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Abstract—The main objective in hydrodynamic control of wave
energy converters (WECs) is the maximisation, for a broad range
of sea states, of the energy captured from the waves. Latching
control, model predictive control and “PID” control are examples
of implementable strategies surveyed in the literature. “PID”
control, while suboptimal, has the merit of being simple, requir-
ing only straightforward calculations and can be considered a
standard solution for WECs with a four-quadrant power take-
off system (PTO), in particular in its “PI” variant. Adaptive PI
control has been already discussed in the literature, usually using
a gain-scheduling approach, with optimal gains precomputed
offline for a representative set of sea states and applied as a
function of estimated sea state conditions. In most literature, only
average online estimations of sea states have been proposed, with
time windows of several minutes. Such intermittent (or switching)
adaptive control laws are clearly suboptimal in terms of energy
recovery, since the control gains are not continuously updated
whereas the sea state is continuously time-varying. In this paper
we present a continuously adaptive PI control strategy, which
takes into account (non-ideal) PTO efficiency. The problem of
optimising the gains of the PI controller is converted into a convex
optimisation problem, thus guaranteeing that a unique and opti-
mal solution can be found offline. The gains of the PI controller
are continuously adapted online, on a wave-to-wave basis, based
on a real-time estimate of the dominant wave frequency of the
wave force, which is in turn estimated from (normally) available
WEC measurements. Validation is performed on a case study
based on a lab-scale point-absorber WEC. Simulation results
show that the proposed adaptive control scheme can recover more
energy than a fixed-gain PI controller even in a sea state with
constant spectral characteristics. Furthermore, in a changing sea
state, it outperforms switching gain-scheduled PI control where
the gains are updated from time to time based on an evaluation of
the current sea conditions. Though some preliminary wave basin
tests have already given encouraging results, further experiments
are needed to precisely quantify its energy harvesting potential.
Moreover, further research is needed to include WEC motion or
actuator constraints in the optimisation procedure.

Index Terms—Wave Energy Converters, PI Control, Con-
version Efficiency, Adaptive Control, Unscented Kalman Filter,
Dominant Frequency Estimation, Wave Force Estimation

I. INTRODUCTION

The main objective in hydrodynamic control of wave energy
converters (WECs) is the maximisation, for a broad range of
sea states, of the energy captured from the waves. In many
WECs, active control can be performed acting on the force
applied by the power take-off system (PTO) on the oscillating
body responsible of primary energy conversion (fu in Fig. 1
which provides a simplified representation of a heaving-buoy

WEC).

Fig. 1. Schematic diagram of a generic (heaving-buoy) wave energy converter

Among the implementable strategies surveyed in the lit-
erature, we can recall for instance, latching control, model
predictive control and “PID” control [1]. While, in theory,
latching control [2] and model predictive control [3], [4]
allow to achieve high levels of energy capture, their practical
implementation may be very challenging. This is due to the
fact that these control strategies require a short-term prediction
of wave excitation force, which can degrade the control
performance, if the prediction is not perfect. Moreover, model
predictive control, like other optimisation-based WEC control
approaches, is a complex and computationally demanding
algorithm.

“PID” control, on the other hand, has the merit of being
simple, requiring only straightforward calculations [1]. Be-
cause of that, it was one of the first control strategy to be
implemented on WEC prototypes (the “Salter’s duck” [5], for
instance). Even now, it can be considered a standard solution,
when a four-quadrant PTO, capable of both harvesting and
drawing power from the grid (respectively in generator and
motor modes), is available. One embodiment of this approach
is the PI (or BK) controller described in [6], which consists
in computing the PTO force via a combined proportional
feedback on the position and velocity of the oscillating element
acting as primary converter (the float of Fig. 1)1. The damping
controller (or P controller), where the PTO force is specified
to be proportional to and oppositely directed to the velocity
of the primary converter, is even more widely adopted, as it
does not require the use of reactive power.

1This corresponds to a proportional–integral action on the velocity of the
primary converter, which is the reason for it being (confusingly) referred to
as a “PI” controller.



Assuming an ideal PTO (with 100 % conversion efficiency),
well-established theoretical results are available to tune these
kind of controllers for optimal energy recovery under the
action of regular waves [7]. For practical applications, a
dominant-frequency approximation is often used to extend
these results to irregular sea-state conditions.

Whatever method is used to compute the P and I gains, they
should not be kept constant, as the sea conditions change.
Adaptive P or PI control has been already discussed in the
literature [8]–[10], at different level of details, in the form
of a gain-scheduling approach. The main idea is to compute
optimal gains for a representative set of sea states. The gains
are calculated offline, analytically or numerically, using a
gridding approach: for each sea state, the ones leading to the
best average power are picked. Then the appropriate control
action fu is found from a look-up table whose input is the
current sea state, which can be identified, for instance, in terms
of dominant wave period and significant wave height, or other
characteristics of its spectrum. In most literature, only average
online estimations of sea states have been proposed, with time
windows of several minutes (10 minutes in [9], 20-30 minutes
in [10]). Such intermittent (or switching) adaptive control laws
are clearly suboptimal in terms of energy recovery, since the
control gains are not continuously updated whereas the sea
state is continuously time-varying.

In this paper we present a (truly) adaptive PI control
strategy, which takes into account (non-ideal) PTO efficiency.
The problem of optimising the gains of the PI controller is con-
verted into a convex optimisation problem, thus guaranteeing
that a unique and optimal solution can be found offline. The
gains of the PI controller are continuously adapted online, on
a wave-to-wave basis, based on a real-time estimate of the
dominant wave frequency of the wave force, which is in turn
estimated from (normally) available WEC measurements.

Section II describes the modelling assumptions and defines
the control problem, along with the energetic performance
criterion to be optimised. Section III presents the procedure
to design an optimal PI control under regular waves in the
presence of a non-ideal PTO. Section IV explains how the
results from the previous section can be used, following
a dominant wave frequency approach to deal with realistic
polychromatic sea states, to build an adaptive control scheme:
notably, the variable-gains PI control law requires a real-time
estimate of the dominant frequency of the wave excitation
force acting on the WEC, which has to be estimated as well
since it is not normally available while the WEC is running.
Section V introduces a case study, based on a lab-scale point-
absorber WEC, and provides a preliminary assessment, in
simulation, of the proposed control strategy. Finally, some
concluding remarks end the paper.

II. WEC MODELLING AND CONTROL PROBLEM
DEFINITION

A. WEC modelling

We consider here the type of WECs schematically rep-
resented in Fig. 1, that is, point-absorber WECs with an

oscillating part that moves in one degree of freedom, the
heaving direction for instance, with respect to a reference
(fixed anchor or a submerged body). From the relative motion,
useful energy can be extracted via the PTO.

Under the assumption that the oscillations of the system
are relatively small, the WEC motion can be expressed, in the
frequency domain, as follows [7],(
jωM + Zpa(jω) +

Kpa

jω

)
v(jω) = fex(jω)− fu(jω) (1)

where
• v(jω) is the heaving velocity of the oscillating part;
• fex(jω) and fu(jω) are the wave excitation force and

the PTO force, respectively;
• M is the mass of the float with its connected parts;
• Zpa(jω) is the radiation impedance;
• Kpa is the stiffness coefficient.
Equation (1) is based on the Cummins integro-differential

equation [11], whose hydrodynamic coefficients can be com-
puted via boundary element method (BEM) software, such
as WAMIT, Diodore, AQWA ou NEMOH. The radiation
impedance Zpa(jω) is the result of an approximation of the
radiation impulse response by an infinite impulse response
filter and can be decomposed as

Zpa(jω) = Bpa(ω) + jω(Mpa(ω) +M∞)
= Hpa(jω) + jωM∞

(2)

where Bpa(ω) is the radiation resistance, and Mpa(ω) is the
added mass after M∞, the asymptotic value of the added mass
for ω → ∞ is removed, Hpa = Bpa(ω) + jωMpa(ω). As in
most modeling studies on point absorbers, it is assumed that
viscous, frictional forces are negligible compared to the other
terms in the equation of motion.

From (1), the float velocity can be rewritten as

v(jω) =
1

Zi(jω)
(fex(jω)− fu(jω)) (3)

where the intrinsic impedance Zi(jω) is defined as

Zi(jω) = Bpa(ω) + jω
(
M +M∞ +Mpa(ω)− Kpa

ω2

)
= Ri(ω) + jXi(ω)

(4)
where {

Ri(ω) = Bpa(ω),

Xi(ω) = ω
(
M +M∞ +Mpa(ω)− Kpa

ω2

) (5)

are, respectively, the intrinsic resistance and reactance.

B. Control structure

We define the control problem to be solved in the classic
framework of impedance matching control for WECs [7].

In a monochromatic sea state, the wave excitation force is
given as

fex(t) = Asin(ωt+ φ) (6)

where the phase φ can be set to be zero without loss of
generality. Assuming that the control force is a linear feedback



of the heaving velocity, see Fig. 2, its expression in the Laplace
domain is

fu(s) = Zc(s)v(s) (7)

where s is a complex number, s = σ+jω. Zc can be seen as a
load impedance, and designed following impedance-matching
principles.

1/Zi(s)

Zc(s)
fu(s)

fex(s) v(s)
−
+

Fig. 2. Block diagram with WEC internal impedance Zi(s) and control
impedance Zc(s).

The following proportional-integral (PI) control structure is
chosen for the control block Zc

fu(t) = Kpv(t) +Ki

∫ t

0

v(τ)dτ (8)

Rewriting (8) in the frequency domain

fu(jω) =

(
Kp − j

Ki

ω

)
v(jω) (9)

one obtains {
Kp = Rc,
Ki = −ωXc

(10)

where Rc and Xc are, respectively, the control (or load)
resistance and reactance, i.e. Zc(jω) = Rc(ω) + jωXc(ω).

C. Control objective

The control objective is to maximise the average (electric)
power produced by the WEC

Pa =
1

T

∫ T

t=0

ηfu(t)v(t)dt, (11)

where η is the efficiency coefficient.
In the literature, it is generally assumed that η = 1, i.e.

the PTO system is perfect [12], [13]. With this assumption,
the mathematical procedure needed to calculate the optimal
control action f∗u(t) is greatly simplified. For the case of
regular waves, there exists an elegant analytical expression for
f∗u(t) as a function of wave frequency. One of the well known
results is that, in order to harvest the maximum amount of
energy [14], the optimal velocity v∗(t) should be in phase
with the wave excitation force fex(t). This result, however,
does not hold if η 6= 1, as it will be shown later.

Unfortunately, the assumption of a perfect PTO with no
conversion losses is unrealistic. The power that is withdrawn
from the grid is always more expensive than the power that
is delivered to the grid via the PTO. To take into account this

fact, we can consider the efficiency coefficient η as a function
of the ideal instantaneous power fuv,

η(fuv) =

{
ηp if fuv ≥ 0,
ηn if fuv < 0

(12)

where the coefficients 0 < ηp ≤ 1 and ηn > 1 depend on the
PTO system, and may even be a function of fuv.

III. OPTIMAL PI CONTROL WITH NON-IDEAL PTO UNDER
REGULAR WAVES

A. Average power calculation

For the given wave excitation force (6) and the control force
(7), it can be proved that the average power (11) is obtained
as

Pa =
A2Rc

2 ((Xc +Xi)2 + (Rc +Ri)2)
Cη (13)

where

Cη =

(
np −

ηn − ηp
π

(
Xc

Rc
− arctan

(
Xc

Rc

)))
(14)

The proof is not detailed here for the sake of conciseness.
Indeed, if we consider the limit case when the PTO is

perfect, i.e. ηp = ηn = 1, then Cη = 1 in (7) and the average
power is calculated as

Pa =
A2Rc

2 ((Xc +Xi)2 + (Rc +Ri)2)
(15)

which is the well-known result [14], obtained when the non-
linear efficiency coefficient is not taken into account.

B. Optimal frequency response

Using (13), the next step is to compute the optimal Rc and
Xc which maximise Pa. We require that Rc ≥ 0, since Rc
is used to convert the wave energy into useful mechanical or
electrical energy. Notice that, because the factor A2

2 has no
influence on the optimal solution, it can be omitted in the
optimisation problem. Thus, the problem to be solved is

min
Rc,Xc

{
− Rc
(Xc +Xi)2 + (Rc +Ri)2

Cη

}
(16)

With Cη defined by (14), (16) is clearly a nonlinear opti-
misation problem. Hence it is impossible to obtain a closed
analytical form for the optimal solution.

Before proceeding further, define

d =
Xc

Rc

Consider the function f(p) = ηp− ηn−ηp
π (d− arctan(d)). By

calculating the derivative of f(p), it is easy to see that this
function is monotonically non-increasing. Hence the equation,

ηp −
ηn − ηp

π
(d− arctan(d)) = 0 (17)

has a unique solution d∗ for any positive ηn and ηp. Therefore,
there exists a unique line

Xc = d∗Rc (18)



that satisfies the equation

ηp −
ηn − ηp

π

(
Xc

Rc
− arctan(

Xc

Rc
)

)
= 0 (19)

Figure 3 presents a numerical example of the average power
Pa as a function of Rc, Xc for a given and fixed ω, using
the WEC intrinsic impedance and the efficiency coefficients
defined in the case study of Section V. Figure 4 shows a
contour plot of Pa in the Rc −Xc plane.
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Fig. 3. Average power Pa as a function of Rc and Xc.
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Fig. 4. Contour plot Pa in the Rc −Xc plane.

Using Figures 3 and 4, two main remarks can be made
1) Pa is not a concave function of Rc and Xc.
2) The line (18) divides the plane Rc−Xc into two regions

• For all Rc, Xc such that

Xc ≥ d∗Rc
the function Pa is convex.

• For all Rc, Xc such that

Xc ≤ d∗Rc
the function Pa is concave.

Figure 5 shows the average power Pa as a function of Rc
and Xc in the concave region.

Figure 6 and Figure 7 show respectively, the optimal Rc and
Xc (solid blue lines) as a function of ω. By solving (17), one
obtains d∗ = 5.4403 for the given ηp, ηn. Figure 6 and Figure
7 also show Ri and −Xi (dashed red lines) as a function of
ω.
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Fig. 6. Optimal Rc and Ri as a function of ω.

It can be noticed from Figure 7 that the optimal Xc is very
close but not equal to −Xi. Hence the phase response ∠W (s)
of the transfer function (20) of the WEC system in closed loop

v(s) =
1

Zi(s) + Zc(s)
fex(s) =W (s)fex(s) (20)

is in general not equal to zero. Hence the optimal velocity is
in general not in phase with the wave excitation force in the
presence of the nonlinear efficiency coefficient. The result of
Falnes [14], where it is stated that the optimal velocity is in
phase with the wave excitation force, can be considered only
as an ideal case, where the PTO system is perfect.

Remark: If the PTO system is constrained to be purely
resistive, then Xc = 0. In this case the optimisation problem
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ω
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Fig. 7. Optimal Xc and −Xi as a function of ω.



(16) becomes

min
Rc

{
− npRc
X2
i + (Rc +Ri)2

}
(21)

There exists an analytical closed form solution to (21)

Rc =
√
X2
i +R2

i (22)

Note that the efficiency coefficient does not play any role in the
optimal Rc in the resistive PTO system case. This is explained
by the fact that there is no reactive power involved, so the
energy harvested from the waves is always positive.

Figure 8 presents the optimal Rc as a function of frequency,
for the purely resistive case.

1 2 3 4 5 6 7 8 9 10

ω

0

10

20

30

40

50

60

70

80

90

100

R
c

Fig. 8. Optimal Rc as a function of ω in the resistive PTO system case.

IV. ADAPTIVE PI CONTROL

The approach described above allows to compute, for a
specific WEC, the optimal control resistance Roc and reactance
Xo
c , for each given regular wave excitation force.
Using (10), the corresponding optimal PI gains can be

computed off-line, frequency by frequency, as:{
Ko
p = Roc(ω),

Ko
i = −ωXo

c (ω)
(23)

The resulting curves can be implemented, as look-up tables
for instance, in an adaptive PI control scheme where the
scheduling variable is the dominant frequency of the wave
force excitation2. A customary approach in control of real
devices is indeed to choose the load so that impedance
matching occurs at the dominant frequency in a wave spectrum
[15], though we should recall that the PI gains are truly
optimal only in a harmonic excitation context. This approach
is followed, for instance, for the design of the “simple-but-
effective” controller in [16], a velocity tracking controller
with adaptive parameters computed using online estimates of
the dominant frequency and dominant amplitude of the wave
excitation force.

The structure of the adaptive control scheme is shown in
Fig. 9. Notice that the variable-gains PI control law requires
an estimate of the dominant frequency of the wave excitation

2The dominant frequency of the wave force is defined as the peak of its
spectrum

force as an input, and that the wave excitation force must be
estimated as well, as it is a quantity that cannot be measured
during normal WEC operation.

Fig. 9. Adaptive PI control approach.

To address the first problem, an estimation approach based
on an extended Kalman filter (EKF), applied to a nonstation-
ary, harmonic approximation of the wave excitation force, is
proposed in [16]. However, it must be recalled that the EKF
provides a solution to a nonlinear estimation problem via local
linearisations of the underlying model. Thus, the variation of
the wave force is large and/or the sampling time intervals
are not sufficiently small, the linearisation may yield highly
unstable filters, potentially leading to divergence phenomena
[17], [18]. A more robust solution consists in estimating
the dominant frequency (and amplitude) estimation using an
unscented Kalman filter (UKF), as described in [19].

As to wave excitation force estimation, a few methods have
been proposed recently and tested in real-time, in a model
predictive control (MPC) framework (see for instance [20],
[21], [22]), [23]). The method assessed in [23] (and fully de-
scribed in [24]), based on a linear Kalman filter and a random
walk model for the variation of the wave excitation force, has
the main advantages of using only standard measurements for
reactive control (position, velocity, PTO force) and of yielding
quite accurate estimates over a large range of sea states.

V. CASE STUDY

In this section, we consider a lab-scale 1-DoF WEC system
(described in [25]), whose intrinsic impedance can be mod-
elled as the transfer function

Zi(s) =
s6 + a5s

5 + a4s
4 + a3s

3 + a2s
2 + a1s

b7s7 + b6s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s+ b0
(24)

whose coefficients are given in TABLE I

Numerator Denominator
b7 = 1.44
b6 = 300.4

a5 = 208.6 b5 = 1.237× 105

a4 = 8.583× 104 b4 = 1.284× 107

a3 = 8.899× 106 b3 = 1.652× 108

a2 = 1.074× 108 b2 = 2.106× 109

a1 = 7.031× 108 b1 = 9.988× 109

b0 = 6.539× 1010

TABLE I
MODEL COEFFICIENTS



Figure 10 presents the corresponding Bode plot, typical of
WECs of the point-absorber type, with a resonance frequency
of fr = 7.84 rad/s.

Fig. 10. Bode plot of the considered WEC system

PTO efficiency coefficients are ηp = 0.8, ηn = 1.43.
The idea is to compare the energy recovery performance

of the proposed adaptive PI control using as a benchmark the
(switching) gain-scheduled PI controller described in [26] and
[27]. Thus, optimal Kp and Ki gains are computed offline
over a set of sea states using a gridding approach: for each
given sea state and considered time interval, the nominal WEC
model is simulated in closed loops for a grid of gains, and the
combination leading to the best average power Pa is picked.
The control action is then to be determined from a look-
up table with the current sea state (in terms of dominant
wave period and significant height), being re-estimated at
regular intervals, as an input. Notice, however, that the gain-
scheduling mechanism has not been detailed in [26] nor in
[27]: it has not been specified, for instance, if the gains are
to be interpolated or chosen instead with a nearest-neighbour
approach.

The same set of irregular waves, generated using a JON-
SWAP spectrum, which has been used to compute the optimal
gains of the reference controller, is also used for validation.
Of course, for a given irregular wave, the parameters of the
switching gain-scheduled controller will not vary during the
test, so the comparison is actually done with a fixed-parameters
PI. The spectrum of the wave excitation force corresponding
to one these irregular waves is shown in Fig. 11. Its dominant
frequency is about 5 rad/s.
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Fig. 11. First wave force spectrum (dominant frequency of ∼5 rad/s)

Fig. 12 shows respectively, the control input of the adaptive
PI control (solid blue) and of the reference PI control (dashed
red) over a 8-seconds long time interval. Fig. 13 shows the
velocity of the adaptive PI control (solid blue), of the PI
control (dashed red) and of the wave excitation force (dash-dot
green), over the same time interval.
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Fig. 12. Control input of the adaptive PI control law (solid blue), and of the
PI control (dashed red) for the WEC system [26].
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Fig. 13. Velocity of the adaptive PI control law (solid blue), and of the PI
control (dashed red), and the wave excitation force (dash-dot brown) for the
WEC system [26].

Finally, Fig. 14 presents the instantaneous power Pa for
the adaptive PI control (solid blue) and for the PI control
(dashed red). Fig. 15 shows the total accumulated energy for
the adaptive PI control (solid blue) and for the reference PI
control (dashed red). Interestingly, even in a test where the sea
state is considered constant, the proposed adaptive PI control
performs better than the reference PI control.

This is due to the continuous adaptation of PI gains to
the dominant frequency estimate. Fig. 16 shows the variation
of the dominant frequency estimate, obtained using the UKF
approach mentioned in the previous section, over the last part
of the test. Fig. 17 shows that the corresponding dominant
magnitude estimated by the UKF (not used in the adaptive PI
control law) follows well the wave force amplitude.

In order to validate the proposed adaptive control against a
continuous change in sea state, corresponding to a transition
from the wave of Fig. 11 to another wave, whose excitation
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Fig. 14. Instantaneous power Pa of the adaptive PI control law (solid blue),
and of the PI control (dashed red) for the WEC system.
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force is shown in Fig. 18, a second test is performed, under the
excitation given by a wave force generated with a time-varying
dominant frequency, which varies linearly from 5 rad/s to 2
rad/s.

For comparison purposes, a switching PI controller is im-
plemented, using a table of optimal pre-computed gains for
the two waves and for a set of intermediate sea states. The
switching is performed on the basis of an average estimation
of the dominant wave frequency. The first gain switch takes
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Â

Wave

Fig. 17. Dominant wave magnitude estimation.

0 1 2 3 4 5 6 7 8 9 10

w (rad/s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
(w

) 
(N

m
2
s/

ra
d
)

Fig. 18. Second wave force spectrum (dominant frequency of ∼2 rad/s)

place at t = 200 (which would correspond at about 15 minutes
at full scale).

Fig.19 compares the energy harvesting performance of three
controllers: adaptive PI, switching PI, and fixed-gains PI with
gains optimised for the wave force of Fig. 11.
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Fig. 19. Cumulative energy of the adaptive PI control law (solid blue), of
the switching PI controller (dotted green) and of a fixed-gains PI controller
with gains optimised for the first wave (dashed red).

VI. CONCLUSIONS

This paper focuses on a novel approach to design a continu-
ously adaptive PI control strategy for wave energy converters.

A procedure, based on the solution of a convex optimisation
problem, is presented, which allows to compute the optimal



PI gains for a given regular wave excitation force, while
taking into account (non-ideal) PTO efficiency. It is shown
that the optimal velocity is in general not in phase with
the wave excitation force when realistic PTO efficiencies are
considered. Optimal gain curves, as a function of frequency,
can be obtained from this procedure, and implemented in an
adaptive control scheme based on a dominant frequency ap-
proach. Combining two robust and accurate methods for real-
time estimation of the wave excitation force from normally
available WEC measurements and of the dominant frequency
of the (estimated) wave excitation force, the gains of the PI
controller can be continuously adapted online, on a wave-to-
wave basis.

A case study, based on a lab-scale point-absorber WEC,
has been used for validation. Simulation results show that the
proposed adaptive control scheme can recover more energy
than a fixed-gain PI controller even in a sea state with constant
spectral characteristics. Furthermore, in a changing sea state,
it outperforms switching gain-scheduled PI control where the
gains are updated from time to time based on an evaluation
of the current sea conditions.

In the future, a more extensive assessment is planned,
both in simulation and through experimentation. Though the
proposed adaptive PI control system has already been tested in
a wave basin on the lab-scale prototype used as a case study,
with encouraging results, further experiments are needed to
precisely quantify its energy harvesting potential.

Finally, further research is needed to take into account WEC
motion or actuator constraints (PTO force limits, stroke limits),
which are not dealt with in the current optimisation procedure,
as well as more complex WEC dynamics.
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