Continuously Adaptive PI Control of Wave Energy Converters under Irregular Sea-State Conditions

Hoai-Nam Nguyen, Paolino Tona

To cite this version:

HAL Id: hal-01628466
https://ifp.hal.science/hal-01628466
Submitted on 3 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Continuous Adaptive PI Control of Wave Energy Converters under Irregular Sea-State Conditions

Hoai–Nam Nguyen and Paolino Tona
IFP Energies nouvelles
IFPEN-Lyon, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
E-mail: {name.surname}@ifpen.fr

Abstract—The main objective in hydrodynamic control of wave energy converters (WECs) is the maximisation, for a broad range of sea states, of the energy captured from the waves. Latching control, model predictive control and “PID” control are examples of implementable strategies surveyed in the literature. “PID” control, while suboptimal, has the merit of being simple, requiring only straightforward calculations and can be considered a standard solution for WECs with a four-quadrant power take-off system (PTO), in particular in its “PI” variant. Adaptive PI control has been already discussed in the literature, usually using a gain-scheduling approach, with optimal gains precomputed offline for a representative set of sea states and applied as a function of estimated sea state conditions. In most literature, only average online estimations of sea states have been proposed, with time windows of several minutes. Such intermittent (or switching) adaptive control laws are clearly suboptimal in terms of energy recovery, since the control gains are not continuously updated whereas the sea state is continuously time-varying. In this paper we present a continuously adaptive PI control strategy, which takes into account (non-ideal) PTO efficiency. The problem of optimising the gains of the PI controller is converted into a convex optimisation problem, thus guaranteeing that a unique and optimal solution can be found offline. The gains of the PI controller are continuously adapted online, on a wave-to-wave basis, based on a real-time estimate of the dominant wave frequency of the wave force, which is in turn estimated from (normally) available WEC measurements. Validation is performed on a case study based on a lab-scale point-absorber WEC. Simulation results show that the proposed adaptive control scheme can recover more energy than a fixed-gain PI controller even in a sea state with constant spectral characteristics. Furthermore, in a changing sea state, it outperforms switching gain-scheduled PI control where the gains are updated from time to time based on an evaluation of the current sea conditions. Though some preliminary wave basin tests have already given encouraging results, further experiments are needed to precisely quantify its energy harvesting potential. Moreover, further research is needed to include WEC motion or actuator constraints in the optimisation procedure.

Index Terms—Wave Energy Converters, PI Control, Conversion Efficiency, Adaptive Control, Unscented Kalman Filter, Dominant Frequency Estimation, Wave Force Estimation

I. INTRODUCTION

The main objective in hydrodynamic control of wave energy converters (WECs) is the maximisation, for a broad range of sea states, of the energy captured from the waves. In many WECs, active control can be performed acting on the force applied by the power take-off system (PTO) on the oscillating body responsible of primary energy conversion (f_p in Fig. 1 which provides a simplified representation of a heaving-buoy WEC).

Among the implementable strategies surveyed in the literature, we can recall for instance, latching control, model predictive control and “PID” control [1]. While, in theory, latching control [2] and model predictive control [3], [4] allow to achieve high levels of energy capture, their practical implementation may be very challenging. This is due to the fact that these control strategies require a short-term prediction of wave excitation force, which can degrade the control performance, if the prediction is not perfect. Moreover, model predictive control, like other optimisation-based WEC control approaches, is a complex and computationally demanding algorithm.

“PID” control, on the other hand, has the merit of being simple, requiring only straightforward calculations [1]. Because of that, it was one of the first control strategy to be implemented on WEC prototypes (the “Salter’s duck” [5], for instance). Even now, it can be considered a standard solution, when a four-quadrant PTO, capable of both harvesting and drawing power from the grid (respectively in generator and motor modes), is available. One embodiment of this approach is the PI (or BK) controller described in [6], which consists in computing the PTO force via a combined proportional and integral action on the velocity of the oscillating element acting as primary converter (the float of Fig. 1)\(^1\). The damping controller (or P controller), where the PTO force is specified to be proportional to and oppositely directed to the velocity of the primary converter, is even more widely adopted, as it does not require the use of reactive power.

\(^1\)This corresponds to a proportional–integral action on the velocity of the primary converter, which is the reason for it being (confusingly) referred to as a “PI” controller.
Assuming an ideal PTO (with 100% conversion efficiency), well-established theoretical results are available to tune these kind of controllers for optimal energy recovery under the action of regular waves [7]. For practical applications, a dominant-frequency approximation is often used to extend these results to irregular sea-state conditions.

Whatever method is used to compute the P and I gains, they should not be kept constant, as the sea conditions change. Adaptive P or PI control has been already discussed in the literature [8]–[10], at different level of details, in the form of a gain-scheduling approach. The main idea is to compute optimal gains for a representative set of sea states. The gains are calculated offline, analytically or numerically, using a gridding approach: for each sea state, the ones leading to the best average power are picked. Then the appropriate control action is found from a look-up table whose input is the current sea state, which can be identified, for instance, in terms of dominant wave period and significant wave height, or other characteristics of its spectrum. In most literature, only average online estimations of sea states have been proposed, with time windows of several minutes (10 minutes in [9], 20-30 minutes in [10]). Such intermittent (or switching) adaptive control laws are clearly suboptimal in terms of energy recovery, since the control gains are not continuously updated whereas the sea state is continuously time-varying.

In this paper we present a (truly) adaptive PI control strategy, which takes into account (non-ideal) PTO efficiency. The problem of optimising the gains of the PI controller is converted into a convex optimisation problem, thus guaranteeing that a unique and optimal solution can be found offline. The gains of the PI controller are continuously adapted online, on a wave-to-wave basis, based on a real-time estimate of the dominant wave frequency of the wave force, which is in turn estimated from (normally) available WEC measurements.

Section II describes the modelling assumptions and defines the control problem, along with the energetic performance criterion to be optimised. Section III presents the procedure to design an optimal PI control under regular waves in the presence of a non-ideal PTO. Section IV explains how the results from the previous section can be used, following a dominant wave frequency approach to deal with realistic polychromatic sea states, to build an adaptive control scheme: notably, the variable-gains PI control law requires a real-time estimate of the dominant frequency of the wave excitation force acting on the WEC, which has to be estimated as well since it is not normally available while the WEC is running. Section V introduces a case study, based on a lab-scale point-absorber WEC, and provides a preliminary assessment, in simulation, of the proposed control strategy. Finally, some concluding remarks end the paper.

II. WEC MODELLING AND CONTROL PROBLEM DEFINITION

A. WEC modelling

We consider here the type of WECs schematically represented in Fig. 1, that is, point-absorber WECs with an oscillating part that moves in one degree of freedom, the heaving direction for instance, with respect to a reference (fixed anchor or a submerged body). From the relative motion, useful energy can be extracted via the PTO.

Under the assumption that the oscillations of the system are relatively small, the WEC motion can be expressed, in the frequency domain, as follows [7],

\[
\left(j\omega M + Z_{pa}(j\omega) + \frac{K_{pa}}{j\omega} \right) v(j\omega) = f_{ex}(j\omega) - f_a(j\omega) \tag{1}
\]

where
- \(v(j\omega) \) is the heaving velocity of the oscillating part;
- \(f_{ex}(j\omega) \) and \(f_a(j\omega) \) are the wave excitation force and the PTO force, respectively;
- \(M \) is the mass of the float with its connected parts;
- \(Z_{pa}(j\omega) \) is the radiation impedance;
- \(K_{pa} \) is the stiffness coefficient.

Equation (1) is based on the Cummins integro-differential equation [11], whose hydrodynamic coefficients can be computed via boundary element method (BEM) software, such as WAMIT, Diodore, AQWA ou NEMOH. The radiation impedance \(Z_{pa}(j\omega) \) is the result of an approximation of the radiation impulse response by an infinite impulse response filter and can be decomposed as

\[
Z_{pa}(j\omega) = B_{pa}(\omega) + j\omega(M_{pa}(\omega) + M_\infty) = H_{pa}(j\omega) + j\omega M_\infty \tag{2}
\]

where \(B_{pa}(\omega) \) is the radiation resistance, and \(M_{pa}(\omega) \) is the added mass after \(M_\infty \), the asymptotic value of the added mass for \(\omega \to \infty \) is removed, \(H_{pa} = B_{pa}(\omega) + j\omega M_{pa}(\omega) \). As in most modeling studies on point absorbers, it is assumed that viscous, frictional forces are negligible compared to the other terms in the equation of motion.

From (1), the float velocity can be rewritten as

\[
v(j\omega) = \frac{1}{Z_{i}(j\omega)}(f_{ex}(j\omega) - f_a(j\omega)) \tag{3}
\]

where the intrinsic impedance \(Z_{i}(j\omega) \) is defined as

\[
Z_{i}(j\omega) = B_{pa}(\omega) + j\omega \left(M + M_\infty + M_{pa}(\omega) - \frac{K_{pa}}{\omega^2} \right) = R_{i}(\omega) + jX_{i}(\omega) \tag{4}
\]

where

\[
\begin{align*}
R_{i}(\omega) &= B_{pa}(\omega), \\
X_{i}(\omega) &= \omega \left(M + M_\infty + M_{pa}(\omega) - \frac{K_{pa}}{\omega^2} \right)
\end{align*}
\tag{5}
\]

are, respectively, the intrinsic resistance and reactance.

B. Control structure

We define the control problem to be solved in the classic framework of impedance matching control for WECs [7].

In a monochromatic sea state, the wave excitation force is given as

\[
f_{ex}(t) = A \sin(\omega t + \phi) \tag{6}
\]

where the phase \(\phi \) can be set to be zero without loss of generality. Assuming that the control force is a linear feedback
of the heaving velocity, see Fig. 2, its expression in the Laplace domain is
\[f_u(s) = Z_c(s) v(s) \] \hspace{1cm} (7)
where \(s \) is a complex number, \(s = \sigma + j\omega \). \(Z_c \) can be seen as a load impedance, and designed following impedance-matching principles.

![Block diagram with WEC internal impedance \(Z_i(s) \) and control impedance \(Z_c(s) \).]

The following proportional-integral (PI) control structure is chosen for the control block \(Z_c \)
\[f_u(t) = K_p v(t) + K_i \int_0^t v(\tau) d\tau \] \hspace{1cm} (8)
Rewriting (8) in the frequency domain
\[f_u(j\omega) = \left(K_p - j \frac{K_i}{\omega} \right) v(j\omega) \] \hspace{1cm} (9)
one obtains
\[\begin{cases} K_p = R_c, \\ K_i = -\omega X_c \end{cases} \] \hspace{1cm} (10)
where \(R_c \) and \(X_c \) are, respectively, the control (or load) resistance and reactance, i.e. \(Z_c(j\omega) = R_c(\omega) + j\omega X_c(\omega) \).

C. Control objective

The control objective is to maximise the average (electric) power produced by the WEC
\[P_a = \frac{1}{T} \int_{t=0}^{T} \eta f_u(t) v(t) dt, \] \hspace{1cm} (11)
where \(\eta \) is the efficiency coefficient.

In the literature, it is generally assumed that \(\eta = 1 \), i.e. the PTO system is perfect [12], [13]. With this assumption, the mathematical procedure needed to calculate the optimal control action \(f_u^*(t) \) is greatly simplified. For the case of regular waves, there exists an elegant analytical expression for \(f_u^*(t) \) as a function of wave frequency. One of the well known results is that, in order to harvest the maximum amount of energy [14], the optimal velocity \(v^*(t) \) should be in phase with the wave excitation force \(f_{ex}(t) \). This result, however, does not hold if \(\eta \neq 1 \), as it will be shown later.

Unfortunately, the assumption of a perfect PTO with no conversion losses is unrealistic. The power that is withdrawn from the grid is always more expensive than the power that is delivered to the grid via the PTO. To take into account this fact, we can consider the efficiency coefficient \(\eta \) as a function of the ideal instantaneous power \(f_u v \)
\[\eta(f_u v) = \begin{cases} \eta_p & \text{if } f_u v \geq 0, \\ \eta_n & \text{if } f_u v < 0. \end{cases} \] \hspace{1cm} (12)
where the coefficients \(0 < \eta_p \leq 1 \) and \(\eta_n > 1 \) depend on the PTO system, and may even be a function of \(f_u v \).

III. Optimal PI control with non-ideal PTO under regular waves

A. Average power calculation

For the given wave excitation force (6) and the control force (7), it can be proved that the average power (11) is obtained as
\[P_a = \frac{A^2 R_c}{2((X_c + \pi)^2 + (R_c + R_i)^2)} C_\eta \] \hspace{1cm} (13)
where
\[C_\eta = \left(\frac{\eta_p - \eta_n - \eta_p}{\pi} \left(\frac{X_c}{R_c} - \arctan \left(\frac{X_c}{R_c} \right) \right) \right) \] \hspace{1cm} (14)
The proof is not detailed here for the sake of conciseness. Indeed, if we consider the limit case when the PTO is perfect, i.e. \(\eta_p = \eta_n = 1 \), then \(C_\eta = 1 \) in (7) and the average power is calculated as
\[P_a = \frac{A^2 R_c}{2((X_c + \pi)^2 + (R_c + R_i)^2)} \] \hspace{1cm} (15)
which is the well-known result [14], obtained when the non-linear efficiency coefficient is not taken into account.

B. Optimal frequency response

Using (13), the next step is to compute the optimal \(R_c \) and \(X_c \) which maximise \(P_a \). We require that \(R_c \geq 0 \), since \(R_c \) is used to convert the wave energy into useful mechanical or electrical energy. Notice that, because the factor \(\frac{A^2}{\pi} \) has no influence on the optimal solution, it can be omitted in the optimisation problem. Thus, the problem to be solved is
\[\min_{R_c, X_c} \left\{ \frac{R_c}{(X_c + \pi)^2 + (R_c + R_i)^2} C_\eta \right\} \] \hspace{1cm} (16)
With \(C_\eta \) defined by (14), (16) is clearly a nonlinear optimisation problem. Hence it is impossible to obtain a closed analytical form for the optimal solution.

Before proceeding further, define
\[d = \frac{X_c}{R_c} \]
Consider the function \(f(p) = \eta_p - \frac{\eta_n - \eta_p}{\pi} (d - \arctan(d)) \). By calculating the derivative of \(f(p) \), it is easy to see that this function is monotonically non-increasing. Hence the equation,
\[\eta_p - \frac{\eta_n - \eta_p}{\pi} (d - \arctan(d)) = 0 \] \hspace{1cm} (17)
has a unique solution \(d^* \) for any positive \(\eta_n \) and \(\eta_p \). Therefore, there exists a unique line
\[X_c = d^* R_c \] \hspace{1cm} (18)
that satisfies the equation

\[\eta_p - \frac{\eta_n - \eta_p}{\pi} \left(\frac{X_c}{R_c} - \arctan\left(\frac{X_c}{R_c} \right) \right) = 0 \quad (19) \]

Figure 3 presents a numerical example of the average power \(P_a \) as a function of \(R_c, X_c \) for a given and fixed \(\omega \), using the WEC intrinsic impedance and the efficiency coefficients defined in the case study of Section V. Figure 4 shows a contour plot of \(P_a \) in the \(R_c - X_c \) plane.

Using Figures 3 and 4, two main remarks can be made

1) \(P_a \) is not a concave function of \(R_c, X_c \).
2) The line (18) divides the plane \(R_c - X_c \) into two regions
 - For all \(R_c, X_c \) such that
 \[X_c \geq d^* R_c \]
 the function \(P_a \) is convex.
 - For all \(R_c, X_c \) such that
 \[X_c \leq d^* R_c \]
 the function \(P_a \) is concave.

Figure 5 shows the average power \(P_a \) as a function of \(R_c \) and \(X_c \) in a concave region.

It can be noticed from Figure 7 that the optimal \(X_c \) is very close but not equal to \(-X_i \). Hence the phase response \(\angle W(s) \) of the transfer function (20) of the WEC system in closed loop

\[v(s) = \frac{1}{Z_i(s) + Z_c(s)} f_{ex}(s) = W(s) f_{ex}(s) \quad (20) \]

is in general not equal to zero. Hence the optimal velocity is in general not in phase with the wave excitation force in the presence of the nonlinear efficiency coefficient. The result of Falnes [14], where it is stated that the optimal velocity is in phase with the wave excitation force, can be considered only as an ideal case, where the PTO system is perfect.

Remark: If the PTO system is constrained to be purely resistive, then \(X_c = 0 \). In this case the optimisation problem

\[\text{maximize } P_a \text{ subject to } X_c = 0 \]

Figure 6 and Figure 7 show respectively, the optimal \(R_c \) and \(X_c \) (solid blue lines) as a function of \(\omega \). By solving (17), one obtains \(d^* = 5.4403 \) for the given \(\eta_p, \eta_n \). Figure 6 and Figure 7 also show \(R_i \) and \(-X_i \) (dashed red lines) as a function of \(\omega \).
There exists an analytical closed form solution to (21) for the purely resistive case.

Note that the efficiency coefficient does not play any role in the optimal R_c in the resistive PTO system case. This is explained by the fact that there is no reactive power involved, so the energy harvested from the waves is always positive.

Figure 8 presents the optimal R_c as a function of frequency, for the purely resistive case.

IV. ADAPTIVE PI CONTROL

The approach described above allows to compute, for a specific WEC, the optimal control resistance R_c^o and reactance X_c^o, for each given regular wave excitation force.

Using (10), the corresponding optimal PI gains can be computed off-line, frequency by frequency, as:

$$
\begin{align*}
K_p^o &= R_c^o(\omega), \\
K_i^o &= -\omega X_c^o(\omega)
\end{align*}
$$

(23)

The resulting curves can be implemented, as look-up tables for instance, in an adaptive PI control scheme where the scheduling variable is the dominant frequency of the wave force excitation\(^2\). A customary approach in control of real devices is indeed to choose the load so that impedance matching occurs at the dominant frequency in a wave spectrum [15], though we should recall that the PI gains are truly optimal only in a harmonic excitation context. This approach is followed, for instance, for the design of the “simple-but-effective” controller in [16], a velocity tracking controller with adaptive parameters computed using online estimates of the dominant frequency and dominant amplitude of the wave excitation force.

The structure of the adaptive control scheme is shown in Fig. 9. Notice that the variable-gains PI control law requires an estimate of the dominant frequency of the wave excitation force as an input, and that the wave excitation force must be estimated as well, as it is a quantity that cannot be measured during normal WEC operation.

To address the first problem, an estimation approach based on an extended Kalman filter (EKF), applied to a nonstationary, harmonic approximation of the wave excitation force, is proposed in [16]. However, it must be recalled that the EKF provides a solution to a nonlinear estimation problem via local linearisations of the underlying model. Thus, the variation of the wave force is large and/or the sampling time intervals are not sufficiently small, the linearisation may yield highly unstable filters, potentially leading to divergence phenomena [17], [18]. A more robust solution consists in estimating the dominant frequency (and amplitude) estimation using an unscented Kalman filter (UKF), as described in [19].

As to wave excitation force estimation, a few methods have been proposed recently and tested in real-time, in a model predictive control (MPC) framework (see for instance [20], [21], [22], [23]). The method assessed in [23] (and fully described in [24]), based on a linear Kalman filter and a random walk model for the variation of the wave excitation force, has the main advantages of using only standard measurements for reactive control (position, velocity, PTO force) and of yielding quite accurate estimates over a large range of sea states.

V. CASE STUDY

In this section, we consider a lab-scale 1-DoF WEC system (described in [25]), whose intrinsic impedance can be modelled as the transfer function

$$
Z_i(s) = \frac{s^6 + a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 + a_1s}{b_7s^7 + b_6s^6 + b_5s^5 + b_4s^4 + b_3s^3 + b_2s^2 + b_1s + b_0}
$$

(24)

whose coefficients are given in TABLE I

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_5 = 208.6$</td>
<td>$b_7 = 1.44$</td>
</tr>
<tr>
<td>$a_4 = 8.583 \times 10^4$</td>
<td>$b_6 = 300.4$</td>
</tr>
<tr>
<td>$a_3 = 8.899 \times 10^6$</td>
<td>$b_5 = 1.237 \times 10^5$</td>
</tr>
<tr>
<td>$a_2 = 1.074 \times 10^8$</td>
<td>$b_4 = 1.284 \times 10^7$</td>
</tr>
<tr>
<td>$a_1 = 7.031 \times 10^8$</td>
<td>$b_3 = 1.652 \times 10^8$</td>
</tr>
<tr>
<td>$b_0 = 6.539 \times 10^{10}$</td>
<td>$b_2 = 2.106 \times 10^9$</td>
</tr>
</tbody>
</table>

TABLE I
MODEL COEFFICIENTS
Figure 10 presents the corresponding Bode plot, typical of WECs of the point-absorber type, with a resonance frequency of $f_r = 7.84$ rad/s.

![Bode Diagram](image)

PTO efficiency coefficients are $\eta_p = 0.8$, $\eta_n = 1.43$.

The idea is to compare the energy recovery performance of the proposed adaptive PI control using as a benchmark the (switching) gain-scheduled PI controller described in [26] and [27]. Thus, optimal K_p and K_i gains are computed offline over a set of sea states using a gridding approach: for each given sea state and considered time interval, the nominal WEC model is simulated in closed loops for a grid of gains, and the combination leading to the best average power P_a is picked.

The control action is then to be determined from a look-up table with the current sea state (in terms of dominant wave period and significant height), being re-estimated at regular intervals, as an input. Notice, however, that the gain-scheduling mechanism has not been detailed in [26] nor in [27]: it has not been specified, for instance, if the gains are to be interpolated or chosen instead with a nearest-neighbour approach.

The same set of irregular waves, generated using a JONSWAP spectrum, which has been used to compute the optimal gains of the reference controller, is also used for validation. Of course, for a given irregular wave, the parameters of the switching gain-scheduled controller will not vary during the test, so the comparison is actually done with a fixed-parameters PI. The spectrum of the wave excitation force corresponding to one these irregular waves is shown in Fig. 11. Its dominant frequency is about 5 rad/s.

![Wave Spectrum](image)

Finally, Fig. 14 presents the instantaneous power P_a for the adaptive PI control (solid blue) and for the PI control (dashed red). Fig. 15 shows the total accumulated energy for the adaptive PI control (solid blue) and for the reference PI control (dashed red). Interestingly, even in a test where the sea state is considered constant, the proposed adaptive PI control performs better than the reference PI control.

This is due to the continuous adaptation of PI gains to the dominant frequency estimate. Fig. 16 shows the variation of the dominant frequency estimate, obtained using the UKF approach mentioned in the previous section, over the last part of the test. Fig. 17 shows that the corresponding dominant magnitude estimated by the UKF (not used in the adaptive PI control law) follows well the wave force amplitude.

In order to validate the proposed adaptive control against a continuous change in sea state, corresponding to a transition from the wave of Fig. 11 to another wave, whose excitation...
force is shown in Fig. 18, a second test is performed, under the excitation given by a wave force generated with a time-varying dominant frequency, which varies linearly from 5 rad/s to 2 rad/s.

For comparison purposes, a switching PI controller is implemented, using a table of optimal pre-computed gains for the two waves and for a set of intermediate sea states. The switching is performed on the basis of an average estimation of the dominant wave frequency. The first gain switch takes place at $t = 200$ (which would correspond at about 15 minutes at full scale).

Fig. 19 compares the energy harvesting performance of three controllers: adaptive PI, switching PI, and fixed-gains PI with gains optimised for the wave force of Fig. 11.

VI. CONCLUSIONS

This paper focuses on a novel approach to design a continuously adaptive PI control strategy for wave energy converters. A procedure, based on the solution of a convex optimisation problem, is presented, which allows to compute the optimal
PI gains for a given regular wave excitation force, while taking into account (non-ideal) PTO efficiency. It is shown that the optimal velocity is in general not in phase with the wave excitation force when realistic PTO efficiencies are considered. Optimal gain curves, as a function of frequency, can be obtained from this procedure, and implemented in an adaptive control scheme based on a dominant frequency approach. Combining two robust and accurate methods for real-time estimation of the wave excitation force from normally available WEC measurements and of the dominant frequency of the (estimated) wave excitation force, the gains of the PI controller can be continuously adapted online, on a wave-to-wave basis.

A case study, based on a lab-scale point-absorber WEC, has been used for validation. Simulation results show that the proposed adaptive control scheme can recover more energy than a fixed-gain PI controller even in a sea state with constant spectral characteristics. Furthermore, in a changing sea state, it outperforms switching gain-scheduled PI control where the gains are updated from time to time based on an evaluation of the current sea conditions.

In the future, a more extensive assessment is planned, both in simulation and through experimentation. Though the proposed adaptive PI control system has already been tested in a wave basin on the lab-scale prototype used as a case study, with encouraging results, further experiments are needed to precisely quantify its energy harvesting potential.

Finally, further research is needed to take into account WEC motion or actuator constraints (PTO force limits, stroke limits), which are not dealt with in the current optimisation procedure, as well as more complex WEC dynamics.

REFERENCES

