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Abstract—Adaptive control is of great interest for wave energy
converters (WEC) due to the inherent time-varying nature of
sea conditions. Robust and accurate estimation algorithms are
required to improve the knowledge of the current sea state on
a wave-to-wave basis in order to ensure power harvesting as
close as possible to optimal behavior. In this paper, we present
a simple but innovative approach for estimating the wave force
dominant frequency and wave force dominant amplitude based
on the unscented Kalman filter. The main benefits of the proposed
method are illustrated by a numerical example concerning a
small-scale wave energy converter prototype, with data coming
from experimental recordings obtained in a test basin with
irregular waves.

I. INTRODUCTION

Precise knowledge of current sea-state characteristics is cru-

cial in advanced control methods for wave energy converters

(WECs). More specifically, having real-time information at

disposal about dominant frequency and dominant amplitude

of the wave excitation force acting on the device, enables the

controller to calculate the control action in an optimal manner.

Les us recall that the ultimate objective in the hydrodynamic

control of a WEC is the maximisation, for a broad range of sea

states, of the energy captured from the waves, via the force

applied by the power-take off (PTO) system (or secondary

converter) to the primary converter (fPTO in Fig. 1 which

provides a simplified representation of a heaving-buoy wave

energy converter). The reader can refer to [1] for an extended

definition of primary and secondary converters.

Fig. 1. Schematic diagram of a generic (heaving-buoy) wave energy converter

Latching control, model predictive control (MPC) and PID

control are examples of implementable WEC control strategies

[2].

For WECs with a flexible PTO, capable of both harvesting

and drawing power from the grid (respectively in generator

and motor modes), a commonly adopted solution, due to its

simplicity, is the so called PI (or BK) controller described in

[3]. This control law consists in computing the PTO force via

a combined proportional feedback on the position and velocity

of the primary converter (the float on Fig. 1)1. The damping

controller (or P controller), where the PTO force is specified

to be proportional to and oppositely directed to the velocity

of the primary converter, is even more widely adopted, as it

does not require the use of reactive power.

To maximise WEC performance, the P and I gains of these

controllers cannot be kept constant. They have to be changed

following the changes of sea state. Adaptive P or PI control has

been already discussed in the literature [4], [5], [6], at different

level of details, in the form of a gain-scheduling approach. The

main idea is to compute optimal gains for a representative set

of sea states. The gains are calculated offline, analytically or

numerically, using a gridding approach: for each sea state, the

ones leading to the best average power are picked. Then the

appropriate control action fPTO is found from a look-up table

whose input is the current sea state, which can be identified, for

instance, in terms of dominant wave frequency and amplitude,

or other characteristics of its spectrum. In most literature, only

average online estimations of sea states have been proposed,

with time windows of several minutes (10 minutes in [5], 20-

30 minutes in [6]). Such intermittent adaptive control laws

are clearly suboptimal in terms of energy recovery, since the

control gains are not continuously updated whereas the sea

state is continuously time-varying.

By contrast, an efficient method to estimate online the dom-

inant frequency and dominant amplitude of wave excitation

force, would allow to adapt the control gains on a wave-to-

wave basis. This would enable the design of a continuously

adaptive (PI) control system such as the one depicted in

Fig. 2, provided that the wave force excitation can be estimated

online.

An estimation approach based on an Extended Kalman

Filter (EKF), applied to a nonstationary, harmonic approx-

imation of the wave excitation force, is proposed in [7]

as part of the “simple-but-effective” WEC controller. The

proposed approach consists in a velocity tracking controller

with adaptive parameters computed using online estimates of

the dominant frequency and dominant amplitude of the wave

1This corresponds to a proportional–integral action on the velocity of the
primary converter, which is the reason for it being confusingly referred to as
PI controller.



Fig. 2. Adaptive WEC control system with wave force frequency and
amplitude estimation

excitation force. The rationale behind the choice of such an

estimation approach is that the wave force can be seen as a

sum of a number of sinusoids (assuming a panchromatic sea

state, [8]), but its dependency on frequency and amplitude

is a nonlinear function, preventing the use of standard linear

Kalman filter (KF). Moreover, it is quite natural to resort to

robust methods to obtain accurate estimates in the presence

of noise and/or uncertainties in wave force measurements or

estimates.

Nonetheless, it must be recalled that the EKF provides a

solution to a nonlinear estimation problem via local linearisa-

tions of the underlying model. This entails several drawbacks

for this applications. In particular, when the variation of the

wave force is large and/or the sampling time intervals are not

sufficiently small, linearisation can produce highly unstable

filters, potentially leading to divergence phenomena [9], [10].

In practice, this jeopardises the ability to accurately track

dominant wave frequency and amplitude, when the sea state

changes.

To address these limitations, the Unscented Kalman Filter

(UKF) is proposed in [9]. This is a powerful nonlinear

estimation technique and has been shown to be a superior

alternative to the EKF in several applications including param-

eter estimation for time series modeling [11], neural network

training [12], and state estimation for road vehicle navigation

[13]. An interesting feature of UKF is that no linearisation of

the nonlinear model is required.

Although the UKF has been used in a wide range of

estimation problems, to the best of the authors’ knowledge

there has been no attempt to use it to estimate the dominant

frequency and amplitude of the wave excitation force. In this

paper, we aim to fill this gap by exploring the potential benefits

of the UKF in wave frequency and amplitude estimation.

Real data recordings are used to analyse the validity and

performance of the proposed UKF algorithm.

This paper is organised as follows. Section 2 covers the

problem formulation. Section 3 is dedicated to the unscented

Kalman filter design. In Section 4, a state space model,

that is used in the UKF, is presented. Results obtained with

experimental data are evaluated in Section 5 before drawing

the conclusion.

II. PROBLEM FORMULATION

In this paper we are interested in estimating in real-time the

dominant frequency and dominant amplitude for a given wave

excitation force acting on the WEC.
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Fig. 3. Typical wave force spectrum for a fully developed sea (experimental
data).

The dominant frequency of the wave force is defined as the

peak of its spectrum, obtained by using the Fourier transform

of the corresponding time signal. For example, in Fig. 3, the

dominant wave force frequency is about 1.75 rad/s. The wave

force dominant amplitude is defined as the best magnitude,

that the wave force can be approximated to by a sinusoid with

the dominant frequency and amplitude.

III. UNSCENTED KALMAN FILTERING

The main idea behind the unscented Kalman filter is that it

is easier to approximate a Gaussian distribution than it is to

approximate an arbitrary nonlinear function.

Instead of linearising the nonlinear functions, the UKF uses

a deterministic sampling approach to capture the mean and

covariance estimates with a minimal set of sample points.

A. Unscented transformation

The idea of Unscented Transformation (UT) is:

• To choose deterministically 2n + 1 sample points (also

called sigma points) with mean x̄ and covariance matrix

Pxx. Here n is the dimension of x.

• To find the mean ȳ and covariance matrix Pyy by prop-

agating the sample points through a nonlinear function.

Define S as Cholesky factorisation of Pxx, i.e. Pxx = STS.

In UT, the sample points can be obtained as






χ0 = x̄

χi = x̄+
√
n+ λSi, i = 1, 2 . . . , n

χi+n = x̄−
√
n+ λSi, i = 1, 2 . . . , n

(1)

where Si is the i−th column of the matrix S, and λ = α2(n+
κ)− n. The scaling parameter α determines the spread of the

sample points and κ is a secondary scaling parameter.

Once the sample points are computed, we propagate them

through the nonlinear function:

γi = f(χi), i = 0, 1, . . . , 2n (2)



The next step is to calculate the mean ȳ and the covariance

matrix Pyy of the propagated points as














ȳ =
2n
∑

i=0

Wm
i γi,

Pyy =
2n
∑

i=0

W c
i (γi − ȳ)(γi − ȳ)T

(3)

where the weights Wm
i and W c

i are


















Wm
0 = λ

n+λ
,

Wm
i = 1

2(n+λ) ,

W c
0 = λ

n+λ
+ 1− α2 + β,

W c
i = 1

2(n+λ)

(4)

Note that β is a parameter used to incorporate any prior

knowledge about the distribution of x.

B. Unscented Kalman filter

The UKF is an algorithm which uses an underlying process

model to make an estimate of the current state of a system

and then corrects the estimate using any available sensor

measurements.

Consider the following system
{

x(k) = f(x(k − 1)) + ν(k − 1),
y(k) = g(x(k)) + µ(k)

(5)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

m is the mea-

surement vector, ν(k) and µ(k) are respectively, the process

noise and the measurement noise. It is assumed that ν(k) and

µ(k) are Gaussian noises with zero mean and with covariance

matrices Q and R, respectively.

For the given state estimate x̂(k − 1), and the given

covariance matrix estimate P (k − 1), there are three steps

in the UKF.

1. Sigma point calculation.

Using the state estimate x̂(k − 1) and the covariance matrix

estimate P (k−1) at time k−1, the sigma points are calculated,

at time k, as






χ0 = x̂(k − 1)

χi = x̂(k − 1) +
√
n+ λSi, i = 1, 2 . . . , n

χi+n = x̂(k − 1)−
√
n+ λSi, i = 1, 2 . . . , n

(6)

where S is the Cholesky factorisation of P (k − 1).

2. State prediction.

The predicted state mean vector x̂(k|k − 1), and the pre-

dicted covariance matrix P (k|k − 1) are computed as






















x̂(k|k − 1) =
2n
∑

i=0

Wm
i γi,

P (k|k − 1) =
2n
∑

i=0

W c
i (γi − x̂(k|k − 1))(γi − x̂(k|k − 1))T

+Q
(7)

where

γi = f(χi), i = 0, 1, . . . , 2n (8)

3. State correction.

The sigma points related to the predicted state mean vector

and the covariance matrix are calculated as






ψ0 = x̂(k|k − 1)

ψi = x̂(k|k − 1) +
√
n+ λTi, i = 1, 2 . . . , n

ψi+n = x̂(k|k − 1)−
√
n+ λTi, i = 1, 2 . . . , n

(9)

where T is the Cholesky factorisation of P (k|k − 1). The

sigma points are then propagated through the output equation:

ζi = g(ψi) (10)

The following step is to calculate the output mean vector, the

output covariance matrix and the cross covariance matrix as






























ŷ(k|k − 1) =
2n
∑

i=0

Wm
i ζi,

Pyy =
2n
∑

i=0

W c
i (ζi − ŷ(k|k − 1))(ζi − ŷ(k|k − 1))T +R

Pxy =
2n
∑

i=0

W c
i (γi − x̂(k|k − 1))(ζi − ŷ(k|k − 1))T

(11)

The Kalman filter gain, the state estimate and the covariance

matrix at time k are given by






K(k) = PxyP
−1
yy

x̂(k) = x̂(k|k − 1) +K(k)(y(k)− ŷ(k|k − 1)),
P (k) = P (k|k − 1)−K(k)PyyK(k)T

(12)

C. UKF parameters

The UKF has five parameters: Q, R, α, β and κ.

The matrices Q and R represent the process noise covari-

ance and the measurement noise covariance. R is determined

empirically and accounts for the uncertainty in the output

measurements. Choosing the process noise covariance matrix

is not straightforward. In general, there is no systematic way

to calculate Q.

The scale parameter α determines the spread of sigma points

and is set to be 10−3 in this work. β is used to incorporate prior

knowledge of the distribution of x; for a Gaussian distribution,

β = 2 is optimal. In this work, κ = 0 is used.

IV. STATE SPACE MODEL

It is assumed that the wave excitation force can be modeled

as a time varying sinusoidal signal, i.e.,

fex(t) = A(t) sin(ω(t)t+ φ(t)) + µ(t) (13)

where fex(t) is the wave force at time t, A(t) is the time-

varying dominant magnitude, ω(t) is the time-varying domi-

nant frequency, φ(t) is the time-varying phase angle, and µ(t)
is a zero mean random noise. In this model the other harmonics

are considered as a random noise.

A state space model is needed for the UKF. Assume that

fex(t) is measured and/or estimated at the times kTs, where

k = 0, 1, 2, . . ., and Ts is the sampling time. Define the

following three states :






x1(k) = A sin(kTsω + φ),
x2(k) = A cos(kTsω + φ),
x3(k) = ω

(14)



Here we reformulate the state equations in a recursive way

to cope with UKF requirements. In order to do that, A, ω

and ϕ are considered constant at first. Using the following

trigonometric relations
{

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β),
cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

(15)

one has

x1(k) = A sin ((k − 1)Tsω + Tsω + φ)
= A sin((k − 1)Tsω + φ) cos(Tsω)+

+A cos((k − 1)Tsω + φ) sin(Tsω)
= cos(Tsx3(k − 1))x1(k − 1)+

+ sin(Tsx3(k − 1))x2(k − 1)

(16)

and

x2(k) = A cos ((k − 1)Tsω + Tsω + φ)
= A cos((k − 1)Tsω + φ) cos(Tsω)−

−A sin((k − 1)Tsω + φ) sin(Tsω)
= − sin(Tsx3(k − 1))x1(k − 1)+

+cos(Tsx3(k − 1))x2(k − 1)

(17)

Denote

x(k) = [x1(k) x2(k) x3(k)]
T

Denote also

Ax =





cos(Tsx3(k − 1)) sin(Tsx3(k − 1)) 0
− sin(Tsx3(k − 1)) cos(Tsx3(k − 1)) 0

0 0 1





(18)

Combining (16), (17), and assuming ω(k) changes slowly with

the time, the following state space model is obtained

x(k) = Axx(k + 1) + ν(k) (19)

where

ν(k) = [ν1(k) ν2(k) ν3(k)]
T

Process noises ν(k−1) are included in the state equation (19)

to take into account the time varying nature of A(k), ω(k)
and ϕ(k), although (16), (17) are exact. This is explained by

the fact that (16), (17) do not take into consideration the time-

varying nature of A(t), ω(t), and φ(t). Hence ν1(k−1), ν2(k−
1) are used to model these unknown uncertainties. Clearly,

ν1(k − 1), ν2(k − 1) and ν3(k − 1) are correlated.

For the output equation, denoting y(k) = fex(k) and

C = [1 0 0],

one obtains

y(k) = Cx(k) + µ(k) (20)

where µ(k) is used to model the measurement error in the

output equation and to take into account the fact that fex(k)
contains other harmonics.

Combining (19), (20), one obtains,
{

x(k) = Axx(k − 1) + ν(k − 1)
y(k) = Cx(k) + µ(k)

(21)

The UKF presented in section III.B is then applied to the

nonlinear system defined in (21) to provide estimates of x1(k),

x2(k) and x3(k). From the estimates, one can then derive

dominant wave force frequency estimation and dominant wave

force amplitude estimation:

ω̂(k) = x̂3(k) (22)

Note that the magnitude A(k) is not a state of the system (21).

However, once x̂(k) is available, it can be easily calculated as

Â(k) =
√

x̂1(k)2 + x̂2(k)2 (23)

V. EXPERIMENTAL STUDY

A. Experimental setup

The experimental work was carried out in a wave basin of

Aalborg University (AAU), Denmark, see Fig. 4. It consists

of four parts: the wave generation (a), the wave propagation

zone (b), the point absorber laboratory model (c), and the

wave termination (d). Clearly, the wave generator and the point

absorber are the main interest in the context of this work.

Fig. 4. Experimental setup at AAU. The waves are generated by the wave
generation system (a) and the wave elevation is measured by a series of wave
gauges (b). The waves then reach the WEC laboratory model, where the wave
energy absorption takes place (c). Finally, they reach the artificial beach where
the termination takes place by a scattering process (d).

The basin has a length of 15 m, a width of 8 m and a

maximum water depth of 0.7 m. The wave paddles are driven

by a total of 15 hydraulic pistons moving in the horizontal

direction. The waves were generated by the wave maker based

on a Pierson-Moskowitz spectrum.

B. Wave excitation force estimation

Note that the wave excitation force fex(t) is considered to

be a known input for the UKF. However, this quantity cannot

be directly measured during normal operation. Hence fex(t)
has to be estimated via the measurements of other quantities.

In [14], using a combination of a bank of independent

harmonic oscillators and a Luenberger observer, an estimation

algorithm for wave excitation force is proposed. The strategy

is tested on a real WEC system. However the reported experi-

mental results show a relatively high phase lag in the estimated

signal compared to the measured signal.



In [15], by considering the wave excitation force as a time-

varying sinusoid, an EKF approach is presented2. However, no

experimental results are reported. In addition, the approach can

clearly be effective only for very narrow-banded wave forces.

By combining several pressure sensors at discrete points

on the buoy surface with the buoy heave position, and with

an extended Kalman filter, another approach is proposed in

[16]. However, the computational complexity may be high. In

addition, several extra pressure sensors are required.

In [17], the authors have reported the successful implemen-

tation of a new estimation method developed to overcome the

aforementioned drawbacks.

Its most important features, in the context studied here, are:

1) only standard WEC measurements (position, velocity,

PTO force) are used by the algorithm.

2) the experimental results show that estimated wave torque

values do not have any significant lag compared to “true”

values, which is not the case for the approach in [14].

3) in contrast to [14], no (implicit) unrealistic assumption

about the time-invariant nature of the sea state is made,

hence any operating condition can be efficiently dealt

with.

The approach is based on a linear Kalman filter and a

random walk model for the variation of the wave excitation

force. Since wave force estimation is not the main subject of

the paper, it will not be discussed further. For more details,

the interested reader is referred to [18].
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Fig. 5. Irregular wave.

C. Validation on experimental data

For the present analysis, an irregular wave is considered,

see Fig. 5. The wave is unidirectional, two dimensional and

long-crested. The data set is measured at a sampling frequency

of 1 kHz. To reduce the computational complexity, data down-

sampling with a factor of 100 is applied. The spectrum of the

data set is presented in Fig. 6.

In Fig. 6, it can be observed that the dominant frequency is

around 5 rad/s.

2Note that the EKF approach mentioned here is applied to the estimation
of wave excitation force from WEC measurement, and bears no relation to
the UKF approach for the estimation of wave force dominant frequency and
amplitude described in this paper, or the EKF mentionned in [7]
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This fact is confirmed by the dominant frequency estimate

shown in Fig. 7.
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Finally, Fig. 8 shows the dominant magnitude estimate. An

interesting feature of the UKF is that it is able to estimate the

dominant frequency and dominant magnitude even in presence

of significant variations of the wave force. This feature can

hardly be guaranteed with the EKF.

VI. CONCLUSION

A simple solution based on the unscented Kalman filter to

the problem of estimating the wave force dominant frequency

and dominant amplitude has been proposed in this paper.



Various experimental results have been presented to assess

the performance of the UKF. It has been shown that the

UKF estimates with high accuracy and no significant lag

the dominant frequency and dominant amplitude in spite

of significant variations of the wave excitation force. This

innovative algorithm thus paves the way to fully functional

adaptive control for wave energy converters of the heaving-

buoy type (and possibly of other types). It is interesting to

note that the proposed algorithm is robust with respect to

WEC architecture since the dynamic behaviour of the system

does not interfere with the estimation approach and can thus

be applied to any kind of WEC system. Future work will

focus on estimating residual bias on both wave force dominant

amplitude and frequency.
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