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Abstract—In this paper we consider wave energy converters
(WECs) of the heaving buoy type. We assume that the available
power take-off (PTO) mechanism is able to transform mechanical
to electrical power (generator mode) and electrical to mechanical
power (motor mode). In this context, a control system can be
designed so as to take off as much energy as possible from
the waves to the network, for a broad range of sea states.
Among the implementable strategies surveyed in the literature,
model predictive control (MPC) has the potential to lead to
almost optimal performance, because of its ability to deal with
many design objectives and performance criteria and to handle
constraints on states and control inputs. However, a critical factor
is often overlooked in the design and validation of MPC (as
well as of most other WEC control strategies): the imperfect
power conversion in the PTO. The MPC strategy presented here
does take it into account, in the form of a conversion efficiency
function in the criterion to be minimised. First, an optimal control
problem is formulated and solved offline, which maximises the
average net power output of the wave energy converter. Its
performance is tested on five scenarios corresponding to different
sea states and compared to that of a conventional control, based
on proportional-integral (PI) velocity feedback. Then a nonlinear
MPC strategy is introduced and its performance is tested on the
same scenarios. It is shown that it yields roughly the same results
as the optimal control, and can help harvesting up to 50% more
energy than the reference Pl control.

Index Terms—Wave energy converters, model predictive con-
trol, short-term wave prediction, conversion efficiency

I. INTRODUCTION

Among the various Wave Energy Converter (WEC) con-
cepts, many are based on buoyant bodies placed in the sea
(see e.g. [1] for a survey). The oscillations caused by the
waves passing the body can be converted into electricity
by a mechanism called Power Take-Off (PTO). Some PTOs
allow four-quadrant operation, i.e. they are able not only to
transform mechanical to electrical power (generator mode) but
also electrical to mechanical power (motor mode). This feature
provides for a great deal of flexibility to control the body
motion and bring it into resonance with the incident wave, in
order to maximise the net harvested energy.

Among the implementable control strategies that have been
proposed in this framework (see [2]), such as proportional
velocity feedback control, approximated complex-conjugated
control or model predictive control, the latter has the potential
to lead to almost optimal performance, because of its ability

to deal with many design objectives and performance criteria
and to handle constraints on states and control inputs.

Examples of model predictive control (MPC) strategies,
based on linear or nonlinear models, convex or non-convex
criteria, can be found in [3]-[7]. Most strategies are formulated
so as to maximise the net produced energy over a given
horizon, which corresponds (for large enough horizons) to
the ultimate goal any WEC control system should strive for.
However, to the best of our knowledge, no MPC strategy
has been proposed so far which takes directly into account
the imperfect power conversion in the PTO by introducing a
(nonlinear) conversion efficiency, function of the instantaneous
power, in the optimisation criterion. Notice that, even though
this practice is seldom followed even in the most recent
literature, conversion efficiency should be always taken into
account in the simulation model to obtain realistic results and
a fair comparison among controllers, as shown in [8] for PI
velocity feedback control and in [9] for latching control.

Section 11 describes the system studied, and introduces the
mathematical model and control parameterisation used in the
following. In Section Ill, an optimal control problem which
takes into account PTO conversion efficiency is formulated
and solved offline, assuming complete knowledge of the sea
state over the whole optimisation interval. Optimal control
results on five different sea states are compared with those
obtained with a standard proportional-integral (PI) velocity
feedback control strategy, whose parameters are optimised
off-line for each sea state. In order to eliminate the need
for a far-ahead prediction of the wave force, and overcome
the computational burden of the optimal control, a moving-
horizon model predictive control (MPC) strategy is introduced
in Section IV. Using once again the PI control as a benchmark,
it is shown that the MPC strategy can extract up to 50% more
power from the waves. The last section gathers the main open
issues and future topics worth investigating.

Il. SYSTEM DESCRIPTION

A. Wave Energy Converter Modeling

A wave energy converter of the heaving buoy type, outlined
in Fig. 1, is considered. Its mechanics is modelled as a
(second order) rotational mass spring damper system. The
spring represents the hydrostatic restoring force. The input is
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Fig. 1. Simplified model of the considered machine.

the sum of all acting forces (actuator force, radiation force and
wave excitation force) and the output is the velocity. Wave
interaction is considered by modelling a radiation resistance
force f which is calculated from the velocity using order five
dynamics. Actuator dynamics is modelled using a second order
low-pass filter giving the relationship between the commanded
force u. of the PTO system and the actual force u. The
maximum and minimum amplitudes of the force u are limited
by physical limitations at  Umax-

A block diagram of the complete model is depicted in
Fig. 2. The following system representations are introduced:
the actuator dynamics Mg

Xa = AiXa + BSu (1)
U= CZSXa: 2
and the system dynamics M¢
Xs = AgXs + Bg(w u) 3
vV =CSXs: (4)

which comprises the model of the mechanics and the radiation
force. w denotes the wave force which is assumed to be a
measurable exogenous signal. In the following, five different
realistic sea states with spectra shown (after smoothing) in
Fig. 3, are considered for the generation of w.

B. Control Parameterisation and System Discretisation

In the optimal control framework, one often works with
parameterised controls. In this work, the standard approach
of a piecewise constant control signal is chosen. Accordingly,
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Fig. 2.  Structure of the considered mathematical model of the considered
machine.
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Fig. 3. The (smoothed) spectra of the five considered sea states.

the system dynamics are discretised. The discrete-time coun-

terparts of MS and Mg, are referred to as Ma and Msys.

The state-space representation for Mg is

Xaji+1 = AaXaii + Balg;i
Ui = CaXa:i + DaUc:i:

(®)
(6)

For the actuator dynamics, a zero-order hold discretisation is
chosen in accordance to the piecewise constant parametrisation
of the commanded control. Discretised with a zero order hold,
the actuator dynamics have no direct feed-through (i.e: Dy =
0). But other choices are possible, so a generic Dy is used in
the following.

The system dynamics are discretised using Tustin’s rule.
Both the wave force and the PTO force (the filtered com-
manded force) are continuous signals s.t: Tustin’s rule yields
a much better approximation for a given sample time than the
zero-order hold. A discretisation using Tustin’s rule results
in a system representation which is not strictly proper (i.e:
Ds & 0, where Ds is the feed-through matrix for Msys).

A sample time of 0:1 sec is selected for the discretisation
of both models.

For a certain horizon of n samples, starting to count at
sample 0 (i.e: now or t = 0), the sampled vectors of
commanded/actual control, velocity and wave force are given
as

Ul = UcoiUcaiiiiiUgn 1 3 @)
u' = UpjUg;iiijUn 1 ; 8)
vl = VoiviiiiVn 1 )
W' = WoiWi;ii;Wn 1 (10)

Using (5)-(6), the expressions (8)-(10), and the initial values
of the actuator and system dynamics, relationships between u
and uc and between v and (w u) can be established. The
actuator dynamics can be written as

> CHe 4
Da 0 0 0
C.Ba Da 0 0
u=EB CaAB. CaBa Da 0
: : : 0

C.A" 1B, C.AD 2B, C,A! 3B, Da
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Ca
CaAa
+ CaAg Xa;0 (11)
C,AND
&}
Uo

In analogy to B.x y and Uy, the matrices By xy and \4.x are
defined for the system dynamics. Using these expressions, the
system dynamics can be written as

V=Buyrv(Ww Uu)+ \§x
=Burv(W (BeryUe + Wy)) + \f:x:

With (11) and (13), the PTO force and the velocity are
expressed in terms of the commanded force, the incident wave
force and the initial states.

(12)
(13)

I1l. OFF-LINE OPTIMAL CONTROL
A. Control Objective

The control objective is to take off the maximum amount
of energy/mean power from the considered machine by op-
timising the PTO control strategy. Since this mean power is
taken from the system, it is given a negative sign and thus,
the control objective corresponds to the minimisation of the
mean power. The mean power PS5, is easily calculated as the
normed integral over the PTO force multiplied with the device
velocity and the actuator efficiency
Zt

1

PS = T uvdt:

t=0

(14)

In [10], the mean power output is characterised by assuming
an almost perfect PTO with losses that are only proportional to
the device velocity and = 1. In this case, the average mean
power that can be taken off the machine can be calculated
based on the mean losses, the integral (14) does not need
to be evaluated. This characterisation allows for an elegant
expression of the mean power output as a convex quadratic
function of the control force. It is straightforward to use such
an objective function in a standard MPC formulation which
can be solved using readily available software tools as done
ine.g: [4].

Unfortunately, this formulation of the objective function
is unrealistic because the PTO is never one-hundred-percent
efficient. This makes power that is taken from the grid more
expensive and reduces the value of the generated power. This
phenomenon has a great impact on the optimal control and
thus cannot be neglected. The phenomenon can be modelled
by choosing an efficiency which is a function of the ideal
instantaneous power uv:

oifuv 0

uv) =
(uv) ioifuv<0

;0 o 1 (15)
The coefficient ¢ corresponds to the product of the average ef-
ficiencies of each PTO stage (actuator, hydraulic transmission

if any, generator/motor, inverters). It depends on the PTO and
may even differ between the two cases uv 0 and uv < 0.

Considering (15), the losses depend on the instantaneous
power and the elegant formulation from [10] is no longer
applicable s.t: it is mandatory to optimise (14) directly.

In order to avoid issues in gradient based optimisation, a
smoothed approximation of the function (15), continuous in
uv = 0, can be used.

B. Formulation of the Optimal Control Problem

In accordance with the previous section, the following opti-
mal control problem has to be solved to harvest the maximum
amount of energy from the considered machine:

rrdin PS s.t: (16)
o @
Umin u Umax (17)
Xmin X Xmax (18)

The mean power Pg, is a functional of the unknown control
signal uc which can be considered to be an arbitrary function
of time. To facilitate the numerical solution of the optimisation
problem, the control signal uc is restricted to being piecewise
constant (on an equidistant grid of time) as already mentioned
in Section 11-B. Instead of the “function” uc, the sampled
vector of the commanded force u is the new vector of
decision variables.

C. Reformulation of the Objective Function

Introducing

the integral in the formulation of the instantaneous power P S,
(15) is reformulated into an Euler integration

Pn= 1=Tu' ~(u;v)v: (20)
The optimal control problem can only be solved for a given
sea state w (with its sampled counterpart w). It is pointed out
explicitly, that the sea state must be known for the complete
interval over which the optimal control is to be calculated. The
formulation of the velocity vector (13) is rewritten accordingly
to highlight the interdependency of velocity and commanded
force.

V=Byry(W (Beryu:+ W)+ \bx (21)
=|BuB!{\ZBc!}uc+Fu!vW B{J7!VLJO+\6;§ (22)
cuv \§

= BeryUe +

(23)

Inserting the discrete-time formulation of the dynamics, i. e:



(11) and (23), into (20), yields

Pm= 1=T (BexyUc + UO)T (Ue) (Bervue + \§)

(24)
= 1:Tu;rB;r!u (uc)BC!VuC+
|1=T Ug (Uc)Bci}/+\6T (Uc)Bc!u}Uc+

LCYN
oY

Co(Uc)

(25)

In (25), the function ~(u;Vv) has been replaced with the
function (uc). The two functions are related as follows

(Uc) = ~(Beruuc + Ug; By Ue + \§): (26)

If the efficiency of the PTO (uc) is neglected, i.e: if
(uc) = 1, the formulation (25) corresponds to a quadratic
cost function. In order to bring it to the standard form

1=2ul Hu + T U, + co; H symmetric, (27)

the first term in (25) has to be cast into an expression with
a symmetric inner matrix H. Keeping in mind that P, is a
scalar and using the following property of any scalar s

s=(s' +5)=2; (28)

the quadratic term is rewritten as

Hfrc)

z {

1:2ucT 1=T BcT!v (UC)TBc!u B;r!u (U)Bery U
(29)

In the simple case (uc) = 1, the convexity of the objective
function can be checked by looking at the definiteness of the
inner matrix H(u;) in (29). This matrix only depends on
the actuator and system dynamics. For the problem data of
the considered machine, the objective function is non-convex,
because H (uc) is not positive semi-definite.
For an efficient solution of the optimal control problem, the
gradient of the objective function
Pm = 1=2u{ H(uc)Ue + F(Ue) U + co(Ue)  (30)

is easily calculated as

@Pm _ 1 oo T OH(Ue) T
T u; H(u) + 1=2u; @7ucu°+f(u°) +
@f(UC)T @CO(UC)T.
+ U U + IR (31)

If a non-smooth function for the PTO efficiency is used, the
partial derivative in (31) is zero except for the points for which
it is not defined. If a smooth approximation of the efficiency

a(uv) is used instead, the partial derivative can be calculated
over the whole range of the function.

D. Reformulation of the Constraints

The constraints on the control

Umin u (32)

Umax

which must hold for all samples of u, i.e: for all entries of
u, can be equivalently formulated introducing constraints on
the decision variable uc, through (11). With 1, ; denoting
an n 1 matrix of ones, the resulting set of constraints is

LJO BC!UUC 1n 1Umax LJO

The state constraints for the mechanical subsystem can be
treated analogously.

(33)

1n 1Umin

E. Smoothing of the Control Signal

In order to avoid unnecessary oscillations in the commanded
PTO force uc, a penalty term for variations of u. can be
added to the control objective. Such a penalty term Pyg, is
easily formulated using backward differences. The vector of
command variations is

Uc = Uc,o Uca  Ugo Uc2 Uea Uc:n 1 Ugn
34
5 3 (34)
1 0 0 0 O
1 1 0 0 O
=R0 1 1 0 0%uc (35)
0 0 0 ::: 11
| {z }
M

Introducing the weight wy 4 Which allows to tune the trade-
off between desired performance and smoothness of the com-
mand, the penalty term Py, is chosen as

.
Wyar Wyar

Pyar = u u 36

var umaxn C umaxn C ( )

= Mar  yTMTM @7

= 1=2u] Hyar Uc (38)

The normalisation with umaxn helps to choose the weight
Wyar. In essence, if the command jumps from its maximum to
its minimum value from sample to sample, a weight wyar =1
would lead to an overall penalty term of 22. For the results
given in this paper, Wyar is set to 50. The effect of the
smoothing is depicted in Fig. 4. Both versions effectively
yield the same power output. However, the smoothed control
is much less aggressive and thus to be preferred over the
non-smoothed. Furthermore, the solution to the optimisation
problem with smoothing converges faster.
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Fig. 4. Impact of the smoothing on the control.

F. Scaling of the Decision Variables and the Objective Func-
tion

In order to avoid numerical issues, some scalings are
introduced for the decision variables u. and the objective
function. On the one hand, the decision variables are scaled
to the bounds of the control signal (Umax)- On the other hand,
the objective function average mean power is scaled to the unit
kW which corresponds to an overall scaling factor of 1=1000.

G. Formulation of the Optimisation Problem

Using the expressions from the previous sections, the overall
optimisation problem, which is referred to as the optimal
control problem, is

min ug (H(Uc) + Huar) Ue + F(Ue)T Ue + Co(uc) st
(39)

1n 1Umin Up < Beryle <1p 1Umax  Up: (40)
The dynamic constraints are implicitly contained in the objec-
tive function. State constraints for the mechanical subsystem
are not considered to avoid slowing down the computations.

If desired, they could be incorporated in analogy to (33).

H. Choice of the Optimisation Algorithm

Since the control objective of (39) is nonlinear and non-
convex with a high number of unknowns, a large-scale non-
linear optimisation algorithm is needed. Because the objective
function is continuous and an (approximated) gradient can
be determined at low computational cost, a gradient-based
optimisation algorithm is favoured. Among the freely available
solvers available for Matlab falling into the desired category,
the interior point algorithm IPOPT [11], interfaced via the
OPTI toolbox [12], was chosen, for its performance.

I. Consistency Check of the Optimal Solution

Two different scenarios are considered in order to verify
the solution found with IPOPT, i.e: whether a global or a
local solution is found, and in order to quantify the possible
performance loss.
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Fig. 5. Optimal control trajectories calculated using random initial values.
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Fig. 6.  Distribution of average power harvested with optimal controls

calculated using random initial values.

1) Random Initial Guesses for the Decision Variables:
In the first scenario, the same optimal control problem is
solved for different random initial choices of u.. Results from
optimisation runs with 50 random initial values for u. are
depicted in Fig. 5. It is clear that the optimisation problem
converges toward the same solution for all considered random
initial values.

At the same time, the corresponding objective values that
are obtained are extremely close as shown in Fig. 6. All results
are within a band of about 0:5% of the same objective value.

2) Test of the Optimum Principle: The second scenario
corresponds to a verification of Bellman’s optimum principle.
It states that an optimal trajectory has the property that at
an intermediate point, no matter how it was reached, the rest
of the trajectory must coincide with an optimal trajectory as
computed from this intermediate point as the initial, see [13].

In this scenario, two problems are solved. The second
problem corresponds to a subproblem of the first, and the
optimal control is calculated on an interval starting at an

z
g
1
g
€
8
— — — = long horizon subproblem
Fig. 7. \rification of the optimum principle: Solution on a sub-interval

yields the same trajectory as obtained on the complete interval.



TABLE |
AVERAGE MEAN POWER OUTPUT OF THE OPTIMAL CONTROL WITH
DIFFERENT EFFICIENCIES.

Optimal control Pl
0=- 1 0:9 0:8 0:7 0:7
Pm=kW | -27.86 | -22.26 | -19.06 | -16.32 | -12.09

intermediate point from the first problem to the last point of
the first problem. Fig. 7 shows that this test is also passed.

J. Application Results and Comparison with Reference Con-
trol

The optimal control scenario is solved offline. The execution
time of the code is thus unimportant s.t: the problem can be
solved over long time horizons. In this case study, a horizon of
n = 2000 grid points is chosen which corresponds to 200 sec.
This section focuses on the optimal control scenario for the
sea state 3, i.e: for waves of medium height. The maximum
CPU time is set to 15 min. During this time, on a recent but
not particularly fast PC (with an Intel i7 CPU at 2.8GHz),
the solver can perform about 50 iterations and the solution
converges.

As a reference for the performance of the optimal control
a standard PI velocity feedback control (also referred to as
BK-control in [8]) is used:

Z¢
u.= kp vd
to

kyv: (41)
The proportional gains kp and ky are chosen using a gridding
approach: for each sea state and time interval considered,
the closed loop is simulated for a grid of gains and the
combination leading to the best average power output is
selected. If well tuned, the Pl control law brings the device
into resonance with the incident wave.

The optimal control problem is solved for different values
of the efficiency o 2 £1;0:9;0:8;0:7g in order to study its
impact on the results. For the nominal case o = 0:7, the
obtained optimal trajectory is compared with the results from
the PI velocity control, see Fig. 8. In the considered time
interval, the optimal control results in higher amplitudes of
displacement and velocity.

All results are also gathered in Table 1. The average mean
power that can be harvested clearly drops significantly if the
PTO efficiency is reduced. At the same time, the optimal
control avoids to take power from the grid as seen clearly
in Fig. 9 (uv is seldom negative). The ratio between the
maximum and minimum instantaneous uv is much lower for
the high efficiencies.

IV. MOVING HORIZON MODEL PREDICTIVE CONTROL

In order to overcome the computational burden of the
optimal control and to eliminate the need for a far-ahead
prediction of the wave force, a moving-horizon MPC can be
used. The basic idea of moving-horizon MPC is the following:

displacement / rad

velocity /rads™

control /106N

uv /kW

time /s

optimal control

Fig. 8. Comparison of optimal control and PI control for the wave 3.

time /s

N=1 ——=-1=09 -——- o =08

1o = 0.7

Fig. 9.
efficiencies.

Instantaneous power with optimal controls for different PTO

1) At current sample i measure (or estimate) the system
state and use it as an initial value to calculate an optimal
control over a limited horizon with n samples starting
at sample i. This yields a time series of optimal control
values uc;; of length n.

2) Apply the first value of uc; (corresponding to the
control for the current sample) as a command for the
system and hold it for the duration of the sample period.

3) At the next sample i + 1, measure the system state and
use it again as an initial value to calculate an optimal
control over a horizon with n samples starting at i +
1. Initialise the vector of decision variables using the
results from the previous step. This yields Uc:i+1
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Fig. 11. Applied and predicted controls in a sliding horizon MPC scheme.
The red lines represent uc:; in each time step. The first entry, i.e: the applied
control, is highlighted in blue.

4) Apply the first value of Ug.j+1.

This principle is depicted in Fig. 10.

The main advantages of the moving-horizon MPC scheme
is that it is actually implementable in real word applications
as an online control law if a short-term wave prediction is
available.

A. Penalty for the First Control Value

The transition between the optimal control problem over a
single horizon and the moving-horizon problem mainly comes
down to the problem of reinitialising the optimisation problem
at each time step. To do this correctly, the objective has to
be extended in order to penalise the difference between the
control for the current step and the previous step Ucpre in
analogy to (38)

W,
—a (Uc;o  Ucipre) (Uco  Ucipre) (42)
Umaxn - =
Wyar . h ith i
=—— U, 1 0 ::: 0 1 0 ::: 0 U
UmaxN h i
ZUC;DI’e 10 0 Uc+ ug;pre (43)

The latter term must be added to the objective function of the
optimisation problem (39) which is solved in each step.

B. Compliance with Real-Time Computation Constraints

The prototype control, which is presented in this paper,
has not been coded with respect to real-time computation
constraints. The control, i.e: the optimisation problem, is
solved in a for-loop over the desired time span. In each
time step, the optimisation algorithm is terminated after 10
iterations' and the first entry of the corresponding U is
applied in a continuous time simulation of the model in
Simulink. The final values of the simulation are recovered
(state feedback) and used to re-initialise the optimisation - all
according to the general MPC procedure described in Section
IV. Despite this simple implementation, the computational
time, including the simulation, is only 2.5 times slower than
real-time (on the same not particularly fast PC with a 2.8 GHz
processor). Using the profiler option of Matlab, it can be found
that only about 45% of this time is spent solving the MPC
problem. Since these results have been obtained without any
code optimisation, there is some room to develop a real-time
capable version of the control law.

C. Short-Term Wave Prediction

In order to predict the wave force with the methods pre-
sented in this section, it must be available as a measurable
external signal of the system as assumed in Section II-A
(which is quite a strong assumption).

The approach used to predict the waves corresponds to the
online identification of an autoregressive (AR) model of the
order NaR:

DR
Yi= Vi ki (44)
k=1
The parameter vector
h it
a= a a Anan (45)

characterises the AR model.
An equivalent representation of the AR model (44) is found
with

2 3
2 3 ap a2 Il 8nar 1 Anag 2 3
v 1 0 ::: 0 0 i
y.. ! =q0 1 ::: 0 0 y.. 2 ;
0 0 0 0 '
yi nAR"'l 0 O 1 O yl [aVN=
(46)
Xi =h°~ar(a)xi 1; (47)
Yi= 1 0 ::: 0 Axr(@xi 1 (48)
| {z
Car

LA termination of the algorithm after only 10 steps is possible because an
interior points algorithm is applied which yields a series of feasible points.



Once a suitable model of the type (46) is identified for the
wave signal, it may be extrapolated as
h -

Yiel 1ji 1(@) = I1 0

i
0 Aar(@'xi 11 (49)
{z

Car

The notation y;4 1j;i 1(a) specifies that the I-step-ahead
prediction of y is calculated based on measurements up to
the step i 1 and that this prediction depends on the choice
of a.

To cover different sea states, the parameter vector a can
be optimised online in an iterative way or in a batch job
based on recently recorded data. The AR model identification
is performed with the objective of minimising a multi-step-
prediction over multiple (past) horizons as proposed in [9],
[14], [15]. With a finite set of samples T up to the current
one, such a criterion can be formulated as

> X ,
Jirp(a) = Yk Yk j@ "
k2Tj=1

(50)

Because of (49), this criterion is a nonlinear least squares

problem. No constraints on the decision variables a are

enforced s.t: the optimisation problem simply reads
a

It is solved using the adaptive nonlinear least-squares algo-

rithm (NL2SOL) interfaced by the OPTI toolbox. Several
options are important to obtain good results for the prediction:

sample time of the AR model
pre-filtering of the wave signal,
order of the AR model nagr,
wave prediction horizon (in samples) Ny;pred-

1) Sample Time of the AR Model: The sample time of the
AR model has a huge impact on the prediction quality due to
its filtering properties and its impact on the effective prediction
horizon Tw;pred = tarNw;pred. It must be chosen according
to the dominant wave frequency? fu:dom.

2) Pre-filtering of the Wave Signal: A pre-filtering of the
wave signal can greatly increase the prediction performance,
see e.g: [15]. The use of non-causal filtering techniques, to
be applied off-line, has been suggested in order to avoid a
phase lag of the estimated signal, see [16]. However, since the
issues concerning the trade off between non-causality (which
can possibly be compensated by a longer prediction horizon)
and phase lag have not been solved yet, no pre-filtering of the
wave signal is applied in this work.

3) Order of the AR model: The order of the AR model
corresponds to twice the number of harmonics that are mod-
elled. There is a trade-off between model complexity (which
increases the difficulty to solve the identification problem) and
prediction performance. In this work, nar is set to 32.

AR,

2The frequency with the highest power.

normed wave height

measured wave - — — - predicted wave

Fig. 12. Wave prediction quality.

4) Prediction Horizon: Like the order of the AR model,
this parameter represents a trade-off between the complexity
of the identification problem and the prediction performance.
A relatively large prediction horizon of Nw.pres = 50
is chosen. Of that long horizon, only a few first steps
approximate the future wave well. The prediction horizon
considered in the identification is thus much higher than the
prediction horizon needed for the MPC.

Once an AR model is identified, it remains valid for several
minutes. In the current implementation, the AR model is
updated every 300 sec. Real-time constraints are thus not an
issue. The obtained prediction performance for wave 3 is
depicted in Fig. 12. It is obvious that it is far from perfect
for more than 1 sec into the future. In the final section of this
chapter, the performance loss of the MPC control due to an
imperfect wave prediction is quantified.

D. State Observation

For the relatively simple linear model considered in this case
study, the impact of an imperfect state feedback seems to be
negligible. If only the measurable position and velocity are fed
back instead of the full state, the performance loss vanishes.
The performance loss is established in the subsequent section.

E. Application Results and Comparison with PI Control

The moving-horizon MPC control is applied to the consid-
ered machine over the complete time intervals of the available
wave data. The nominal case with o = 0:7 is considered.
The results are then compared to the results achieved with
Pl velocity feedback controllers especially optimised for the
respective waves. It should be noted that, in a realistic setting,
a gain-scheduling policy has to be implemented in order to
adjust the PI gains to the current sea state, which has to be
estimated at regular intervals. In contrast to that, the MPC
strategy remains the same for all five sea states. Fig. 13,
Fig. 14 and Fig. 15 depict the results, i.e: float position and
velocity, PTO force and power output of the MPC and the
PI control laws, for wave states 1, 3 and 5 respectively. The
time intervals correspond to the intervals during which the
maximum deflections occur.

A summary of the results is found in Table Il. The gain in
harvested energy lies between 16 % for high waves and 50 %
for low waves.
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Fig. 14. Comparison of MPC and PI control for the wave 3.

=rad

displacement

=rads !

velocity

=10°N

control

uv =kW

1010 A [ T R [

2140 2150 2160 2170 2180 2190
time =s
777777 PID — MPC

Fig. 15. Comparison of MPC and PI control for the wave 5.

TABLE I
AVERAGE MEAN POWER OUTPUT OF THE MPC CONTROL VS. THE Pl
CONTROL OVER THE WHOLE TIME INTERVALS OF THE WAVE DATA.

Pm Pl Pm MPC  gain Pm

=kW =kW
wave 1 -2.83 -4.26 50.43 %
wave 2 -8.64 -11.89 37.54%

wave 3 -16.42 -20.76 26.44%
wave 4  -24.44 -29.26 19.75%
wave 5  -32.14 -37.14 15.55%

For the representative time interval [301 sec;501 sec],
Fig. 16 depicts the performance gain (with respect to the Pl
control) of the optimal control, an MPC with state feedback
and perfect wave prediction (MPC;), an MPC with output
feedback and perfect wave prediction (MPC,) and an MPC
with output feedback and AR identification based wave pre-
diction (MPC3).

The perfect MPC and the optimal control practically yield
the same results. Most of the performance is lost due to the
imperfect wave prediction based on the AR model identifica-
tion. Compared to the optimal control or perfect MPC, the
performance loss with respect to the Pl control lies between
3% and 7 %.
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Fig. 16. Performance gain (with respect to the Pl control) of the optimal
control, an MPC with state feedback and perfect wave prediction (MPC1), an
MPC with output feedback and perfect wave prediction (MPC2) and an MPC
with output feedback and AR identification based wave prediction (MPC3).
Only the representative time interval [301 sec; 501 sec] is considered.

V. CONCLUSIONS

A nonlinear MPC strategy for a wave energy converter
of the heaving buoy type has been presented, which takes
explicitly into account the conversion efficiency of the PTO
system to maximise the mean electrical power extracted from
the WEC. It has been shown that the MPC strategy yields
results very close to the solution of the corresponding optimal
control problem solved offline and has the potential to harvest,
depending on the sea state, from 15 to 50% more energy than
a conventional controller based on Pl velocity feedback.

Nevertheless, a few issues need to be solved and/or further
investigated.

A. Short-Term Wave Prediction

The performance of the MPC strategy clearly deteriorates
with imperfect wave force prediction. Moreover, the predic-
tion approach adopted here requires periodic analysis of past
measurements in order to adapt not only the parameters of the
AR model to the current sea state, but also its sample time.
Alternative approaches exist, such as in [16], and should be
tested in the future to verify if they yield superior performance
in combination with the MPC scheme.

B. Availability and Quality of Wave Force Signal

In order to predict future wave force from current and past
values, those values must be available. However, wave force
is not directly measurable online in a realistic set-up. It can
be approximated from wave height measurements, but it must
be recalled that a direct measurement of wave height at the
center of the float is impossible during normal operation.
Some approaches (usually model-based) have already been
proposed to estimate it from commonly available sensors, but
their performance has yet to be proven for a broad range of
operating conditions.

C. Computation Time

Though it seems very likely that, optimising the code, a real-
time capable version of the control law should be realisable,
the proposed strategy remains intrinsically demanding in terms
of computations. To speed up its convergence, it may be
advantageous to compute and use an analytic Hessian. Another

line of research, which would require some non-obvious
theoretical development, consists in trying to convexify the
criterion to be minimised.

D. Robustness

The robustness of the design with respect to unmodelled
dynamics need to be investigated. It must be established if
there are dominant nonlinearities to be considered in the
system and how they affect prediction quality and computation
time.
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