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Wave excitation force estimation for wave energy converters of the
point absorber type

H.-N. Nguyen†, P. Tona†

Abstract—Advanced control strategies play a crucial role in
increasing the energy extraction capacity of wave energy con-
verters (WECs). So far, the most promising control schemes have
predominantly been studied in simulation, based on the idealized
assumption of the wave excitation force availability in real time.
In practical WEC implementations, this is not the case, since this
force cannot be measured directly when the WECs are running.
Hence the force has to be estimated via measurements of other
quantities. Two approaches are presented in this paper to fulfill
this objective. The first approach is based on a Kalman filter
coupled with a random-walk model of the wave excitation force,
while a receding horizon – unknown input estimation approach is
employed for the second one. The proposed estimation methods
are evaluated by using real measurements from a laboratory scale
WEC.

I. INTRODUCTION

A wave energy converter (WEC) is a device used to produce
electrical energy from wave-induced motion. Several studies
have shown that one of the key aspects for maximizing the
energy yield of many WECs is the control of the dynamic
response of the device to wave conditions, also defined as
hydrodynamic control [1]. More precisely, we consider here
the response control of the WEC captor, or primary converter,
whose task is to transfer energy from wave to oscillating
body, via the power-take off (PTO) system, responsible of a
further energy conversion, generally to electricity. A schematic
example of a WEC (of the point absorber type) is shown
in Figure 1: a float (the captor) oscillates under the action
of waves and is connected to a PTO system; the PTO,
by exercising an appropriate force on the float, converts its
mechanical energy into electrical energy. The PTO can be
a simple linear electric generator, or a more complex multi-
stage device, such as a hydraulic motor connected to a rotary
electric generator. Hydrodynamic control of such a WEC can
be performed using the PTO as an actuator and adjusting the
force it exercises on the oscillating body serving as a captor,
in order to maximize the extracted energy.

Different approaches to WEC hydrodynamic control have
been proposed in the literature. In the second half of the 70s,
to improve the energy capture of his well-known “nodding
duck” [2], Salter implemented a practical control approach,
where the PTO torque opposing the body oscillation was
computed as the sum of three terms, respectively proportional
to the displacement, the velocity and the acceleration of the
pitching body. Even nowadays, this control strategy, often
referred to, somewhat inaccurately, as “PID” control (because
the three terms correspond to a proportional-integral-derivative
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Fig. 1. Schematic diagram of a generic wave energy converter

action on velocity) is still very popular with WEC developers,
because of its simplicity. As shown in [3] for the Wavestar
WEC, it can yield reasonable energy capture levels, though
still far below the theoretical optimum [4].

To improve wave energy conversion, several alternative
control strategies have been proposed. Latching control is one
of the earliest methods in this area [5], [6], [7]. The basic
idea is to lock the point absorber when its velocity is zero,
and wait for the most favorable moment to release it again.
In this way, the velocity of the point absorber can be brought
in phase with the wave excitation force, and the system is
in resonance. In [8], it is shown that the performance can
be improved up to 20% compared to standard PI control, by
combining latching control and a short-term prediction of the
wave excitation force, that is, the force exerted by the passing
wave.

Another solution, that has been drawing a lot of attention
in the last decade, is Model Predictive Control (MPC) [9],
[10], [11]. In this strategy, a model is used to predict the
future response of a system. At each sampling time interval, an
MPC algorithm attempts to optimize future system behavior
by computing a sequence of future control actions. The first
input in the optimal sequence is then applied to the plant,
and the entire calculation is repeated at subsequent sampling
time intervals. The main advantage of MPC applied to WECs
is that it is capable of energy conversion rates close to the
theoretical optimum. In addition, state and input constraints
can be considered in a natural way. However, it requires a
procedure to predict the future values of the wave excitation
force over the prediction horizon.

In [12], another approach is proposed to improve energy
harvesting performance, the so called simple and effective real-
time control. Based on the assumption of the availability of the
wave excitation force, the basic idea is to calculate a reference
optimal velocity. Then a control law is designed to make WEC
velocity follow the reference one. By simulation, it is reported
that the performance can be improved up to 25% compared



to PI control.
It can be observed that, to achieve optimal energy conver-

sion, all the three control strategies mentioned above rely on
the assumption that the instantaneous wave excitation force
is available. However, this is not the case in WEC practical
implementations, since wave excitation force cannot be mea-
sured directly when the WECs are in operation. Therefore,
wave excitation has to be estimated via the measurement
of other quantities. In the MPC context, for instance, the
complete control scheme must include a block implementing
an algorithm for this purpose, as shown in Fig. 2.
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Fig. 2. Wave excitation force estimation in the context of MPC

In [13], to estimate the current value of wave excitation
force, a combination of a bank of independent harmonic oscil-
lators and a Luenberger observer is proposed. The strategy was
tested on a real WEC system, but the reported experimental
results show a relatively high phase lag in the estimated signal
compared to the measured signal.

In [14], by considering the wave excitation force as a
time-varying sinusoid, an extended Kalman filter approach
is presented. However, no experimental result is reported. In
addition, it is obvious that the approach may only be effective
for very narrow-banded wave forces.

By combining several pressure sensors at discrete points on
the buoy surface with the buoy heave position, and with an
extended Kalman filter, another approach is proposed in [15],
which also estimates the derivatives of wave excitation force.
However, its computational complexity might be high and, in
addition, extra pressure sensors are required.

Two novel solutions to estimate the wave excitation force
are proposed in this paper. The first solution is based on a
linear Kalman filter coupled with a random-walk model for the
wave excitation force, while a receding horizon estimator is
developed for the second one. All implementation aspects such
as computational complexity and accuracy are investigated.
The performance of the proposed solutions are compared using
data, collected in the wave basin of Aalborg University, on
a small-scale wave energy converter prototype, manufactured
by the Wavestar company. The main features of the proposed
solutions are:

1) No extra pressure sensors are required. Only measure-
ments (or estimates) of captor position, captor velocity,
and PTO force are needed.

2) The values of current wave excitation force are estimated
with almost no time delay.

3) No particular assumption about the sea state is made,
which allows to cope efficiently with any operating

condition.
4) State and control constraints can be considered.
5) In addition to the wave excitation force, the state of the

system can also be estimated simultaneously. These esti-
mates can then be used for advanced control algorithms
such as MPC.

The paper is organized as follows. In Section II, the
mathematical model of the WEC considered in this work is
briefly presented. Then the first estimation method, based on
a Kalman filter, is proposed in Section III. Using a receding
horizon filter, an alternative approach is presented in Section
IV. In Section V, the experimental setup is described used to
validate the algorithms is described, and the estimation results
are reported. Some conclusions are drawn in Section VII.

II. STATE-SPACE WEC MODELING

We consider point-absorber WECs consisting of a heaving
body that moves in one degree of freedom with respect to
a fixed anchor or a submerged body (see Fig. 3). From the
relative motion, useful energy can be extracted.

Fig. 3. One-degree-of-freedom heaving-body WEC.

Under the assumption that the oscillations of the system
are relatively small and using Newton’s second law, the WEC
model can be expressed in the time domain as follows [4],

Mp̈(t) = Fhd(t) + Frad(t) + Fex(t)− Fu(t) (1)

where p(t) is the heaving position with respect to the equi-
librium point, M is the WEC (captor) mass, Fhd(t) is the
hydrostatic force, Frad(t) is the radiation force, Fex(t) is the
excitation force to be estimated, and Fu(t) is the control force
from the PTO system. Note that since the motion of the system
is assumed to be relatively small, the drag force is considered
negligible and hence not taken into account in the model (1).

It is assumed that p(t) and ṗ(t), the position and the velocity
of the captor, as well as Fu(t), the force applied by the PTO,
can be measured or estimated. Note that in most literature on
this subject, F spu (t), the output of the hydrodynamic controller,
is used instead in the estimation algorithm. This corresponds
to the implicit assumption that the low-level PTO force servo
ensures perfect tracking of F spu (t). Indeed, if this assumption
were justified by the characteristic of the WEC under study,
one could replace Fu(t) with F spu (t) in the following.

Remark: Newton’s second law for linear motion is used
to obtain a mathematical model of the WECs, because the
motion is linear. There are other types of point-absorber WEC,
where the (main) motion is angular. The quantity that fully



describes the system in this case is the angular deviation
from the equilibrium point. Newton’s second law for rotation
can be applied to obtain a mathematical model. The changes
that take place are that the equivalent mass changes to an
equivalent moment of inertia, and the acting forces become
acting moments. �

It is well known [4] that, for small p(t), the hydrostatic
force can be considered a linear function of p(t), i.e.

Fhd(t) = −Kp(t) (2)

where K is the hydrostatic stiffness coefficient. The radiation
force is given as in [16]

Frad(t) = −M∞p̈(t)− Fr(t) (3)

where M∞ is the added mass at infinitely high frequency, and

Fr(t) =

∫ t

0

h(t− τ)ṗ(τ)dτ (4)

In (4), h(t) is the impulse response function of the radiation
force, which can be obtained by boundary element methods
[17], [18], or approximated using analytical solutions for
specific float geometry [19], [20].

To avoid performing the inconvenient convolution Fr(t) =∫ t
0
h(t− τ)ṗ(τ)dτ , equation (4) can be considered as a linear

system, where the input is ẋ(t), and the output is Fr(t). Using
Prony’s method [21] implemented in Matlab, the following
state-space equation is obtained{

ṙ(t) = Arr(t) +Brṗ(t),
Fr(t) = Crr(t) +Drṗ(t)

(5)

where (Ar, Br, Cr, Dr) is a state-space realization, and r(t)
is an internal state with no particular physical meaning.

Combining (1), (2), (3), (5), one obtains Mp̈(t) = −Kp(t)−M∞p̈(t)− Fr(t) + Fex(t)− Fu(t)
ṙ(t) = Arr(t) +Brṗ(t),
Fr(t) = Crr(t) +Drṗ(t)

(6)
Define {

x1(t) = p(t),
x2(t) = ṗ(t)

(7)

Note that x1(t) and x2(t) are directly accessible, since p(t),
ṗ(t) are measurable. Using (6), (7), one obtains

ẋ1(t) = x2(t)
ẋ2(t) = − K

M+M∞
x1(t)− Dr

M+M∞
x2(t)−

− Cr

M+M∞
r(t) + 1

M+M∞
(Fex(t)− Fu(t))

ṙ(t) = Brx2(t) +Arr(t)

(8)

or equivalently{
ẋ(t) = Acx(t) +BcFex(t)−BcFu(t),
y(t) = Ccx(t)

(9)

where  x(t) = [x1(t) x2(t) rT (t)]T ,

y(t) =

[
x1(t)
x2(t)

]

and

Ac =

 0 1 0
− K
M+M∞

− Dr

M+M∞
− Cr

M+M∞
0 Br Ar

 ,
Bc =

 0
1

M+M∞
0

 , Cc =

[
1 0 0
0 1 0

]
where 0 is a zero matrix of appropriate dimension.

For the system (9), Fex(t) is not directly measurable. Our
problem is to estimate Fex(t) using other measured quantities
such as y(t) and Fu(t). For this purpose, (9) is discretized
with the Tustin’s method. As a result, the following system is
obtained{

x(k + 1) = Ax(k) +BFex(k)−BFu(k)
y(k) = Cx(k) +DFex(k)−DFu(k)

(10)

To simplify the description, denote

w(k) = Fex(k), u(k) = Fu(k) (11)

thus equation (10) is rewritten as{
x(k + 1) = Ax(k) +Bw(k)−Bu(k)
y(k) = Cx(k) +Dw(k)−Du(k)

(12)

III. KALMAN FILTER APPROACH

The main idea of the Kalman filter based approach is to
consider the wave excitation force w(k) as a state. As a
consequence, a mathematical model is needed to relate w(k)
and w(k + 1). It should be noted that this is not a new idea,
even for WECs. In [13], by assuming that w(k) is the sum of
a number of sinusoids with different phases and amplitudes,
a mathematical model consisting of a bank of oscillators is
built up. The number of sinusoids and their individual angular
frequencies are fixed, and are tuning parameters. However,
looking at the experimental estimation results reported in [13],
it appears that

1) The amplitude of the wave excitation force is slightly
overestimated.

2) There exists a significant signal delay in the estimated
wave excitation force.

Note that the assumption on the constancy of the decom-
posed angular frequencies is rather strong, since it is well
known that the spectrum of w(k) is time-varying. In addition,
in order to accurately describe w(k), it is well known [17]
that more than 10000 sinusoids are needed. Consequently,
one might have a problem with the delay and/or with the
computational complexity. Note also that the approach is not
applicable if the wave excitation force has nonzero mean.

In this work, the following mathematical model is used

w(k + 1) = w(k) + εm(k) (13)

where εm(k) describes the variation of w(k) and is considered
as a random number. The model (13) assumes that at each
sampling time, the wave excitation force takes a random step
away from its previous value, and the steps are independently
and identically distributed in size. Clearly, the computational
complexity is low, since (13) is simple.



To take into account unmodeled dynamics and measurement
noises, a more realistic model than (12) for the WEC system
is introduced as{

x(k + 1) = Ax(k) +Bw(k)−Bu(k) + εx(k)
y(k) = Cx(k) +Dw(k)−Du(k) + µ(k)

(14)

where εx(k) describes unmodeled dynamics, and µ(k) de-
scribes measurement noises. Combining (13), (14), we obtain x(k + 1) = Ax(k) +Bw(k)−Bu(k) + εx(k)

w(k + 1) = w(k) + εm(k)
y(k) = Cx(k) +Dw(k)−Du(k) + µ(k)

(15)

or equivalently{
xa(k + 1) = Aaxa(k) +Bau(k) + ε(k)
y(k) = Cax(k) +Dau(k) + µ(k)

(16)

where

xa(k) =

[
x(k)
w(k)

]
, ε(k) =

[
εx(k)
εm(k)

]
,

Aa =

[
A B
0 1

]
, Ba =

[
−B
0

]
,

Ca = [C D], Da = −D
Using (16), it follows that the problem of estimating w(k)
becomes a state estimation problem. One way to estimate
the unknown state vector xa(k), that can take into account
information about ε(k) and µ(k), is to apply the well-known
linear Kalman filter (LKF) algorithm [22], [23].

The following assumptions are classical in the Kalman
filter theory. xa(0) is a random vector that is uncorrelated
to ε(k) and µ(k). xa(0) has a known mean xa(0) with P0

as a covariance matrix. ε(k) and µ(k) are uncorrelated, zero-
mean white-noise processes with covariance matrices Q and
R, respectively. The correlation technique in [24] is used to
obtain Q and R.

The following notations are used:
• x̂a(k|k−1) is the estimate of xa(k) given measurements

from time k − 1.
• x̂a(k|k) is the estimate of xa(k) given measurements

from time k.
• P (k|k − 1) is the covariance matrix of xa(k) given

measurements from time k − 1.
• P (k|k) is the covariance matrix of xa(k) given measure-

ments from time k.
Then the LKF algorithm is summarized as follows
• Time-update equation{
x̂a(k|k − 1) = Aax̂a(k − 1|k − 1) +Bau(k − 1),
P (k|k − 1) = AaP (k − 1|k − 1)ATa +Q

• Measurement-update equation
K(k) = P (k|k − 1)CTa

(
CaP (k|k − 1)CTa +R

)−1
x̂a(k|k) = x̂a(k|k − 1)+

+K(k) (y(k)− Cax̂a(k|k − 1)−Dau(k)) ,
P (k|k) = (I −K(k)Ca)P (k|k − 1)

The Kalman filter based approach is summarized as follows.

Algorithm 1: Kalman filter – random-walk model ap-
proach

1) Inputs: y(k) = [x1(k) x2(k)]T (measurements of
WEC system outputs), u(k) (measurements of WEC
system control input), x̂a(k − 1|k − 1), P (k − 1|k − 1)
(estimates at previous time instant), and the parameters
Q,R (covariance matrices)

2) Output: ŵ(k) (estimate of wave excitation force)
3) Initialize: k = 0, x̂a(0|0) = xa(0), P (0|0) = P0

4) At each time instant
(i) Apply the linear Kalman filter to obtain x̂a(k|k),

P (k|k)
(ii) Compute the estimate of wave excitation force

ŵ(k) as ŵ(k) = [0 1]x̂a(k|k)

Let us stress that, since the assumption on the random-walk
model of w(k) is quite general, the approach can be applied
to almost any kind of wave excitation force signals.

IV. RECEDING HORIZON ESTIMATION APPROACH

In the previous section, by imposing a random-walk model
dynamics for the wave excitation force, the state of the system
is first augmented. Then the classical linear Kalman filter is
used to obtain an estimate of the augmented state. However,
the assumption (13) on the behavior of w(k) makes the
approach sub-optimal.

Using a receding-horizon principle, a new estimation algo-
rithm is proposed in this section. The main advantages of the
approach are:
• There is no assumption on the dynamics of the wave

excitation force.
• Information about process and measurement noises can

be considered.
• Input and state constraints can be naturally included.
Let us start again from a WEC model, that considers

unmodeled dynamics and measurement noises{
x(k + 1) = Ax(k) +Bw(k)−Bu(k) + ε(k),
y(k) = Cx(k) +Dw(k)−Du(k) + µ(k)

(17)

where ε(k) and µ(k) are respectively, the process and the
measurement noises. It is assumed that ε(k) and µ(k) are white
noises with zero mean.

Receding-horizon estimation is an algorithm, that recur-
sively estimates the state and the unknown input by con-
sidering a finite window of data. The problem consists in
estimating, at any time instant k ≥ N , the state vector x(k)
and the unknown input Mex(k), on the basis of
• A priori estimators: x̂(k −N |k − 1), ŵ(k −N |k − 1).
• Output information: y(k −N), y(k −N + 1), . . . , y(k).
• Input information: u(k −N), u(k −N + 1), . . . , u(k).

Here x̂(k−N |k−1) and ŵ(k−N |k−1) denote the estimates
of x(k−N) and w(k−N) given the measurements from time
k − 1.

With a slight abuse of notation, let us denote x̂0 = x̂(k −
N |k− 1) and ŵ0 = ŵ(k−N |k− 1). Let us denote also xj =
x̂(k−N+j|k), wj = ŵ(k−N+j|k), and εj = ε̂(k−N+j|k),
for j = 0, 1, . . . N . The moving horizon problem is formulated
as, at each time instant k ≥ N

min
x0,w0,w1,...,wN ,ε1,...,εN ,

J(x0, w0, w1, . . . , wN , ε1, . . . , εN )

(18)



where the cost function is defined as

J(·) = ||x0 − x̂0||2P−1
0

+ ||w0 − ŵ0||2Q−1
0

+
N−1∑
j=0

||εj ||2Q−1+

+
N∑
j=1

||y(k −N + j)− Cxj ||2R−1 + λ
N∑
j=1

||wj − wj−1||2

(19)
Here ||x||M denotes xTMx for a real vector x and a real
symmetric matrix M . There are five terms in (19):
• The sum of the first term ||x0 − x̂0||2P−1

0

and the second
term ||w0− ŵ0||2Q−1

0

is called the arrival cost. It summa-
rizes the prior information at time k −N and is part of
the data of the estimation problem.

• The third and fourth terms penalize the process noise and
the measurement noise via the weighting matrices Q, and
R, respectively.

• The last term is a regularization term. It exploits the fact
that the wave excitation force is a smooth signal. To
the best of the authors’ knowledge, this is the first time,
not only in WEC literature, but also in moving horizon
estimation literature, that such a term is considered.

Remark: Another way of using information about the wave
excitation force smoothness is to impose the rate constraints
|wj − wj−1| ≤ S, j = 1, 2, . . . , N , where S > 0 is the
maximal variation of wj .

Next we will transform (18), (19) into a quadratic program-
ming problem. By propagating (17) in time, one gets

Ŷ = Φyx0 + ΨyW −ΨyU + ΓyE (20)

where

Ŷ =
[
ŷ(k −N + 1)T ŷ(k −N + 2)T . . . ŷ(k)T

]T
,

Ψy =


CB D . . . 0 0
CAB CB . . . 0 0

...
...

. . .
...

...
CAN−1B CAN−2B . . . CB D

 ,

Φy =


CA
CA2

...
CAN

 , Γy =


C 0 . . . 0
CA C . . . 0

...
...

. . .
...

CAN−1 CAN−2 . . . C


Rewrite the cost function (19) as
J = ||x0 − x̂0||2P−1

0

+ ||w0 − ŵ0||2Q−1
0

+

+ETQE + (Y − Ŷ )TR(Y − Ŷ ) +WTΛW
(21)

where Q = diag(Q−1), R = diag(R−1), and

Y =
[
y(k −N + 1)T y(k −N + 2)T . . . y(k)T

]T
,

Λ = λ



−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −1 1


diag(X) denotes a square diagonal matrix, whose diagonal
elements are X . Substituting (20) into (21), one gets

J = ||x0 − x̂0||2P−1
0

+ ||w0 − ŵ0||2Q−1
0

+

+ETQE + GTRG +WTΛW

with G = Y −Φyx0 −ΨyW + ΨyU − ΓyE. Or, equivalently

J = xT0 P
−1
0 x0 − 2x̂T0 P

−1
0 x0 + x̂T0 P

−1
0 x̂0 + wT0 Q

−1
0 w0−

−2ŵT0 Q
−1
0 w0 + ŵT0 Q

−1
0 ŵ0 + ETQE + GTRG +WTΛW

(22)
The terms x̂T0 P

−1
0 x̂0 and ŵT0 Q

−1
0 ŵ0 can be removed, since

they do not influence the optimal argument. As the result

J1 = xT0 P
−1
0 x0 − 2x̂T0 P

−1
0 x0 + wT0 Q

−1
0 w0−

−2ŵT0 Q
−1
0 w0 + ETQE + GTRG +WTΛW

(23)
Define  ξ = [WT xT0 ET ]T ,

V = Y + ΨyU,
Ψs = [Ψy Φy Γy]

(24)

Λ1 =



Q−10 − λ λ 0 0 . . . 0 0
0 −λ λ 0 . . . 0 0
0 0 −λ λ . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . λ 0
0 0 0 0 . . . −λ λ


,

P =

 Λ1 0 0
0 P−10 0
0 0 Q

 , S =

[
Q−10 0 . . . 0

0 P−10 . . . 0

]
The cost (23) can be rewritten as

J1 = ξTPξ − 2[ŵT0 x̂T0 ]Sξ + (V −Ψsξ)
TR(V −Ψsξ)

or equivalently

J1 = ξTPξ − 2[ŵT0 x̂T0 ]Sξ + ξTΨT
sRΨsξ−

−2V TRΨsξ + V TRV
(25)

The term V TRV can be omitted in the cost function (25)
since it does not influence the optimal argument. As a result

J2 = ξT (P + ΨT
sRΨs)ξ − 2[ŵT0 x̂T0 V T ]

[
S

RΨs

]
ξ (26)

It is worth noticing that the bounds on the wave excitation
force and the state can be considered in the moving-horizon
estimation framework by including the following constraints{

w ∈ Pw, Pw = {w : Hww ≤ gw}
x ∈ Px, Px = {x : Hxx ≤ gx} (27)

where gw > 0 and gx > 0. This condition implies that the
origin is contained in the interior of Pw and Px.

Using (24), the constraints (27) can be expressed as a linear
inequality

Hξξ ≤ gξ +HdU (28)

Combining (26), (28), the moving horizon estimation problem
boils down to

min
ξ

{
ξT (P + ΨT

sRΨs)ξ − 2[ŵT0 x̂T0 V T ]

[
S

RΨs

]
ξ

}
s.t. Hξξ ≤ gξ +HdU

(29)
This is a constrained quadratic programming problem, for
which nowadays, there exist several effective solvers, e.g. [25].



Let ξ∗ be the optimal solution of (29), the estimate of the wave
excitation forces is, from given measurement at time k

ŵ(k −N + j|k) = ξ∗(j), ∀j = 1, 2, . . . , N

Remark: When the constraints are not active, there exists a
unique analytical solution to (29)

ξ∗ = (P + ΨT
sRΨs)

−1 [ ST ΨT
sR

T
]  ŵ0

x̂0
V

 (30)

The moving horizon estimation algorithm is summarized as
follows

Algorithm 2: Moving horizon estimation – unknown
input approach

1) Inputs: y(k) = [x1(k) x2(k)]T (measurements of
WEC system outputs), control input u(k) (measurement
of WEC system control output), x̂(k − N |k − 1),
ŵ(k −N |k − 1) (estimates from previous time instant)

2) Output: ŵ(k|k)
3) At each time instant k

(i) If k ≥ N then go to Step (ii). Wait, otherwise.
(ii) Solve the QP problem (29) to obtain ξ∗.

(iii) The estimate of the wave excitation force w(k) can
be calculated as ŵ(k|k) = ξ∗(N).

V. EXPERIMENTAL RESULTS

A. Experimental setup

A laboratory prototype of a point absorber WEC [26] on a
1:20 scale with respect to the well-known Wavestar device
installed near Hanstholm in Denmark from 2009 to 2013,
was used to test the wave excitation force estimation methods
described in the previous section. The tests were carried out
within a broader campaign to assess the performance of a
full MPC control system [27], as depicted in Fig. 2. As
it can be seen in Fig. 4, the prototype consists of a float
attached to an arm, which in turn is attached to a PTO
emulator. The laboratory model is equipped with a laser and an
acceleration sensor to measure, respectively, the position and
the acceleration. The velocity of the float can then be estimated
from these measurements using a linear Kalman filter.

Fig. 4. Experimental set-up with laboratory model of the Wavestar device.

A linear electrical generator is chosen to emulate the PTO
system. It applies a force to the arm, which can be measured
by a load cell, see Fig. 4 and used to compute the equivalent
moment applied to the float. The WEC controller sends a force
reference to a low-level force servo-controller that operates the
generator.

Note that for this application, we estimate a wave excitation
moment instead of a wave excitation force, since the motion
is rotational.

B. Available data
The data were collected in a wave basin of Aalborg Uni-

versity. The basin has a length of 15 m, a width of 8 m
and a maximum water depth of 0.7 m. The wave paddles
are driven by a total of 15 hydraulic pistons moving in the
horizontal direction. The waves were generated by the wave
maker based on the Pierson-Moskowitz spectrum [28]. Three
distinguished features of the system were used thoroughly for
testing. First the paddle movement can be stored during a test
run and then can be reproduced in further test runs. Secondly,
a trigger signal is sent by the wave generator, allowing exact
alignment of the tests. Thirdly, the force sensor of the PTO
can be used to measure the wave excitation moment, with the
float being manually blocked at equilibrium position when the
wave passes by.

These three features allow to compare the measured wave
excitation moment as defined by linear wave theory from a
first reference test to the estimated wave excitation moment
from the following tests, where the float is moving and the
PTO is turned on.
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Fig. 5. Concatenation of four irregular waves (wave moment in Nm).

For the present analysis, a concatenation of four different
irregular waves representative of real-life sea conditions is
considered, see Fig. 5. It can be observed that the waves
were generated, by amplitude, from the smallest to the largest
ones. The waves are unidirectional, two dimensional, long-
crested waves. The four data sets were measured at a sampling
frequency of 1 kHz, and down-sampled with a factor of 10 to
reduce computational complexity. The spectra of the excitation
waves 3 and 4 is presented in Fig. 6.

C. Estimation results
Fig. 7 presents the estimation results of the two algorithms

applied to wave 3. It can be observed that the results are
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Fig. 6. Spectra of wave 3 and wave 4.

good with both algorithms, though the estimates obtained with
Algorithm 2 are smoother. In order to show the ability of our
approaches to deal with the sea state time-varying nature, Fig.
8 compares the real wave moment to its estimates computed
by the two algorithms for the transitory period from wave 3
to wave 4.
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Fig. 7. Measured and estimated wave excitation moments for wave 3.

For advanced WEC control methods, it is strongly desirable
to have an wave excitation moment estimation without any
significant time delay. In this paper, the cross-correlation
analysis technique is used to compute the maximum delay
of the estimated wave excitation moment with respect to the
reference real wave. The results are presented in Table I. A
positive delay in Table I, means that the obtained estimated
signal is advanced with respect to the reference signal. In the
other case, the delay is negative. It should be noted that all the
delays are less than 0.05, the sampling period chosen for MPC.
It can also be observed that Algorithm 1 produces averagely
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Fig. 8. Measured and estimated wave excitation moments for the transitory
period from wave 3 to wave 4.

the best estimates with respect to the minimum (absolute)
time-delay criterion. Algorithm 2, however, seems to have
an anticipating effect, which may prove interesting for model
predictive control.

Wave 1 Wave 2 Wave 3 Wave 4
Algorithm 1 0.040 s 0.010 s -0.005 s -0.020 s
Algorithm 2 -0.005 s -0.025 s -0.035 s -0.050 s

TABLE I
TIME-DELAY ANALYSIS FOR DIFFERENT ALGORITHMS AND WAVES.

Finally, Table II presents a goodness-of-fit (GoF) index
computed using the normalized mean square error (NMSE)
criterion, as follows:

m =

(
1−

N∑
k=0

(we(k)− w(k))2/
N∑
k=0

w2(k)

)
100% (31)

where N is the number of data, we(k) is the estimated wave
force, and w(k) is the reference wave force.

Wave 1 Wave 2 Wave 3 Wave 4
Algorithm 1 86.05% 92.36% 94.58% 94.62%
Algorithm 2 91.93% 94.64% 94.90% 94.08%

TABLE II
NMSE GOODNESS-OF-FIT ANALYSIS FOR DIFFERENT ALGORITHMS AND

DIFFERENT WAVES.

Table II shows that the estimation algorithms give better
result with higher and stronger waves. Algorithm 2 produces



the best estimation result with respect to the maximum of
the GoF criterion. However, this algorithm is computationally
more demanding as it requires the solution of a quadratic
programming problem at each time instant.
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VII. CONCLUSION

One major difficulty in applying advanced control algo-
rithms for wave energy converter systems resides in the fact
that the wave excitation force is unmeasurable in real time.
In this paper, two novel estimation methods are developed
using position, velocity and PTO force measurements (or
estimates). The first approach considers the wave excitation
force as a system state, and applies a linear Kalman filter. A
simple random-walk model is used to describe the dynamics
of wave excitation force, which gives the algorithm the ability
to deal with a broad range of varying sea-states with no need
of recalibrating its parameters. The second approach views
the wave excitation force as an unknown input. A receding
horizon estimation algorithm, that can take into account the
state and input constraints, is presented. An original feature
of the algorithm is the regularization term introduced in the
cost function, to improve the accuracy of the estimates.

The proposed estimation methods are evaluated by using
real measurements, from an experimental set-up built around
a laboratory-scale model of the well-known Wavestar point-
absorber. Both algorithms produce good estimation results,
with a negligible time delay between the estimated and the
real wave excitation force. Estimates obtained with the second
algorithm are smoother and slightly more accurate, but at
the expense of an increased computational complexity. Both
estimation methods can be advantageously combined with
advanced control algorithms to improve energy capture of
WECs. They could also be used to monitor WEC operating
conditions in real-time.

Further research is needed to verify if this approach could be
applied to WECs with more complex dynamics. The inclusion
of nonlinear terms such as drag forces should be addressed as
well as the extension to multiple degree-of-freedom motion.
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