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Wave excitation force estimation for wave energy converters of the
point absorber type

H.-N. NguyeH, P. Tond

Abstract—Advanced control strategies play a crucial role in

increasing the energy extraction capacity of wave energy con- PTO: o Powertogrid
verters (WECS). So far, the most promising control schemes have (secondary >
predominantly been studied in simulation, based on the idealized converter) ; r 4
assumption of the wave excitation force availability in real time. Oscillating e

In practical WEC implementations, this is not the case, since this motion
force cannot be measured directly when the WECs are running.
Hence the force has to be estimated via measurements of other
quantities. Two approaches are presented in this paper to ful ll
this objective. The rst approach is based on a Kalman Iter
coupled with a random-walk model of the wave excitation force,
while a receding horizon — unknown input estimation approach is Fig. 1. Schematic diagram of a generic wave energy converter
employed for the second one. The proposed estimation methods

are evaluated by using real measurements from a laboratory scale

WEC.

Captor
. (primary _—

“converter)

Wave

action on velocity) is still very popular with WEC developers,
because of its simplicity. As shown in [3] for the Wavestar
I. INTRODUCTION WEC, it can yield reasonable energy capture levels, though

A wave energy converter (WEC) is a device used to produtl!l far below the theoretical optimum [4].
electrical energy from wave-induced motion. Several studiesTO improve wave energy conversion, several alternative
have shown that one of the key aspects for maximizing ti§€ntrol strategies have been proposed. Latching control is one
energy yield of many WECs is the control of the dynamief the earliest methods in this area [5], [6], [7]. The basic
response of the device to wave conditions, also de ned Ki¢a is to lock the point absorber when its velocity is zero,
hydrodynamic control [1]. More precisely, we consider herand wait for the most favorable moment to release it again.
the response control of the WEC captor, or primary convertdf, this way, the velocity of the point absorber can be brought
whose task is to transfer energy from wave to oscillating Phase with the wave excitation force, and the system is
body, via the power-take off (PTO) system, responsible ofia resonance. In [8], it is shown that the performance can
further energy conversion, generally to electricity. A schematie improved up to 2% compared to standard PI control, by
example of a WEC (of the point absorber type) is showgPmbining latching control and a short-term prediction of the
in Figure 1: a oat (the captor) oscillates under the actiowave excitation force, that is, the force exerted by the passing
of waves and is connected to a PTO system; the PT@ave.
by exercising an appropriate force on the oat, converts its Another solution, that has been drawing a lot of attention
mechanical energy into electrical energy. The PTO can bethe last decade, is Model Predictive Control (MPC) [9],
a simple linear electric generator, or a more complex mul{it0], [11]. In this strategy, a model is used to predict the
stage device, such as a hydraulic motor connected to a rothuture response of a system. At each sampling time interval, an
electric generator. Hydrodynamic control of such a WEC caMPC algorithm attempts to optimize future system behavior
be performed using the PTO as an actuator and adjusting thyecomputing a sequence of future control actions. The rst
force it exercises on the oscillating body serving as a captorput in the optimal sequence is then applied to the plant,
in order to maximize the extracted energy. and the entire calculation is repeated at subsequent sampling

Different approaches to WEC hydrodynamic control havéme intervals. The main advantage of MPC applied to WECs
been proposed in the literature. In the second half of the 70 that it is capable of energy conversion rates close to the
to improve the energy capture of his well-knowmodding theoretical optimum. In addition, state and input constraints
duck” [2], Salter implemented a practical control approaciean be considered in a natural way. However, it requires a
where the PTO torque opposing the body oscillation wagocedure to predict the future values of the wave excitation
computed as the sum of three terms, respectively proportiofieice over the prediction horizon.
to the displacement, the velocity and the acceleration of theln [12], another approach is proposed to improve energy
pitching body. Even nowadays, this control strategy, oftemarvesting performance, the so caliihple and effective real-
referred to, somewhat inaccurately, as “PID” control (becausitne control Based on the assumption of the availability of the
the three terms correspond to a proportional-integral-derivatiueve excitation force, the basic idea is to calculate a reference

_ . ~optimal velocity. Then a control law is designed to make WEC

I,eg’hgn"g”é[ﬁ'hsggg;g‘é53{5;‘59263eg’jg{;;“;rﬁ_ﬁ;ﬁﬁ%‘giy’:gg?giﬁiff"“d'po'“t ¢8locity follow the reference one. By simulation, it is reported
paolino.tona@ifpen.fr that the performance can be improved up t&@28mpared



to PI control. condition.

It can be observed that, to achieve optimal energy conver-4) State and control constraints can be considered.
sion, all the three control strategies mentioned above rely on5) In addition to the wave excitation force, the state of the
the assumption that the instantaneous wave excitation force system can also be estimated simultaneously. These esti-
is available. However, this is not the case in WEC practical mates can then be used for advanced control algorithms
implementations, since wave excitation force cannot be mea- such as MPC.
sured directly when the WECs are in operation. Therefore,The paper is organized as follows. In Section I, the
wave excitation has to be estimated via the measurem@fithematical model of the WEC considered in this work is
of other quantities. In the MPC context, for instance, thgrie y presented. Then the rst estimation method, based on
complete control scheme must include a block implementiggkalman lIter, is proposed in Section Ill. Using a receding

an algorithm for this purpose, as shown in Fig. 2. horizon Iter, an alternative approach is presented in Section
IV. In Section V, the experimental setup is described used to
wee  Fa validate the algorithms is described, and the estimation results
Measurements from . . .
Action on available sensors (.g. are reported. Some conclusions are drawn in Section VII.

p(k), p(k), B(K), Fu(k))

PTO FgP(k) Fu(k)
‘ PTO

! We consider point-absorber WECs consisting of a heaving
(FSK+D) 2 | shortterm Wave | F&"() | wave Force body that moves in one degree of freedom with respect to
P& (k+ Np)g | _Foree Prediction Estimation a xed anchor or a submerged body (see Fig. 3). From the

Fig. 2. Wave excitation force estimation in the context of MPC

relative motion, useful energy can be extracted.
T
In [13], to estimate the current value of wave excitation 0 \/\

Captor ’
‘ II. STATE-SPACEWEC MODELING

MPC

force, a combination of a bank of independent harmonic oscil- Captor
lators and a Luenberger observer is proposed. The strategy was FI,A

tested on a real WEC system, but the reported experimental

results show a relatively high phase lag in the estimated signal PTO

compared to the measured signal.
In [14], by considering the wave excitation force as a
time-varying sinusoid, an extended Kalman lIter approach _
is presented. However, no experimental result is reported. i 3- One-degree-of-freedom heaving-body WEC.
addition, it is obvious that the approach may only be effective
for very narrow-banded wave forces. Under the assumption that the oscillations of the system
By combining several pressure sensors at discrete pointsasa relatively small and using Newton's second law, the WEC
the buoy surface with the buoy heave position, and with amodel can be expressed in the time domain as follows [4],
extended Kalman Iter, another approach is proposed in [15],
which also estimates the derivati\rl)eps of wavepexpcitation f([)rC(]a. M®() = Fra(t) + Fraa () + Fex(t)  Fu(t) @
However, its computational complexity might be high and, ijvhere p(t) is the heaving position with respect to the equi-
addition, extra pressure sensors are required. librium point, M is the WEC (captor) massing(t) is the
Two novel solutions to estimate the wave excitation foragydrostatic forceF 4 (t) is the radiation forceFey(t) is the
are proposed in this paper. The rst solution is based onexcitation force to be estimated, aRg(t) is the control force
linear Kalman lIter coupled with a random-walk model for thefrom the PTO system. Note that since the motion of the system
wave excitation force, while a receding horizon estimator j§ assumed to be relatively small, the drag force is considered
developed for the second one. All implementation aspects sy@dyligible and hence not taken into account in the model (1).
as computational complexity and accuracy are investigatedit ijs assumed thai(t) andp(t), the position and the velocity
The performance of the proposed solutions are compared usgi@he captor, as well aB,(t), the force applied by the PTO,
data, collected in the wave basin of Aalborg University, ofan be measured or estimated. Note that in most literature on
a small-scale wave energy converter prototype, manufactukfigs subjectF $P(t), the output of the hydrodynamic controller,
by the Wavestar company. The main features of the proposgdised instead in the estimation algorithm. This corresponds
solutions are: to the implicit assumption that the low-level PTO force servo
1) No extra pressure sensors are required. Only measugasures perfect tracking &3P (t). Indeed, if this assumption
ments (or estimates) of captor position, captor velocitwere justi ed by the characteristic of the WEC under study,

and PTO force are needed. one could replac&, (t) with FSP(t) in the following.
2) The values of current wave excitation force are estimatedRemark: Newton's second law for linear motion is used
with almost no time delay. to obtain a mathematical model of the WECS, because the

3) No particular assumption about the sea state is madaption is linear. There are other types of point-absorber WEC,
which allows to cope efciently with any operatingwhere the (main) motion is angular. The quantity that fully



describes the system in this case is the angular deviatiemd

from the equilibrium point. Newton's second law for rotation 2 0 1 0
can be applied to obtain a mathematical model. The changes 5 - 4 K D, C: .
that take place are that the equivalent mass changes to an ¢ M+ M ME':Ml MAJ’Ml '
equivalent moment of inertia, and the acting forces become 2 0 3 ' '
acting moments. B -4 1 5. c- 100
It is well known [4] that, for smallp(t), the hydrostatic ¢ M +0""1 roe 010
force can be considered a linear functionpgf), i.e.
whereO is a zero matrix of appropriate dimension.
Fra(t) = Kp(t) (2 For the system (9)Fex (t) is not directly measurable. Our

roblem is to estimat&cy (t) using other measured quantities
uch asy(t) and Fy(t). For this purpose, (9) is discretized
with the Tustin's method. As a result, the following system is
Fraa ()= M1 p(t) Fe(t) (3) Obtained

. o x(k+1) = Ax(k)+ BFex(k) BFy(Kk)
whereM; is the added mass at in nitely high frequency, and y(K) = Cx(k) + DFex(k) DFy(K)

Z
! To simplify the description, denote

Fe()= h(t  )p()d 4)
0 W(k) = Fex(k); u(k) = Fu(k) (11)
In (4), h(t) is the impulse response function of the radiatio . : .
force, which can be obtained by boundary element metho%'su s equation (10) is rewritten as

whereK is the hydrostatic stiffness coef cient. The radiatiorg
force is given as in [16]

(10)

[17], [18], or approximated using analytical solutions for x(k+1) = Ax(k)+ Bw(k) Bu(k) (12)
speci ¢ oat geometry [19], [20]. y(k) = Cx(k) + Dw(k) Du(k)

To avoid performing the inconvenient convolutién(t) =

S h(t )p( )d , equation (4) can be considered as a linear I1l. K ALMAN FILTER APPROACH

system, where the input i(t), and the output i, (). Using  The main idea of the Kalman Iter based approach is to
Prony's method [21] implemented in Matlab, the followingconsider the wave excitation foroe(k) as a state. As a

state-space equation is obtained consequence, a mathematical model is needed to neldte
_ ) andw(k +1). It should be noted that this is not a new idea,
r(ty = Arr(t)+ Brp(t); . .
F.(t) = Cr(t)+ D,p(t) (5) even for WECs. In [13], by assuming thatk) is the sum of

a number of sinusoids with different phases and amplitudes,
where (A,;B,;C,;D;) is a state-space realization, an(t) a mathematical model consisting of a bank of oscillators is
is an internal state with no particular physical meaning.  built up. The number of sinusoids and their individual angular

Combining (1), (2), (3), (5), one obtains frequencies are xed, and are tuning parameters. However,

8 looking at the experimental estimation results reported in [13],
< Mp(t) = Kp(t) Maipt) Fr(t)+ Fex(t) Fult) it appears that
() = Ar(+ Brp(t); 1) The amplitude of the wave excitation force is slightly
Fr(® = Gr(t)+ Drp(t) 6 overestimated.
De ne ©) 2) There exists a signi cant signal delay in the estimated
) = o(t): wave excitation force.
Xl( ) p( )r (7) .
X2(t) = p(t) Note that the assumption on the constancy of the decom-

_ . _ posed angular frequencies is rather strong, since it is well
Note thatx,(t) andx(t) are directly accessible, singgt), known that the spectrum af(k) is time-varying. In addition,

p(t) are measurable. Using (6), (7), one obtains in order to accurately describe(k), it is well known [17]
8 x1() = Xa(t) that more thanl10000 sinusoids are needed. Consequently,
3 ™ _ 2 D, one might have a problem with the delay and/or with the

K
X2() v Xt g Xe() (8) computational complexity. Note also that the approach is not

C, 1
3 s (O g (Fed®) Fu(®) applicable if the wave excitation force has nonzero mean.
r(t) Brxa(t) + Arr(t) In this work, the following mathematical model is used
or equivalently w(k +1) = w(k)+ m(k) (13)
X(t) = Acx(t) + BeFex(t) BcFu(t);

(9) where , (k) describes the variation @f(k) and is considered

y(t) = Cex(t) as a random number. The model (13) assumes that at each
where 8 sampling time, the wave excitation force takes a random step
< x(t) = [ xa(t) x2(t) rT(0)]"; away from its previous value, and the steps are independently

y(t) = x1(t) and identically distributed in size. Clearly, the computational

X (t) complexity is low, since (13) is simple.



To take into account unmodeled dynamics and measurement) Inputs: y(k) = [x1(k) x2(k)]T (measurements of
noises, a more realistic model than (12) for the WEC system WEC system outputs)u(k) (measurements of WEC

is introduced as system control input)®a(k 1k 1), P(k 21k 1)
x(k+1) = Ax(k)+ Bw(k) Bu(k)+ (k) (estimates at previous time instant), and the parameters
y(k) - Cx(k)+ Dw(k) Du(K)+ (K) (14) Q; R (covariance matrices)

_ ) 2) Output: W(k) (estimate of wave excitation force)
where (k) describes unmodeled dynamics, an¢k) de- 3) Initialize: k = 0, R4(0j0) = X4(0), P(0j0) = P
scgibes measurement noises. Combining (13), (14), we obtairy) At each time instant

< x(k+1) = Ax(k)+ Bw(k) Bu(k)+ x(k) (i) Apply the linear Kalman Iter to obtaimk, (kjk),
wk+1) = wk)+ m(K) (15) P (kjk)
y(Kk) = Cx(k)+ Dw(k) Du(k)+ (k) (i) Compute the estimate of wave excitation force

wW(k) aswW(k) =[0 1]Ra(kjk)
Let us stress that, since the assumption on the random-walk
(16) model ofw(k) is quite general, the approach can be applied
Cax(k) + Dau(k) + (k) to almost any kind of wave excitation force signals.

or equivalently
Xa(kK+1) = AaXa(k)+ Bau(k)+ (k)
y(k) =

where IV. RECEDING HORIZON ESTIMATION APPROACH

Xa(k) = X(k) (k) = x(K) : In the previous section, by imposing a random-walk model

A Wék) ' Bm (k) dynamics for the wave excitation force, the state of the system
A, = 0o 1 B, = 0 is rst augmented. Then the classical linear Kalman lter is

used to obtain an estimate of the augmented state. However,

the assumption (13) on the behavior wof(k) makes the

Using (16), it follows that the problem of estimating(k) approachsub-optimal

becomes a state estimation problem. One way to estimatdJsing a receding-horizon principle, a new estimation algo-

the unknown state vector,(k), that can take into accountfrithm is proposed in this section. The main advantages of the

information about (k) and (k), is to apply the well-known approach are:

linear Kalman Iter (LKF) algorithm [22], [23]. There is no assumption on the dynamics of the wave
The following assumptions are classical in the Kalman excitation force.

Iter theory. x,(0) is a random vector that is uncorrelated  Information about process and measurement noises can

to (k) and (k). xa(0) has a known meai,(0) with Pg be considered.

as a covariance matrix(k) and (k) are uncorrelated, zero- Input and state constraints can be naturally included.

mean white-noise processes with covariance matii@eand Let us start again from a WEC model, that considers

R, respectively. The correlation technique in [24] is used @nmodeled dynamics and measurement noises

obtainQ andR. — :
The following notations are used: x(k + 1) _ Ax (k) Bw(k) - Bulio+ (k);

C.=[C D]; Da= D

17)

ik . . y(k) Cx(k)+ Dw(k) Du(k)+ (k)

Ra(kjk 1) is the estimate ok, (k) given measurements ,

from timek 1. where (k) and .(k) are respectively, the process anq the
24 (kjk) is the estimate ofa(k) given measurements Measurement noises. Itis assumed tfligt and (k) are white
from time k. noises with zero mean.

P(kjik 1) is the covariance matrix oka(k) given Receding-horizon estimation is an algorithm, that recur-
measurements from time 1 a sively estimates the state and the unknown input by con-
P (kjk) is the covariance matrix of,(k) given measure- sidering a nite window of data. The problem consists in
ments from timek estimating, at any time instatt N, the state vectok(k)

and the unknown input ¢ (k), on the basis of
A priori estimators®(k  Njk 1), Ww(k Njk 1).
Output informationy(k  N);y(k N +1);:::;y(k).
Input information:u(k  N);u(k N +1);:::;u(k).
Herex(k Njk 1)andw(k Njk 1) denote the estimates

Then the LKF algorithm is summarized as follows
Time-update equation
Ra(kjik 1) = AzRa(k 1k 1)+ Bau(k 1);
P(kik 1) = AsP(k 1k 1Al +Q

8 Measurement-update equation of x(k N) andw(k N) given the measurements from time
K (k) = P(kjik 1)CI C,P(kik 1CI+R ! k 1 ) )
Ra(kjik) = Xa(kjk 1)+ With a slight abuse of notation, let us dendte= %(k

3 +K(K)(y(k) CaRa(kik 1) Dau(k)); Njk 1) ?..ndWo =Wk Nijk . .1). Let us denote alsgl =
P(kik) =(1 K(K)Ca)P(kjk 1) k(k N+jjk),wj = %(k N+jjk),and j ="~(k N+jjk),

orj =0;1;:::N. The moving horizon problem is formulated
The Kalman lIter based approach is summarized as foIIowgS at each time instait N

Algorithm 1: Kalman Iter — random-walk model ap- oo I (Xo; Woi Wi i2 i Wi 137020 )

proach (18)



where the cost function is de ned as withG=Y yxo W+ U E. Or, equivalently

, . , , N1
J() = Qixo  RojiZ 1+ jiwo Woj]é Lt IR J = xFPy X0 2RI Py 1xo + X Py 1Ro + W Qg twy
. ’ ° n i=0 203 Qo *wo + W) Qoo+ ETQE + GTRG+ WT (\2N2)
+  jiv(k N+j) Cxjjg .+ W W 4jj2
= iy( D L j=1 I ol The termsgf P, 20 and W) Q, *wWo can be removed, since

(19) they do not in uence the optimal argument. As the result
Here jjxjjw denotesx” Mx for a real vectorx and a real

symmetric matrixM . There are ve terms in (19): Ji = xgPy X 20§ Py "X + W Qg Mwo
The sum of the rst ternjjxo  Rojj2 ; and the second 205 Qo 'wo + ETQE + GTRG+ WT W -
termjjwo Wojj , is called the arrlval cost. It summa-, o 8 23)
rizes the prior |n$ormat|0n at timk N and is part of < =[WT x{ ETIT;
the data of the estimation problem. S V=Y+ U (24)
The third and fourth terms penalize the process noise and : s=[ y v ]
the measurement noise via the weighting matri@esand 2 3
R, respectively. Q,? 0 0 ::: 0 O
The last term is a regularization term. It exploits the fact 0 0O :x: 0 O
that the wave excitation force is a smooth signal. To 0 0 0 O
the best of the authors' knowledge, this is the rst time, 1~ . N
not only in WEC literature, but also in moving horizon : i
L : . 0 0O 0 O 0
estimation literature, that such a term is considered. 0 0 0 0
Remark: Another way of using information about the wave 2 o o 3
1 1 F.
excitation force smoothness is to impose the rate constra|ntl§ 49 pl 05 = Qo 0O ::: 0
jwj w4 S; j =1:;2:::;N, whereS > 0 is the o o Qo 0 Pyt 20

maximal variation ofw; .
Next we will transform (18), (19) into a quadratic programThe cost (23) can be rewritten as

ming problem. By propagating (17) in time, one gets

Ji= TP 2M ®i1S +(V  s)TR(V )

where or equivalently
?= Pk N+1)T 9k N+2)T okt T Jo= TP 2] Rl1S + T IR | (25)
D o 00 2VTR s + VTRV
CAB CB R 0 0 ) ] )
_ ) L The termV TRV can be omitted in the cost function (25)
: : : : since it does not in uence the optimal argument. As a result
> CAN éB CAN 2B ::: CB D S
CA c 0 0 2= T(P+ [R5 2Mf % V'] L (26)
§ CA z § CA C 0 z s
B ; ; ; It is worth noticing that the bounds on the wave excitation

CAN 1 caAN 2 ... (¢ force and the state can be considered in the moving-horizon

estimation framework by including the following constraints
Rewrite the cost function (19) as 4 g g

J = jix R” L+ jiw W” w2Py,; Py =fw:H,w gug
0T ’ (fl' ’ T (21) X2 Pyx; Py =1fx:Hyx g 27)
+E QE+(Y DTR(Y 9)+w W
h -d yR=d R 1) and whereg, > 0 andgx > 0. This condition implies that the
whereQ l2g(Q ) lag( ). an . origin is contained in the interior d?,, andPy.
Y= yk N+1)T ykk N+2)T z: yk' Using (24), the constraints (27) can be expressed as a linear
11 0 0:: 0 O inequality
0 1 1 0:x:x 0 O H g + HqU (28)
0 O 1 1:: 0 O
= : : - . Combining (26), (28), the moving horizon estimation problem
: . - o boils down to
0 0 0O O0:@:x:x 1 O
0 0 0 0 ::: 11 min T(p + 'SI'R s) 2[\,0%' k‘-(l)— VT] RS
diag(X) denotes a square diagonal matrix, whose diagonal st H + H.U s
elements areX . Substituting (20) into (21), one gets o 9 d (29)
J = jjXo kojjp 1t jjwo Wojj This is a constrained quadratic programming problem, for

+ET QE + G'TRG+ WT w which nowadays, there exist several effective solvers, e.g. [25].



Let be the optimal solution of (29), the estimate of the wave A linear electrical generator is chosen to emulate the PTO
excitation forces is, from given measurement at tkne system. It applies a force to the arm, which can be measured
Sy N e A by a load cell, see Fig. 4 and used to compute the equivalent

Wik N +jjkj= () 8 =1:2:::N moment applied to the oat. The WEC controller sends a force

Remark: When the constraints are not active, there existsréference to a low-level force servo-controller that operates the

unique analytical solution to (29) generator.
2 3 Note that for this application, we estimate a wave excitation
- 1 T TeT 4 Wo 5 moment instead of a wave excitation force, since the motion
=(P+ sR ¢~ S sR Ro (30) s rotational.
\Y
The moving horizon estimation algorithm is summarized d& Available data
follows The data were collected in a wave basin of Aalborg Uni-
Algorithm 2: Moving horizon estimation — unknown versity. The basin has a length 46 m, a width of 8 m
input approach and a maximum water depth @7 m. The wave paddles

1) Inputs: y(k) = [x1(k) x2(k)]T (measurements of are driven by a total ofl5 hydraulic pistons moving in the
WEC system outputs), control inputk) (measurement horizontal direction. The waves were generated by the wave
of WEC system control output)f(k Njk 1), maker based on the Pierson-Moskowitz spectrum [28]. Three

w(k Njk 1) (estimates from previous time instant)distinguished features of the system were used thoroughly for

2) Output: W(kjk) testing. First the paddle movement can be stored during a test
3) At each time instank run and then can be reproduced in further test runs. Secondly,
() If kK N then go to Step (ii). Wait, otherwise. a_trigger signal is sent by _the wave generator, allowing exact

(i) Solve the QP problem (29) to obtain . alignment of the tests. Thirdly, the force sensor of the PTO
can be used to measure the wave excitation moment, with the

(iii) The estimate of the wave excitation foregk) can . g "
be calculated ag(kjk) =  (N). oat being manually blocked at equilibrium position when the

wave passes by.

These three features allow to compare the measured wave
excitation moment as de ned by linear wave theory from a
A. Experimental setup rst reference test to the estimated wave excitation moment

A laboratory prototype of a point absorber WEC [26] on &rom the following tests, where the oat is moving and the
1:20 scale with respect to the well-known Wavestar devidel'O is turned on.
installed near Hanstholm in Denmark from 2009 to 2013,
was used to test the wave excitation force estimation methods
described in the previous section. The tests were carried out
within a broader campaign to assess the performance of a
full MPC control system [27], as depicted in Fig. 2. As
it can be seen in Fig. 4, the prototype consists of a oat
attached to an arm, which in turn is attached to a PTO
emulator. The laboratory model is equipped with a laser and an
acceleration sensor to measure, respectively, the position and
the acceleration. The velocity of the oat can then be estimated
from these measurements using a linear Kalman lter.

V. EXPERIMENTAL RESULTS

Fig. 5. Concatenation of four irregular waves (wave moment in Nm).

For the present analysis, a concatenation of four different
irregular waves representative of real-life sea conditions is
considered, see Fig. 5. It can be observed that the waves
were generated, by amplitude, from the smallest to the largest
ones. The waves are unidirectional, two dimensional, long-
crested waves. The four data sets were measured at a sampling
frequency ofl kHz, and down-sampled with a factor b to
reduce computational complexity. The spectra of the excitation
waves3 and4 is presented in Fig. 6.

C. Estimation results

Fig. 7 presents the estimation results of the two algorithms
Fig. 4. Experimental set-up with laboratory model of the Wavestar deviceapp"ed to wave3. It can be observed that the results are



(@) (b)

Fig. 6. Spectra of wav8 and waved.

good with both algorithms, though the estimates obtained with

Algorithm 2 are smoother. In order to show the ability of our (a) Algorithm 1
approaches to deal with the sea state time-varying nature, Fig.

8 compares the real wave moment to its estimates computed

by the two algorithms for the transitory period from wa%e

to wave4.

(b) Algorithm 2

Fig. 8. Measured and estimated wave excitation moments for the transitory
period from wave3 to wave4.

the best estimates with respect to the minimum (absolute)
time-delay criterion. Algorithm2, however, seems to have
an anticipating effect, which may prove interesting for model
predictive control.

(a) Algorithm 1

Wave 1 Wave 2 Wave 3 Wave 4
Algorithm 1 | 0.040 s | 0.010 s | -0.005s| -0.020 s
Algorithm 2 | -0.005 s| -0.025 s| -0.035 s| -0.050 s

TABLE |
TIME-DELAY ANALYSIS FOR DIFFERENT ALGORITHMS AND WAVES

Finally, Table Il presents a goodness-of-t (GoF) index
computed using the normalized mean square error (NMSE)
criterion, as follows: |

N B '
m= 1 O(We(k) w(k)*="" 2g) 100% (31)
- k=0

(b) Algorithm 2

Fig. 7. Measured and estimated wave excitation moments for wave 3.

For advanced WEC control methods, it is strongly desirabfghereN is the number of dataye(k) is the estimated wave
to have an wave excitation moment estimation without arigrce, andw(k) is the reference wave force.
signi cant time delay. In this paper, the cross-correlation Wavel T Wave? | Wave3 | Waved
analysis technique is used to compute the maximum delay [“Algorithm 1 | 86:05% | 92:36% | 94:58% | 94:62%
of the estimated wave excitation moment with respect to the Algorithm 2 | 91:93% | 94:64% | 94:90% | 94:08%
reference real wave. The results are presented in Table I. A TABLE Il
positive de|ay in Table I, means that the obtained estimatéddMSE GOODNESSOF-FIT ANALYSIS FOR DIFFERENT ALGORITHMS AND
signal is advanced with respect to the reference signal. In the DIFFERENT WAVES
other case, the delay is negative. It should be noted that all the
delays are less than 0.05, the sampling period chosen for MPCTable 1l shows that the estimation algorithms give better
It can also be observed that Algorithinproduces averagely result with higher and stronger waves. Algorittfhproduces




the best estimation result with respect to the maximum qf]
the GoF criterion. However, this algorithm is computationally
more demanding as it requires the solution of a quadratifg]
programming problem at each time instant.
(9]
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VIl. CONCLUSION

One major dif culty in applying advanced control algo-[12]
rithms for wave energy converter systems resides in the fact
that the wave excitation force is unmeasurable in real timgg,
In this paper, two novel estimation methods are developed
using position, velocity and PTO force measurements (or
estimates). The rst approach considers the wave excitation
force as a system state, and applies a linear Kalman lIter. [#4]
simple random-walk model is used to describe the dynamics
of wave excitation force, which gives the algorithm the ability
to deal with a broad range of varying sea-states with no negd]
of recalibrating its parameters. The second approach views
the wave excitation force as an unknown input. A receding
horizon estimation algorithm, that can take into account thes]
state and input constraints, is presented. An original feature
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