
AR parameters which minimize the prediction error over multi-
ple steps:

min
a1...ap

k

∑
l=p+h+1

h

∑
j=1

(
Mex(l)− M̂ex(l|l− j)

)2 (7)

using (long) data batches, and recomputing them at regular times
(or each time the sea state changes). This technique, also known
as long range predictive identification ([15]) requires solving a
computationally–demanding nonlinear least square optimization
problem.

The authors have developed an alternative method, also
based on AR model estimation, to overcome the practical draw-
backs of the aforementioned strategy. An adaptative bank of
Kalman filters is used for this method, which:

• does not need explicit low-pass filtering of data;
• has a much lower computational complexity;
• updates unknown parameters as soon as new information is

available, eliminating the need for a supervisory layer trig-
gering the recomputation of the AR model parameters;
• works well for a (wide) range of (fixed) sampling periods.

2.2 Model Predictive Control
The main role of the PTO control system is to take off as

much energy as possible from the waves to the network, for a
broad range of sea states.
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FIGURE 2: THE PRINCIPLE OF SLIDING HORIZON MPC.

PI velocity feedback control (also referred to as BK-control
in [16]) is the control strategy currently favored by Wavestar:

uc(t) = MPTO(t) =−kp

∫ t

t0
ω(τ)dτ− kvω(t). (8)

where uc is the control input signal corresponding to the PTO
force setpoint. To achieve good performance, parameters kp and
kv must be tuned for the current sea state using a model-based
approach or by trial and error. This strategy is simple and robust,
even though it is suboptimal and requires a switching of control
parameters triggered by a supervisory layer.

Among the implementable control strategies, MPC has in-
stead the potential to lead to almost optimal performance, be-
cause of its ability to deal with many design objectives and per-
formance criteria and to handle constraints on states and control
inputs.

MPC is a receding horizon strategy which consists of the
following steps:

1. At current sample i, measure (or estimate) the system state
and use it as an initial value to calculate an optimal control
over a limited horizon with n samples starting at sample i.
This yields a time series of n optimal control values uc,i.

2. Apply the first value of uc,i (corresponding to the control for
the current sample) as a command for the system and hold it
for the duration of the sample period.

3. At the next sample i+1, measure the system state and use it
again as an initial value to calculate an optimal control over a
horizon with n samples starting at i+1. Initialize the vector
of decision variables using the results from the previous step.
This yields uc,i+1.

4. Apply the first value of uc,i+1.
...

This principle is depicted in Figure 2.
MPC is actually implementable in real-word applications as

an online control law if a short-term wave prediction is available,

provided that its computational time is short enough compared
with the control sampling time (which is in turn determined by
the system bandwidth).

Examples of MPC strategies, based on linear or nonlinear
models, convex or non-convex criteria, can be found in [17–21].
Most strategies are formulated so as to maximize the net pro-
duced energy over a given horizon, which corresponds (for large
enough horizons) to the ultimate goal any WEC control system
should strive for. However, a critical factor is often overlooked in
the design and validation of MPC (as well as of most other WEC
control strategies): the imperfect power conversion in the PTO.
Even though this practice is seldom followed even in the most re-
cent literature, conversion efficiency should be always taken into
account in simulation and during the experiments. In simula-
tion, this is necessary in order to obtain realistic results and a fair
comparison among controllers, as shown in [16] for PI velocity
feedback control and in [22] for latching control.

In [23], IFPEN has presented a nonlinear MPC strategy for
a generic heaving-buoy converter (the first one proposed so far,
to the extent of the authors’ knowledge) which takes directly
into account the imperfect power conversion in the PTO. This
is achieved by introducing a (nonlinear) conversion efficiency,
function of the instantaneous power, in the optimization crite-
rion. For the pivoting-buoy setup considered here, the control
objective corresponds to the minimization of the mean electrical
power:

P̄e =−
1
T

∫ T

t=0
ηPedt, Pe = ηPa = ηuω. (9)

which is given a negative sign since is taken from the system.
P̄e is thus calculated as the normed integral over time T of the
instantaneous electric power Pe, which is in turn given by the
product of PTO torque u and float angular velocity ω (i.e., the
ideal hydrodynamical power Pa) multiplied by PTO efficiency η .

The efficiency η is taken as a function of Pa = uω:

η(uω) =

{
η0 if uω ≥ 0
1

η0
if uω < 0

, 0 < η0 ≤ 1 (10)

The coefficient η0 corresponds to the product of the average ef-
ficiencies of each PTO stage (actuator, hydraulic transmission if
any, generator/motor, inverters). More generic functions of Pa
could also be used, though this would likely complexify the op-
timization process.

With the above formulation, MPC “knows” that, when η0 <
1, the system will produce Pe < Pa when generating and consume
Pe > Pa when motoring.

The control model used for MPC is derived from Eqn. 5,
converted in state-space form and time-discretized. This allows
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to express the power to be minimized as a function of uc, the
vector of control values applied over the next Np steps (Np is
called the prediction horizon). After some manipulations (de-
tailed in [23]), the discretized mean power to be optimized can
be put in the convenient quadratic form

Pe(uc) = 1/2uT
c HHH(uc)uc + fff (uc)

T uc + ccc000(uc) (11)

where the matrix HHH and the vectors fff and ccc000, are obtained from
the matrices of the control model state-space representation.

Unfortunately, the objective function introduced above is
non-convex, which makes the optimization problem difficult and
costly to solve. Indeed, the strategy developed in [23] cannot
be applied “as is” to the small-scale prototype we consider here,
as its dynamics requires a control sampling period not longer
than 50-100 ms, which is barely enough to compute the optimal
solution, in simulation, on a standard modern laptop (it could
still prove real-time compatible on the full-scale system, though,
since the control sampling period would be much longer).

In order to have a nonlinear MPC running on the small-scale
prototype at AAU, several variants of this strategy were devel-
oped and tested in simulation. Two methods were finally se-
lected, whose computational costs are significantly reduced with
respect to the original strategy, thanks in particular to the con-
vexification of the objective function. One of these methods (the
one with the best performance in simulation) has been chosen for
experimental testing.

3 FIELD TESTS RESULTS
3.1 Test Facility and Setup

A laboratory prototype of a point absorber WEC on a 1 : 20
scale with respect to the well-known Wavestar machine installed
near Hanstholm, in Denmark, was used to test IFPEN control
system, see Figure 3. The prototype consists of a float attached
to an arm, which in turn is attached to a power take-off system
(PTO). The laboratory model is equipped with position and ac-
celeration sensors. The velocity of the float is estimated from the
position and the acceleration via a linear Kalman filter.

The Aalborg University wave basin is equipped with 16
wave gauges and is 8.5m wide and 15.7m long. The wave pad-
dles are driven by a total of 15 hydraulic pistons moving in the
horizontal direction. The waves used for the tests were generated
by the wave maker based on a Pierson-Moskowitz spectrum.

3.2 Control Design and Implementation
The state-space model for MPC design has been computed

from the parameters given in Table 1.
PTO dynamics was initially neglected, as it was considered

much faster than WEC dynamics. Notice that, while the strategy

FIGURE 3: LABORATORY WEC LAYOUT.

Hydrodynamic model parameters

Inertia of arm and float J 1.04 kg m2

Hydrostatic stiffness coefficient K 93 N m rad−1

Added inertia J∞ 0.40 kg m2

Radiation moment impulse response realization

Wr(s) = 0.0312s3+34.79s2+3770s+760.8
s3+124.2s2+1498s+1.064e04

TABLE 1: PARAMETER VALUES FOR THE LABORATORY
WAVESTAR PROTOTYPE.

in [23] can handle PTO dynamics at design level, by including
it in the control model, the MPC formulation under test can only
do that via the optimization of some internal weightings to be
performed off-line on a simulation model including both WEC
and PTO dynamics.

The other relevant MPC parameters are:

• Control sampling period TMPC = 50ms;
• Prediction horizon Np = 25;
• Mean PTO efficiency η0 = 0.7;
• Control limits umin =−6.5Nm, umax = 6.5Nm ;

The control limits, chosen to match those of the full-scale PTO,
are enforced by the software. The actuator of the scaled-down
setup could actually handle more than 6.5Nm. Position limits
are not considered as they are not hit during normal tests.

The Simulink diagram describing the whole MPC control
system is represented in Fig. 4. One can recognize the three
main building blocks with different sampling rates: wave and
state estimator running at 200Hz, the wave prediction algorithm
and finally the MPC strategy, both running at 20Hz.

The first experimental results showed that, with the current
tuning of the force servo, PTO dynamics was actually too slow
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FIGURE 4: MPC COMPLETE SYSTEM AS IMPLEMENTED
IN AAU WAVE BASIN.

to be neglected. To cope with this, the initial MPC calibra-
tion had to be changed. As explained before, an optimization
of internal MPC weightings was run in simulation, considering
both the system dynamics and the PTO dynamics, for all the ex-
pected sea states. Due to the short time window available for
the computationally-intensive optimization procedure, the imple-
mented parameters were suboptimal (as the procedure had not
terminated).

3.3 Methodology
The experiments were performed for 5 available sea states

representative of real-life conditions. Figure 5 presents the power
spectral density of the 4 different basic sea states. The last one
denoted S23 correspond to a time-varying sea state switching lin-
early from S2 to S3. It is important to note that the most inter-
esting sea state from an energy point of view are S2 and S3 since
they correspond to the most frequent sea states and contain much
more energy than S1. S4 might be seen as a critical sea state
which might require to lift up the float out of the water. All avail-
able sea states are composed of irregular waves.

For each sea state we ran a series of tests starting with refer-
ence PI controllers tuned offline by Wavestar. Each PI controller,
intended to provide a performance benchmark with respect to the
MPC algorithm, was optimized for a given sea state. Then, we
tested the MPC strategy, first with initial calibration, then with
the new set of parameters obtained by (partial) optimization of
harvested power including PTO dynamics in the plant model.

Notice that, in real-life conditions, the sea state would
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FIGURE 5: WAVE ELEVATION PSD AT FLOAT LOCATION.

Control Name Comment

Reference PI Classic Si PI optimized offline for Si

MPC

MPC Si
MPC with weigthings
optimized for S1-S4 and
no PTO dynamics

MPC Si PTO
MPC with weigthings
optimized for S2-S4 and
PTO dynamics

TABLE 2: CONTROL STRATEGIES TESTED IN THE AAU
WAVE BASIN.

change continuously which would require an intervention, be it
human or automated, to switch from one set of PI gains to an-
other. To deal with time-varying sea states, instead, the MPC ap-
proach does not need any intervention from a supervisory layer
nor any manual retuning, since sea state parameters are estimated
online and a wave prediction is performed for MPC. Thus, it is to
be expected that the gains obtained in terms of harvested power
be much higher with the wave S23, as the fixed-gain PI control
strategy used as a benchmark is unable to smoothly adapt to the
current sea state. Of course, PI control performance can be im-
proved with a supervisory layer, which could identify the current
sea state and select the most suited precomputed gains for it. But
this basic strategy, similar to gain scheduling techniques, cannot
bridge the gap with MPC as it will certainly suffer from time
delays during sea state changes (some time might be needed to
ensure that the sea state has changed from A to B).

3.4 Results
To help the reader with the figures shown in the following,

Table 2 reports the nomenclature adopted for the experimental
testing of the various control strategies, including four PI con-
trollers (each calibrated for a specific sea state) and two MPC
controllers with a different calibration.

Table 3 presents the MPC results for all the performed ex-
periments in terms of percent of harvested power compared to
the reference PI controller. One can see that for all the sea states,
the gain is positive ranging from 7% to 81.5%. Table 4 gives
more details on the experimental results of each tests.

Wave S1 S2 S3 S4 S23

MPC 41.4 7.6 - - -

MPC PTO - 15.7 20.9 8.7 81.5

TABLE 3: GAIN (IN % OF PE ) FOR MPC VS. REFERENCE
PI.
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Several observations can be made:

• The MPC algorithm has to take into account PTO dynamics.
One can see that in the MPC version which neglects PTO
dynamics the gain on S2 is very small compared to the gain
obtained on S1. This could be explained by the fact that S1
being quite slower than S2 the control signal delivered to
the actuator did not excite the faster dynamics of the PTO.
Using the version where PTO dynamics is taken into account
at calibration level, the MPC results were quite good for S2
to S23.
• As expected, the highest improvements were obtained on

S23 where the sea state was linearly changing with time.

Wave Elevation It is important to notice that even if the
basin paddles are supposed to create the same wave from one
experiment to the other, small variations are observed from one
experiment to another. These differences can be seen on the
zoomed view of the wave elevation on Figure 6. The wave el-
evation signals correspond to the measurement of the first wave
gauge of the basin that is supposed to be the least disturbed by
the refracted wave from the float. The differences between the
waves are twofold: firstly, a time delay up to 0.07 seconds and,
secondly, an amplitude difference (RMSE up to 0.3%).

In order to validate the designed control strategy, one have
to keep in mind that these discrepancies over the repeatability
of the generated wave might induce differences on the observed
performance, especially concerning the wave torque estimation
part.

Wave Torque Estimation Figure 7 shows the estimated
wave excitation torque for S2 and for all the tested control strate-
gies where this algorithm was implemented (MPC, but not ref-
erence PI). The reference wave corresponds to a previously run
experiment with a fixed float which allowed the PTO force sensor
to measure the wave excitation force (then transformed into wave
excitation torque). The wave torque estimation algorithm per-
formed well for the 5 sea states with no noticeable time delay. It
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FIGURE 7: ESTIMATED WAVE EXCITATION TORQUE FOR
S2.

is important to notice that the performance of this algorithm does
not depend on the control strategy implemented. Small differ-
ences with respect to the reference wave can in part be explained
by the discrepancies between generated waves as discussed in the
previous section.

Wave Torque Prediction As explained in the previous
chapter, the MPC algorithm requires a short-term prediction of
the wave excitation torque. The prediction horizon duration was
set to 25 samples (the prediction was computed each 50ms which
gives 1.25s). Figure 8 shows the predicted wave excitation torque
for S3. The blue line represents the reference wave excitation
torque and the red one shows the estimated excitation torque.
On Figure 8, the top figure shows the full prediction (25 steps)
and the bottom figure shows only the first 4 steps of the predic-
tion. This highlights the fact that the prediction is quite accurate
during the first few steps and also that even if the error in the
prediction can be large at the end of the 25 steps, this error is not
propagated since the prediction vector is recomputed again at the
next sampling time, and the algorithm does not use the previous
predictions as an input. A thorough study could be realized to
analyze the impact of prediction quality on control performance
and find the most suitable trade off for the prediction horizon. On
the one hand, a longer horizon allows the MPC to “see further”,
on the other hand, it induces larger prediction errors towards the
end of the horizon. For a matter of clarity, only one prediction out
of ten is depicted on the figures (a new prediction every 500ms).

The root mean square error (RMSE) can be used to assess
the goodness of fit between the predicted wave force and the es-
timated one. As expected, the RMSE is smaller with a shorter
prediction horizon. Figure 9 presents the RMSE between the es-
timated wave excitation torque and the predicted one. The 25
steps are considered with the blue line and only the 4 first steps
are considered with the red one. Only one prediction out of ten
is used for the RMSE computation.
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Wave S1 S2 S3 S4 S23

Power [mW] Pa Pe Pa Pe Pa Pe Pa Pe Pa Pe

Reference PIs 22 15 397 237 544 344 1123 727 361 250

MPC 32 21 420 255 - - - - - -

MPC PTO - - 445 274 625 416 1159 791 699 454

TABLE 4: GAIN (IN [W] OF PA AND PE ) FOR THE EVALUATED CONTROL STRATEGIES. (-) INDICATES TESTS NOT PER-
FORMED DURING THE 3 DAYS TEST SESSION.
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FIGURE 8: PREDICTED WAVE EXCITATION TORQUE FOR
S3.
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FIGURE 9: RMSE BETWEEN PREDICTED WAVE MOMENT
AND ESTIMATED ONE FOR S3.

Control Input Figure 10 shows a zoomed view of the
control input signal after the physical saturation for sea state S23.
Indeed, one of the advantages of the MPC is that the control satu-
ration is taken into account which avoids undesired saturation, in
a predictive way. Analyzing this signal for all sea states, several
observations can be made:

FIGURE 10: SATURATED COMPUTED CONTROL SIGNAL.
SEA STATE S23.

• with S1, the control input signal are quite far from the satu-
ration of 6.5Nm;
• from S2 to S23, all control strategies reach the saturation;
• for stronger sea state condition (S4 for instance) MPC tends

to deliver a bang-bang type control input signal.

Harvested Power Figure 11 shows the instantaneous
harvested electrical power for S23 (Pe = ηuω where η is defined
in Eqn. 10). As explained in the previous chapter, the coefficient
η represents the product of the average efficiencies of each PTO
stage. The value suggested by Wavestar is η0 = 0.7.

Improvements brought by the MPC strategies are partic-
ularly easy to notice on Figure 11 corresponding to sea state
S23. Indeed, Eqn. 10 with PTO efficiency taken into account
via η0 = 0.7 implies that the power drawn from the grid costs
roughly 50% more than power fed to the grid. Since MPC is a
model-based control, it naturally avoids large reactive power ex-
cursions (negative, in the figure), but allows them nonetheless to
harvest more power in generator mode. It is interesting to see
that the extracted power is a lot larger with MPC than with the
reference PI during the transition from S2 to S3, where the PI
gains are not optimized anymore for the current sea state.

Computational Cost One of the main concern prior to
MPC validation tests was the compliance with real-time imple-
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FIGURE 11: HARVESTED POWER FOR S23.

mentation constraints of this kind of control strategy, which has
a much higher computational cost than PI control, due to the em-
bedded iterative optimization procedure performed at each sam-
pling time. In principle, MPC could use up to 50ms (its sam-
pling period) to complete its calculation. But this is only true
if a specific task were alloted to MPC in a multi-tasking real-
time operating system. In practice, the real-time computing con-
straints proved to be more stringent. To avoid CPU overloads,
the Simulink model running on xPCTarget, the real-time operat-
ing system used for the tests, had to be completely executed in
a time shorter than the base fixed-step size of 1ms. During the
MPC tests, it was observed that the “Task Execution Time” was
around 145µs, which is still far from the 1ms available. Notice
that the CPU of the xPCTarget PC used for the tests is relatively
slow, as data logging and the other algorithms currently imple-
mented on it do not require a particularly powerful processor.

4 CONCLUSION AND FUTURE WORK
In this paper we have presented experimental results ob-

tained on a laboratory device installed in a tank test facility of
Aalborg University, which is a scaled-down version of the well-
known Wavestar machine located in the Danish North Sea, near
Hanstholm.

The tests were aimed at validating a nonlinear MPC con-
trol system for this kind of wave energy converter and assess-
ing its performance with respect to the reference control strategy
favored by Wavestar, a proportional-integral velocity feedback
control, with gains optimized for a set of sea states.

The full MPC control system that has been tested included
an algorithm to estimate the wave excitation torque online from
the available sensors and another one to compute short-term pre-
dictions of this torque based on time series of past values. The
former has proved to yield accurate estimates with no noticeable
lag with respect to the wave excitation measurements obtained
in dedicated experiments. The latter has proved to be adapted
to time-varying sea states and quite effective in the real-time ap-
plication, though its performance (prediction error) deteriorates
towards the end of the prediction horizon.

As to the control algorithm itself, to the best of our knowl-
edge, this the first successful real-time implementation of such a
complex, nonlinear MPC strategy, capable of taking into account
PTO efficiency, for a WEC. Moreover, it is noteworthy that the
small scale of the prototype makes the real-time computing con-
straints more severe than they would be on a full-scale machine.

Overall, the results show the high potential of improvement
brought by MPC in terms of harvested power. The proposed
MPC strategy, with different calibrations, outperformed classi-
cal PI velocity feedback control optimized offline for each sea
state, with gains ranging from 7% to 81%.

The best results for MPC were obtained when its parameters
were retuned to cope with the slow PTO dynamics, neglected in
the control model. Of course, for a completely fair comparison,
the reference PI controllers could have been optimized accord-
ingly (if time had permitted). Moreover, the most impressive per-
formance gain has been obtained on the time-varying wave S23
in comparison with a fixed-gain reference controller. It could be
of interest to make a comparison against an automatically gain-
scheduled PI controller (which is yet to be designed).

In our opinion, however, the margin of performance im-
provement is much larger on the MPC side. First of all, MPC
parameters were only partially optimized for PTO dynamics, be-
cause the (time-consuming) offline optimization had to be ter-
minated before completion, due to the limited time frame of the
tests. Moreover, much better results can be expected if PTO dy-
namics were included in the control model and the MPC design
upgraded with it. Better wave excitation torque predictions to-
wards the end of the prediction horizon should also lead to an
increase of electricity production.

Further developments and tests, both on the laboratory pro-
totype and in simulation, will certainly be needed to better un-
derstand MPC behavior and improve its performance.
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