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HIGHLIGHTS  

 

  Rock-based validation of the experimental 47 – T calibration for calcite and dolomite  

  High-salinity fluids (from 0 to > 15 wt.% NaCl eq.) do not affect 47 signatures over 

crystallization of natural calcites and dolomites  

 Rock-based validation of the absence of solid-state diffusion both for calcite and dolomite 

that experienced temperatures of 80°C for less than 50 Myr. 

 Coupling FIM and 47 allows to evaluate if thermal and FI signatures were kept unaltered 

through geological times and to unravel temperature, 
18

O and salinity of paleo-

groundwater 

 

KEYWORDS.  Fluid inclusions microthermometry; carbonate clumped isotopes; oxygen 

isotopes; salinity; 
18

Owater  

 

ABSTRACT  

 

Diagenetic minerals may provide information about the burial history of geological units 

and can have practical applications, for instance, for reconstructing the geochemical and 

thermal histories of sedimentary basins. Clumped isotope, or 47, thermometry on 

carbonates opens a new avenue for interpreting carbonate formation temperature and 

thermal history of rocks. Yet, most of current knowledge on 47 systematics has been 

acquired via theoretical or experimental studies with only limited validation by the rock-

record at geological conditions/timescales. Here, we investigate calcitic and dolomitic 

cements representative of three genetically different cementation phases from a well-

documented mineral paragenesis of a carbonate unit (Middle Jurassic, Paris basin, 

France). We compare 47 with fluid inclusions microthermometry (FIM) data that were 

independently obtained from the same calcite and dolomite crystal specimens. The range 

of homogenization temperatures (Th) found for Cal1, Cal2 and Dol1 fluid inclusions fit 

remarkably well (ie. within less than 5°C) with the temperatures determined from the 

47 measurements (T47), for a temperature range between 60 and 100°C and salinities 

between 0 and 15 wt.% NaCl eq. This provides a consistent rock-based validation of the 

experimentally determined 47 calibration with formation temperature for both calcite 

and dolomite mineralogy. Such findings also confirm the applicability of 47 

thermometry in low temperature diagenetic environments (ie., below circa. 100°C), 

which provides higher precision than FIM measurements (ie., typical uncertainties of ± 
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6°C with three 47 measurements) though significantly less time-consuming. 

Importantly, this study underlines how the coupling of both techniques can help to 

evaluate the degree of preservation of the original temperature information captured by 

either fluid inclusions or 47 compositions, and interpret each proxy as 

confidently/accurately as possible. Moreover, because both FIM and 47 measurements 

can provide independent constraints on the geochemistry of diagenetic paleofluids (via 

their salinity and 
18

O composition), this study also highlights the benefits of coupling 

both techniques to further unravel the nature of paleofuids. Finally, we propose a 

practical guideline as a basis for future applications of combined FIM and 47 

thermometry.  

 

1. INTRODUCTION 

 

The temperature and chemical composition of diagenetic fluids are essential parameters for 

reconstructing the thermal and fluid circulation evolutions of sedimentary basins, allowing to 

reconstruct the detailed history of the porosity and permeability properties in reservoir rocks. 

Burial paleotemperatures of sedimentary successions are commonly inferred using various 

methods, including apatite fission-track and (U-Th)/He thermochronologies  (Gleadow et al., 

1986; Green et al., 2004), fluid-inclusions microthermometry (or FIM; e.g., Goldstein and 

Reynolds, 1994 and references therein) or the thermometry based on the isotopic equilibrium 

of oxygen between co-genetic minerals or between water and minerals (including carbonates) 

(e.g., O'Neil et al., 1969; Sharp and Kirschner, 1994). In the specific case of carbonate 

minerals, the most commonly used tools, namely FIM and 
18

O thermometry, are subject to 

several application limits potentially affecting the reliability (i.e., accuracy and precision) of 

the reconstructed mineralization temperatures. Notably, FIM, leading to both thermal and 

compositional information on the carbonate parent fluids, requires: (1) sufficiently clear and 

coarse crystals for accurate petrographic observations, (2) the occurrence of bi-phase fluid 

inclusions, large enough to be analyzed, (3) an evaluation of pressure correction to estimate 

true fluid trapping conditions (critical in over-pressured contexts; Vityk et al., 1994) and (4) 

that the inclusions have behaved as closed and isochoric systems through time. All the four 

previous requirements may not be satisfied, for a variety of reasons. Importantly, FIs in soft 

carbonate minerals may suffer different post-entrapment modifications (e.g. necking-down, 

stretching or leakage due to thermal reequilibration, refill processes; see Roedder and Bodnar 

1980, Goldstein and Reynolds 1994 for an extensive review) that may induce erroneous 

evaluations of the conditions under which the FIs were trapped. On the other hand, the 

thermometry based on the exchanges of oxygen isotopes between water and carbonate can 

theoretically be applied to the entire range of diagenetic temperatures, but it requires 

independent knowledge of the oxygen isotopic composition of the formation fluids (
18

Owater). 

However, 
18

Owater of formation fluids can vary in time and space, due to a variety of factors, 

including mixing of fluids of different origins and/or the conditions of previous interactions 

with rocks (e.g., temperature, water/rock ratios). 

 

The recently developed carbonate clumped isotope (or 47) paleothermometry (Ghosh et al. 

2006; Eiler, 2007) allows to independently access to both temperature and 
18

Owater values. 

The 47 thermometry is bind to an internal equilibrium inside the carbonate lattice where rare 

isotopes (
13

C and 
18

O)
 
preferentially

 
bond with each other as a function of temperature 

(Schauble et al., 2006). The relative abundance of 
13

C
18

O
16

O2 groups in carbonate minerals 

depends on temperature (Schauble et al., 2006). In the last decade, the 47 thermometry has 

been calibrated in laboratory for a variety of inorganic and biogenic carbonates in the 0-350°C 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 3 

geologically-relevant temperature range (e.g, Ghosh et al., 2006 ; Dennis and Schrag, 2010 ; 

Henkes et al., 2013; Bonifacie et al., 2017 ; Kele et al. 2015 ; Katz et al., 2017; Kelson et al., 

2017). Laboratory experiments and theoretical studies have suggested that this tool is not 

influenced by the carbonate mineralogy or composition of the analyzed carbonate (e.g., 

Bonifacie et al., 2017), or by the precipitation conditions including the precipitation rate (e.g., 

Tang et al. 2014 ; Kelson et al., 2017; Watkins and Hunt, 2015), the pH and the salinity of the 

carbonate parent fluids (e.g., (Hill et al., 2014; Kluge and John, 2015). This suggests that the 

experimentally determined 47–T calibrations could successfully unravel precise and accurate 

crystallization temperatures for a variety of natural carbonate precipitation conditions. Over 

the last decade, the 47 thermometry has thus been largely applied for reconstructing past 

temperatures of marine and continental carbonates precipitated at surface conditions (e.g., 

(Came et al., 2007; Huntington et al., 2010). Yet, the number of studies focusing on high-

temperature settings remained limited (e.g, Bristow et al., 2011; Ferry et al., 2011; Loyd et al., 

2012; Loyd et al. 2015; Dale et al., 2014; Henkes et al., 2014; Huntington and Lechler, 2015 ; 

Millan et al. 2016), likely resulting from the only recent availability of 47–T calibrations for 

temperatures above 80°C (e.g., (Kluge et al., 2015) for calcite or (Bonifacie et al., 2017) for 

all carbonate minerals).  

 

While 47 thermometry is applicable to the full range of temperature over which diagenetic 

carbonates can form, and presents unprecedented uncertainties (typically less than ± 3-4°C for 

T < 50°C, ± 6°C for T < 100°C and ± 8°C for T < 150°C; for more details see Figure 6c of 

Bonifacie et al., 2017 including both the precision on 47  data and the uncertainty on the 47-

T calibration), some complications about data interpretation may arise when studying 

carbonates that have been buried/heated over long durations (i.e., most pre-Quaternary 

carbonates). In this case, the initial abundance of 
13

C–
18

O bonds within the carbonate lattice 

(and thus the 47 value acquired at the time of precipitation) might have changed, even 

without dissolution/recrystallization of the carbonate phase, if temperature/time were 

high/long enough to have generated solid-state diffusion of atoms (e.g.,  Dennis and Schrag, 

2010; Passey and Henkes, 2012 ; Bonifacie et al., 2013 ; Henkes et al., 2014; Stolper and 

Eiler, 2015). The reliability of the reconstructions of the original carbonate formation 

temperature could then be compromised. Experimental studies suggest that this process is 

limited to some “mild” burial conditions (e.g., calcite could start to lose its original 47 

compositions only if at ~ 80-100°C for 100 Myr ; Passey and Henkes, 2012; Henkes et al., 

2014; Stolper and Eiler, 2015). Three studies on metamorphic rocks or hydrothermal settings 

suggested that dolomite might be more resistant than calcite to this process (Bonifacie et al., 

2013; Millan et al. 2016; Lloyd et al., 2017). Overall, most of the knowledge on potential 

resetting of 47 through solid-sate diffusion has been obtained on laboratory, short-scale, 

experiments on relatively simple, homogeneous and pure materials (eg., optical calcites; 

Passey and Henkes, 2012; Stolper and Eiler 2015) that might not capture the complexity of 

the natural realm. Also, a recent geological study suggested that solid-state diffusion may 

change original 47 values of both calcitic and dolomitic carbonates at milder diagenetic 

conditions than predicted by experimental studies (Winkelstern and Lohmann, 2016). Thus, 

before confidently upscaling laboratory experiments to geological samples, there is a need to 

investigate well-documented natural cases in order to gain more experience on conditions for 

resetting 47 values at geological timescales.  

 

This contribution directly compares temperature estimates out of 47 (T47) and FIM (Th) 

both carried out on the same cements (four calcites and one dolomite) hosted in the same 

carbonate unit (Middle Jurassic, Paris basin, France) characterized by a well-documented 
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paragenetic sequence. For the first time, we report here remarkably consistent Th and T47 for 

both calcitic and dolomitic cements. This confirms the applicability of 47 thermometry in 

such geological conditions (60-100°C; salinity between 0 and 15 wt.% NaCl eq.), with higher 

precision than FIM measurements. Importantly, our finding also provides insight to highlight 

the benefits of coupling FIM and 47 measurements on the same samples for assessing the 

conservative nature of both proxies and/or further constraining the temperature, salinity and 


18

O of circulating paleofluids in sedimentary basins.  

 

2.  MATERIALS AND METHODS  

 

2.1. Sample selection  

  

This contribution focuses on the characterization of deep diagenetic fluids that have 

progressively cemented a Middle Jurassic carbonate reservoir unit (~ 165 Ma) from the Paris 

basin (Worden and Matray, 1995; Mangenot et al. in press). This subsurface carbonate unit 

has been widely studied as a potential exploration target for oil exploration, hydrological 

resource and CO2 sequestration (Gaulier and Burrus, 1994).  Our study investigates samples 

from two boreholes (Baulne en Brie and Fossoy), located in the center of the Basin, which 

were collected between 1600 and 1800 meters depth. The boreholes temperatures are 

currently about 60°C - 70°C (Ménétrier et al., 2005). Previous data on organic maturity and 

fluid inclusions thermometry consistently indicate that the maximum temperature reached 

higher values, between 80 and 100°C in the Late Cretaceous (Goncalves et al. 2010). 

 

According to petrographic description and paragenetic relationships, the cementation history 

of the studied carbonate reservoir consists of three successive cementation episodes (Fig.1). 

From the oldest to the youngest: (1) a first blocky calcite cement, named Cal1 (crystal size of 

100 µm-5mm), (2) a saddle dolomite cement, named Dol1 (crystal size of 500µm-2mm) and 

(3) a second blocky calcite cement, named Cal2 (crystal size of 100-1mm). Petrographic 

features of each of these diagenetic pore-filling cements are illustrated in figure 1. The Cal1, 

Cal2 and Dol1 cements display very distinctive cathodoluminescence patterns (Fig. 1) 

suggesting different formation conditions (e.g. fluid redox, Mn and Fe
 

concentrations;
 

Machel, 1985). The 47 and FIM thermometers were conjointly applied for comparison on 

five cement specimens of Cal1, Cal2 and Dol1.  
 

 

2.2 Fluid inclusion micro-thermometry (FIM) 

 

Five double-polished thick sections were prepared with a cold technique to prevent re-

equilibration of the fluid inclusions (FIs) (McNeil and Morris, 1992). The petrographic 

selection of suitable fluid inclusions allowed microthermometry measurements on five 

different samples out of Cal1 (n=2), Cal2 (n=2) and Dol1 (n=1) cementation episodes. The 

rock-slabs used for thick-section preparation were selected to include the same sub-samples 

than those drilled for recovering powder for clumped isotope measurements. Primary 

inclusions, trapped during mineral growth were carefully differentiated from few secondary 

inclusions, trapped along healed micro-fractures, formed after cement growth. Prior to 

microthermometric measurements, petrographic observations were done to distinguish 

consistent fluid inclusion assemblages (FIA) and characterize FI size, shape, occurrence and 

the proportion of liquid versus gas phases (as suggested by Goldstein and Reynolds, 1994). FI 

microthermometry was performed with a Linkam MDS 600 heating–freezing stage, mounted 

on a Nikon LV100 Eclipse microscope, associated to a 100W Mercury vapor lamp. The 
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Linksys 32 software enabled all the operations for FI microthermometry. The stage was 

calibrated with synthetic fluid inclusions in quartz standards on the following temperatures: 

ice (H2O) melting point at 0.1 °C, eutectic point of a NaCl-H2O brine at -20.9 °C and a 

chemical standard (Hack 11/87) melting point at 135 °C. The measurements of 

homogenization temperatures (Th) were carried out before freezing runs to avoid stretching of 

the inclusions by ice nucleation. The accuracy of the microthermometry data are about ± 1 °C 

for heating runs and about ± 0.5 °C for cooling runs. Beside Th and final melting 

temperatures of ice (Tmi), further observations allowed to determine the temperatures of gas 

nucleation after homogenization (Tng) and the temperatures of ice-like phases nucleation (Tni) 

during freezing, these permitting to ascertain the common behavior of FIs from the same 

generation. The apparent eutectic temperature (Teap), recorded during FI reheating after 

freezing. is the temperature at which the first liquid is observed and overestimates true 

eutectic temperatures. Furthermore, when the final melting occurred abruptly (metastable 

behavior), possibly at temperatures above the real melting, a TmMET was reported. The 

software package FLUIDS (Bakker, 2009, 2003) was used to further characterize the aqueous 

fluids. AQSO1 was used to calculate total salinities from measured Tmi in the binary H2O–

NaCl system (Bodnar, 1993). The application BULK was employed to calculate bulk fluid 

properties (e.g. density) of individual FIs using the equation of state of Krumgalz et al. (1996) 

and the measured Th and Tmi. The program LONER32 was used to calculate isochore slopes, 

according to the thermodynamic model of Bodnar and Vityk (1994) by inputting measured Th 

and salinities (expressed as wt. % NaCl eq.).  

2.3. Δ47, 
18

O and 
13

C measurements and data processing 

 

The required amount of carbonate for 3 replicate Δ47 measurements (ie. ~15-20 mg) was 

collected with a dental drill from the same slabs used for thin and thick sections preparation. 

Based on transmitted light and CL microscopic observations, petrographically homogenous 

crystals were screened and selected to prevent mixing of different phases. A total of ten Cal1 

cements, two Cal2 cements and one Dol1 cement were selected and measured for their 

respective Δ47 composition. Among all the 13 cement samples characterized here for their Δ47 

value, five were chosen (based on petrographic criteria) for direct comparison of temperatures 

obtained with 47 and FIM measurements. The selected sample specimens (BEBJ8, BEBJ12, 

BEBJ2, BEBJgeode and FOS1610) are representative of their respective populations in terms 

of petrographic texture, cathodoluminescence response and traditional isotopic compositions 

(i.e. very homogeneous 
18

Ocarb and 
13

Ccarb inside each investigated generation).  

 

Measurements of Δ47 composition of carbonate samples were performed at Institut de 

Physique du Globe de Paris (IPGP, stable isotopes team) using a Thermo Scientific MAT 253 

gas-source mass spectrometer. Isotopic measurements were performed on gaseous CO2 

released after digestion of carbonate powder in 104% phosphoric acid. About 5-8 mg of 

carbonate samples were reacted at 90°C in a common acid bath for 20 minutes for calcites and 

1 hour for dolomites. Note that recent analytical development allows reaching good precision 

on TΔ47 with only 1-2 mg of carbonate powder in total (Müller et al., 2017). The methods 

used for carbonate digestion, CO2 purification, mass spectrometric measurements and a 

posteriori data processing follow the procedure detailed in Bonifacie et al. (2017) and is only 

briefly summarized below.  

 

Each measurement consisted of seventy cycles of comparison between the CO2 extracted 

from sample against a working internal reference CO2 gas provided by Oztech Trading 

Corporation (with 
13

CVPDB = - 3.72‰ and 
18

OVPDB = - 6.06‰, verified with international 
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carbonate reference material NBS19). The signal integration time was of 26 seconds by cycle 

(i.e., total integration time of 1820 seconds for each CO2 sample) for a signal of 12 or 16V on 

m/z = 44.  

 

Traditional δ
18

O and δ
13

C data were acquired as part of each Δ47 analysis and 
17

O corrections 

were made using the 
17

O parameters from Santrock et al. (1985), as for the majority of Δ47 

data and calibrations published to date. Note that using the 
17

O parameters from Brand et al. 

(2010) would only lead to small differences in 47 values of both of our standards and 

samples (ie. less than ±0.010‰), well within the analytical uncertainty on Δ47 measurements. 

This would thus not significantly change the reported temperatures (and conclusions) of this 

study. In order to account for the temperature dependence of oxygen isotope fractionation 

between CO2 gas and carbonate resulting from the reaction with phosphoric acid at 90°C, 

fractionation factors of 1.00811 and 1.0093 were respectively used for calcite and dolomite 

(following Rosenbaum and Sheppard (1986) and Katz et al. (2017)). 
18

O and 
13

C of the 

carbonate samples are expressed in per mil with respect to the VPDB standard.  

 

In order to be able to report our 47 data in the absolute reference frame, we measured CO2 

gases driven to isotopologue equilibrium at 1000 and 25°C (typically one of these two type of 

gaseous CO2 standards was analyzed every day and every 4-5 analyses), along with the 

samples in order to check for analytical stability. These equilibrated CO2 gas standards have 

bulk isotopic compositions spanning the entire range of measured cement samples, are 

purified and analyzed in the same way as carbonate samples or carbonate standards and are 

typically run every 4-5 analyses (Table S1). The raw ∆47 data were first corrected for linearity 

effects using a fixed common Equilibrated Gas Line slope fitted to the equilibrated CO2 gases 

at both 1000 and 25°C. Subsequently, as recommended by Dennis et al., (2011), the raw ∆47 

values (expressed relative to the working gas) were transferred into the Carbon Dioxide 

Equilibrated Scale (CDES) using the CO2 gases driven to isotopologue equilibrium both at 

1000 and 25°C with theoretically predicted 47 values of 0.0266‰ and 0.9252‰, respectively 

(after Wang et al., 2004). Finally, ∆47CDES90 data were projected into the 25 °C acid digestion 

reference frame (∆47CDES25 in Table 2) for easier comparison with previously published 

calibration data. For this, we added the acid fractionation value of + 0.092‰ determined by 

Henkes et al. (2013) and confirmed at IPGP. All the 47 data of the present study were 

obtained in six distinct sessions of analyses performed over a period of one year, each 

separated by several weeks. The duration of each session was typically 2–5 weeks, 

corresponding to about 10–23 equilibrated CO2 gases used for constructing the CDES 

correction frames. All the isotopic values of equilibrated CO2 standards can be found in Table 

S1 together with values of samples and carbonate standards.  

 

To guarantee accuracy of the ∆47 data, we routinely analyzed two carbonate reference 

materials (IPGP-Carrara marble and 102-GCAZ01b, also reported by Dennis et al., 2011 and 

many other studies). One of these two carbonate standards was analyzed typically every five 

analyses and distributed along the diagenetic cement samples in all runs in order to check for 

analytical stability/accuracy of the whole procedure (including carbonate digestion, CO2 

purification, stability of the conditions for analyses of CO2 inside the mass spectrometer 

and/or accuracy of the correction frames constructed with standards of equilibrated CO2 gas – 

namely the accuracy of the equilibrated gas lines and empirical transfer function lines), as 

well as long-term external reproducibility of our ∆47 measurements. The Δ47 values obtained 

for these carbonates over the course of this study (July 2014-May 2015) are: 47CDES25 = 
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0.412 ± 0.016‰ (1SD, n=28) for IPGP-Carrara; Δ47CDES25 = 0.721 ± 0.020‰ (1SD, n=21) for 

102-GC-AZ01b. Those ∆47CDES25 values are indistinguishable from these obtained in other 

laboratories (e.g. Dennis et al. 2011; Henkes et al. 2013) and on a longer timescale at IPGP 

(Bonifacie et al. 2017; Katz et al., 2017). The internal one standard error uncertainty of each 

47 measurement is close to the shot noise limit (that is ± 0.009‰ in our analytical 

conditions). The external reproducibility, that is the standard deviation of replicate analyses of 

the same sample, is usually larger and is reported in Table 2. The final 47 uncertainty 

reported for samples is the standard error of the mean (S.E.) calculated as the standard 

deviation (S.D) of all carbonate standards replicates (±0.018‰ in this study ; n=49) divided 

by the square root of the number of sample replicates. When S.D. of the sample was higher 

than 0.018‰, S.E. was calculated as S.D. of the sample replicates, divided by the square root 

of the number of sample replicates.  

Finally, the corrected 47 values were converted into temperatures using the composite 47-T 

calibration determined for all carbonate minerals for the 0-300°C temperature range (ie., 

Equation (3) from Bonifacie et al.  2017 that compiles 103 mean 47 data from seven different 

laboratories and with proper error propagation, which is 47CDES25 = 0.0422*10
6
/T + 0.2182 in 

the 25°C acid digestion frame). The oxygen isotopic compositions of the water (
18

Owater) 

from which the carbonates precipitated were calculated for each estimated T47 using the 


18

Ocarb values measured for the carbonate as well as the oxygen isotope fractionation 

between the carbonate and water from O’Neil et al. (1969) for calcite and (Horita, 2014) for 

dolomite.  
 

 

2.4. 18
O and13

C profiles in samples BEBJ8 

 

In order to evaluate the heterogeneity of the analyzed cements, we also performed a 
13

Ccarb 

and 
18

Ocarb analyses through different sub-zones of a single specimen of about 2 cm in length 

(sample BEBJ8 from Cal1 cement) by drilling 3-4 mg of powder every 250m. About 1-2 mg 

of the carbonate powders were reacted with 100% phosphoric acid at 70°C using a Gasbench 

II connected to a ThermoFisher Delta V Plus mass spectrometer (Nürnberg university). All 

values are reported in per mil relative to V-PDB. Reproducibility and accuracy was monitored 

by replicate analysis of laboratory standards calibrated by assigning δ
13
C values of +1.95‰ to 

NBS19 and -46.6‰ to LSVEC and δ
18

O values of -2.20‰ to NBS19 and -23.2‰ to NBS18. 

External reproducibility for δ
13

C and δ
18

O was ±0.02‰ and ±0.01‰ (1 SD), respectively.  

 

3- RESULTS 

 

3.1. Fluid-inclusions (FIs) petrography 

 

Table 1 and figure 3 summarize the main petrographic features and the microthermometry 

results for the studied FIs in Cal1, Cal2 and Dol1.  Different FIA were established based on 

the FI location within the crystals (e.g. crystal core, growth zones, patches etc.). 

 

In Cal1 cements, about half of the FIs are mono-phase (c.f. Fig.3.F) at room temperature (20 

°C), and are thus inappropriate for microthermometric measurements. These cements also 

contain bi-phase liquid-rich FIs (containing a vapor bubble and a colorless liquid; Fig.3D), 

that are useful for Th and Tmi measurements. The bi-phase FIs are mostly concentrated in 

patches, along growth zones or cleavage planes and less commonly they occur isolated or 
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aligned along pseudo-secondary trails. They display consistent sizes (3-12µm) and variable 

shape, often controlled by crystallographic planes and less commonly irregular or oblate. 

Except for some leaked inclusions, the volume fraction of the liquid phase at room 

temperature is relatively constant with a degree of fill (F) varying between 0.94 and 0.98. 

 

The investigated Cal2 cements contain mono-phase liquid FIs and most bi-phase liquid-rich 

FIs. They occur isolated, in patches or along cleavage planes with both consistent sizes (3-

8µm) and volume fraction of the liquid phase (0.95-0.98). The FIs shape is dominantly 

irregular, controlled by crystallographic planes or oblate. 

 

Fluid inclusions in Dol1 crystals are densely distributed in three dimensions and are mainly 

concentrated in the crystal cores (Fig. 3.A.C), pointing to a primary origin. These inclusions 

are up to 5 µm in length and have an irregular shape, which may mimic the crystallographic 

directions of the host crystal. Inclusions are dominantly bi-phase liquid-rich, with a consistent 

liquid volume fraction (F) between 0.90 and 0.96.  

 

All the observed FIs (mono- and bi-phase) in Cal1, Cal2 and Dol1 crystals contain an aqueous 

fluid, as suggested by the lack of fluorescence when observed under UV-light.  A total of 151 

bi-phase inclusions (n=56 for Cal1, n=63 for Cal2 and n=31 for Dol1), within suitable 

petrographic assemblages (FIA), were assigned a primary origin and thus considered for 

microthermometry analyses.  

 

3.2. Fluid-inclusions microthermometry 

 

The analyzed bi-phase FIs in Cal 1, Cal2 and Dol1 present a narrow range of degree of fill 

(F), suggesting homogeneous trapping of the diagenetic fluids at the time of carbonate 

precipitation. Total homogenization occurred in the liquid phase for all inclusion types.  

During the first cooling run after homogenization, the vapor bubble was metastably absent at 

room temperature and did not renucleate, indicating a significant amount of metastability. The 

nucleation of a vapor bubble was observed in some of Cal1 and Cal2 FIs after cooling them to 

0 or -3 °C for several hours. In other cases, the vapor bubble nucleated only after the cooling 

runs and consequent freezing of the liquid phase, during re-heating. The studied FIs froze 

during the first cooling run mainly at temperatures between -50 and -70 °C. During reheating 

a first melting (Teap) could be observed only for few FIs at temperatures between -10 and -25 

°C, rather suggesting a fluid system dominated by NaCl. The last solid phase to melt was 

possibly ice (roundish and whitish crystals). The final melting of ice occurred with a stable 

(gradual melting of the ice crystals; Tmi) or metastable (TmMET ; abrupt melting of the ice 

crystals) behavior. 

 

FIs analyzed in Cal1 (BEBJ12 and BEBJ8 samples) homogenized in the range 45-91°C, 

though most Th fall in the range 50-70 °C (c.f. Fig.4. A. B; Table 1). The frequency 

histograms for Th data show a normal Gaussian distribution for BEBJ8 with a well-defined 

mode at 55-65°C (BEBJ8) and a flatter distribution for BEBJ12 with a poorly defined mode at 

65-70°C . The Tmi data recorded in Cal1 range from -10.1 to -12.8°C (with a pronounced 

mode at -11°C), corresponding to salinities between 8.4 and 18.8 wt.% NaCl eq. (mode at 

14%) up to salinities 5 times higher than normal seawater. FIs in Cal2 (BEBJ2 and BEBgeode 

samples) homogenized in the range 60-100 °C, though most Th fall in the range 65-90 °C (c.f. 

Fig.4. C, D; Table 1). The frequency histogram for Th data shows a normal Gaussian 

distribution with well-defined modes at 75-85 °C (BEBJ2) and 65-80 °C (BEBgeode). The 

Tmi measured in Cal2 FIs show a large spread (from -0,1 to -9 °C), corresponding to salinities 
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of 0.2-12.8% wt.% NaCl eq., covering a wide spectrum of fluids which go from a 

concentrated brine to a freshwater endmember. FIs in Dol1 crystals display Th data falling in 

the range 70-110°C with normal Gaussian distribution and a well-defined mode value at 90-

95°C (Fig. 4. E; Table 1). Dol1 FIs show Tmi in a narrow range (-6.7 to -7.8 °C), 

corresponding to salinities well clustered around 10.5 wt.% NaCl eq. 

 

The overall microthermometry dataset obtained for Cal1, Cal2 and Dol1 matches with the 

definition of a consistent FI dataset (Goldstein and Reynolds 1994) since more than 90% of 

the Th data, within individual FIA, fall in a range of ±10°C. The fact that FIs with variable 

size and shape in Cal1, Cal2 or Dol1 record consistent degree of fill (F) and a narrow range of 

Th variation within individual FIA, attests that they did not experience significant post-

entrapment modifications (e.g. necking-down, stretching or leakage due to thermal 

reequilibration), possibly remaining a closed and isochoric system. Only minor thermal 

reequilibration may be suspected to have occurred in the few Cal1 FIs recording Th above 70 

°C (Fig. 4A, B). Consequently, the investigated FIs may be considered to have preserved 

precious information on the original temperature and salinity of the fluids responsible for the 

three successive episodes of carbonate cementation. Thus, the thermal and compositional 

information issued from the five selected cements is appropriate to be compared with the 

information derived from clumped isotope (Δ47) analyses out of the same mineral specimens 

which thus represent excellent targets for the planned analytical comparison.  

 

3.3. FI pressure correction 

 

Homogenization temperatures (Th) obtained by FIM measurements correspond to the 

minimum trapping temperatures (Tt) of the fluids (Goldstein and Reynolds, 1994). A 

geologically coherent pressure correction (Pc) has to be applied to Th in order to obtain more 

accurate estimations of the true entrapment temperatures (Roedder and Bodnar, 1980), which 

for primary FIs, also correspond to the crystal growth temperatures. 

 

Such pressure correction requires to set constraints on both the fluid density (calculated as a 

function of the mode salinity values, measured for each carbonate phase; c.f. Table 1) and the 

trapping pressure, in the assumption that FIs have behaved as a closed and isochoric system. 

However, the fluid trapping pressure (Pt) is most often unknown and has to be inferred 

indirectly (Roedder and Bodnar, 1980). The Middle Jurassic reservoirs of the Paris basin are 

currently governed by hydrostatic pressure conditions (10MPa/km; Goncalves et al., 2010) 

and are considered not to have experienced any major overpressure during their geological 

evolution (c.f. basin modeling of Gonçalvès et al., 2010). Hence, we inferred trapping 

pressures of 16, 22.5 and 27.5 MPa for Cal1, Cal2 and Dol2 parent fluids, respectively. This 

calculation was based on a geothermal gradient of 30°C/km (Gaulier and Burrus, 1994) which 

was likely characteristic of the Paris basin during its Mesozoic evolution, a mean surface 

temperature of 20±5 °C, a hydrostatic geobarometric gradient of 10MPa/km and the mean Th 

values measured in FIs from Cal, Cal2 and Dol1 crystals. Such pressure conditions allow to 

correct the mean Th values and to estimate possible trapping temperatures (Tt) of 70°C, 88°C 

and 102°C for FIs in Cal1, Cal2 and Dol1, respectively. Pressure corrections calculated by 

using minimum (15°C) and maximum (25°C) surface temperatures would induce only a 

minor variation (1 to 2°C) in the calculated Tt (Fig. 5).  

 

3.4. Isotope results (∆47, 
18

Ocarb, 
13

Ccarb, 
18

Owater) 

 

Table 2 summarizes the stable isotopic data (
18

Ocarb, 
13

Ccarb, Δ47) for the three generations 
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of calcite and dolomite cements, together with their respective TΔ47 and 
18

Owater derived from 

this dataset. Detailed information on the raw Δ47 data and post-acquisition corrections and 

standardization can be found online in Supplementary Appendix 1. The three generations of 

carbonate cements show distinct oxygen isotopic compositions that are respectively averaging 

at 
18

Ocarb = -6.41 ± 0.68‰ (1S.D., n=10 samples) for Cal1, 
18

Ocarb = -15.26 ± 0.08‰ (1S.D., 

n=2 samples) for Cal2 and 
18

Ocarb = -9.57‰ for Dol1 (n=1) (Fig.7). Within each cement 

population, the 
18

Ocarb values are showing only limited variation, also supported at smaller 

scale for the Cal1 population with the BEBJ8 sample, for which sub-zones (2-4 mg) were 

drilled along a 2cm length cement (Fig.6). This cement displays constant isotopic 

compositions averaging 
18

Ocarb = -7.28 ± 0.32‰ and 
13

Ccarb = 1.24 ± 0.26‰ (1 S.D., n=7; 

Fig. 6). The Δ47 values found for Cal1, Cal2 and Dol1 are respectively clustered at 0.588 ± 

0.004‰ (S.E, n=24 analyses), 0.550 ± 0.008‰ (S.E, n=5 analyses) and 0.524 ± 0.010‰ (n=3 

analyses), which translates in very homogeneous average TΔ47 temperatures for each cement 

population of 65±3°C, 84±4°C and 98±7°C, respectively (c.f. Fig7). For each investigated 

population, the calculated average 18Owater values is about +3‰ for Cal1, -3‰ for Cal2, and 

+1‰ for Dol1. Overall, these results suggest that Cal1, Cal2 and Dol1 cements have 

precipitated at three distinct temperatures and from distinct paleofluids. 

 

4- DISCUSSION 

 

4.1. Comparison of mineral growth temperature estimates out of FIM and 47 data  
 

The 47 temperatures (T47) found for Cal1, Cal2 and Dol1 cements fit remarkably well (ie. 

within less than 5°C) with the range of homogenization temperatures (Th) measured from FIs 

within the same samples (Fig. 4). Indeed, in the 60-100°C temperature range, the Th and T47 

obtained in this study on both calcitic and dolomitic phases are strongly correlated and are 

unresolvable from the 1:1 line in Figure 8. Consistency remains when pressure-corrected Th 

(Tt) are considered. The excellent match between Th and T47 suggests that both FIs and 47 

composition record thermal conditions of carbonate precipitation for each phase of 

cementation investigated (Cal1, Cal2, Dol1) and were likely not altered since the time of 

mineral growth (ie., absence of 
13

C–
18

O bond reordering via solid state diffusion and absence 

of FI stretching and/or leakage due to thermal reequilibration, necking-down, refill processes, 

etc). Such hypothesis finds support in: 1/ current knowledge on the temperature–time 

conditions needed to change 47 of calcites and dolomites via solid-state diffusion (e.g., 

(Dennis and Schrag, 2010; Bonifacie et al., 2013; Henkes et al., 2014; Lloyd et al., 2017; 

Stolper and Eiler, 2015), that are well above the conditions experienced by our studied 

carbonate unit, as independently determined by Ménétrier et al., (2005), Garibaldi, (2010) and 

Goncalves et al. (2010); and 2/ the petrographic characteristics of the FIs chosen for 

microthermometry as well as the dominantly gaussian distribution of measured Th (Fig 4). 

Indeed, if any FI post-genetic alteration had occurred, like thermal reequilibration, this could 

not have affected all FIs equally – as the FI resistance depends on their host mineral, size, 

shape, proximity to cleavage planes, etc – and would have led to an asymmetric distribution 

of Th (Goldstein and Reynolds, 1994; Tobin and Claxton, 2000). Importantly, the cross-

consistent T47 and Th data obtained here strongly suggests that the measured 47 values of 

the carbonate were acquired at the time of its precipitation, and conjointly with the oxygen 

isotopic composition of the carbonate δ
18

Ocarb. Then, the δ
18

Owater of the mineralizing fluid 

can be confidently calculated using the T47 and 
18

Ocarb values measured for the carbonate as 

well as the oxygen isotope fractionation factor between the carbonate and water (see the 

methods section for more details). 
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More broadly, this first FIM and 47 cross-consistent temperature dataset has two main 

consequences for the validity of the 47 thermometry for studying natural samples in burial 

diagenetic conditions. Based on the number of replicates analyzed, this study provides a 

natural rock-based validation of: 1/ the inter-laboratory 47 –T calibration recently published 

for all carbonate minerals, including calcite and dolomite (Bonifacie et al., 2017), and 2/ the 

fact that high-salinity fluids (from 0 to > 15 wt.% NaCl eq.) do not affect 47 signatures over 

crystallization of natural calcite and dolomite, in agreement with the experimental data of 

Kluge and John (2015).  

 

Some recent studies have also compared temperature estimates out of 47 and FIM 

measurements on dolomite samples (Came et al., 2016; Macdonald et al., 2017; Millán et al., 

2016). It is noticeable that while carbonates we investigated here are strongly correlated and 

unresolvable from the 1:1 line, the previously reported data are all showing significant offsets 

from this 1:1 line, as well as more scattered relationships between Th and T47 (Figure 8). In 

detail, although the ten dolomitic samples from Came et al. (2016) are distributed both above 

and below the 1:1 line, they show only very weak correlation between Th and T47. To 

explain this weak relationship between their T47 and Th, Came et al. (2016) mentioned 

possible imprints of the solid-state diffusion for some of their samples. Indeed, their samples 

were heated up to 120°C during 300 Ma and up to 160°C at the peak of burial (Williams et 

al., 1998), conditions that may have induced solid-state diffusion. Based on petrographic 

observations, they ruled out thermal re-equilibration of their FI assemblages during burial. On 

the other hand, for the seven dolomites studied in Macdonald et al. 2017, Th and T47 are 

slightly correlated, but Th are significantly higher than T47 (by about ~ 20-60°C) (i.e., blue 

circles are all on the right side of the 1:1 line in Fig. 8). These authors suggested that their 

T47 are conservative of the original crystallization conditions over burial, whereas their Th 

would reflect recent resetting at the borehole ambient temperatures (also supported by the ~ 

60°C spread of Th recorded in each single cement specimen). Though it is noticeable that in 

these previous studies, published Th values were likely not corrected for pressure effects 

(which would increase temperatures deduced from FIM), and published T47 were calculated 

with 47–T calibration equations that are different to the one used here, determining the 

reasons of such differences between their T47 and Th are beyond the scope of our study. 

Note however that the T47 from Millan et al. 2016 were calculated with the calibration from 

Kele et al. (2015) that is statistically indistinguishable from the one used here, and thus that 

the fact that their T47 are 10-20°C higher than their Th is likely due to the lack of pressure 

correction of the fluid inclusion measurements.  

 

Alternatively, we emphasize in the following that when both 47 values and FI assemblages 

are not changed since the time of carbonate crystallization (which can be shown by consistent 

T47 and Tt estimates as in our study), FIM and 47 measurements allow to faithfully record a 

snapshot of the composition of the mineralizing fluid, including its salinity and oxygen 

isotopic composition (
18

Owater). Section 4.3 further illustrates various information on 

temperature (including peak burial temperatures and paleo-pressure of carbonate 

precipitation) and composition of mineralizing fluids that can be obtained when coupling FIM 

and 47 measurements, including when T47 and Th are not matching.  

 

4.2. Characterization of 
18

Owater and salinities of mineralizing fluids  
 

The salinity and the 
18

Owater values of diagenetic fluids can help constraining their origin and 

revealing the hydrogeological and basin evolution histories. We here use our results on the 
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three different generations of cements (Cal1, Cal2 and Dol1) to illustrate the potential of the 

paired application of FIM and 47 measurements to reveal information about paleofluid 

circulations. Note that a discussion of the geological significance of such observations at the 

basin scale is beyond the scope of this study and are undertaken elsewhere (Mangenot et al. in 

press).  

In the case of the Cal 1 generation, the independently obtained T47 and δ
18

Ocarb values allow 

to calculate a δ
18

Owater of the mineralizing fluid that is enriched in 
18

O compared to global 

modern seawater (δ
18

Owater = 0‰), with average δ
18

Owater of 3.1‰. In parallel, FIM 

measurements reveal a salinity mode at 14 wt.% NaCl eq., also higher relative to modern 

seawater (3.5 wt% NaCl eq.). Both enrichment in 
18

O and salinities relative to 

seawater suggest a mineralizing fluid with an evaporative origin. Such compositions are 

comparable with those measured in porewaters from the underlying Triassic formation, with 

salinity up to 20% and 
18

Owater up to 2.5‰ (Worden et al. 1999). The evaporate origin of this 

water also agrees with others independent geochemical data (e.g. Cl/Br, Li contents; Matray 

et al. 1995). Importantly, this Triassic reservoir was suggested to be the source of an upward 

cross-formational flows occurring between the Middle Jurassic and Triassic aquifers (Worden 

et al. 1995; Mangenot et al. in press).The fact that modern Triassic waters are more enriched 
18

O compared to Cal1 fluids likely results from recent meteoric 

water infiltration. This water would have dissolved evaporite deposits and enriched  the 

alkaline components, associated with a depletion in 
18

O because of the meteoric origin of the 

water (this is discussed in detail by Worden et al. 1999).  

For the Cal 2 generation, the calculated δ
18

Owater and the measured salinities are also showing 

compatible information regarding the origin and evolution of the parent fluids. Indeed, the 

Cal2 paleowaters display average δ
18

Owater = – 3.4‰, suggesting a meteoric freshwater origin. 

Such water isotopic composition seems consistent with Cal2 fluid inclusion salinities, 

suggesting a fluid evolution from a brine end-member towards a freshwater endmember 

(eleven fluid inclusions ranging from 12.8 to 0.2 wt.% NaCl eq.). Such water geochemistry 

reconstructed from diagenetic cements is consistent with the present-day δ
18

Owater and salinity 

of formation waters within aquifers hosted in Middle Jurassic lithologies (with δ
18

Owater 

between -3 and -6‰ and TDS of 0.2-3.5%; (Matray et al., 1994).  

 

For the Dol1 generation, more complex hypotheses on the origin and evolution of the parent 

fluids are needed to reconcile the calculated δ
18

Owaterand measured salinities. Indeed, the 

Dol1 cements have precipitated from a fluid with δ
18

Owater of circa 0.9‰ (close to normal 

modern seawater values) while FI salinities are from 10.1 to 11.5% wt.% NaCl eq. (which is 

three times higher than seawater). Such a combination of paleofluids compositions could be 

explained by two distinct scenarios: (1) an initial marine fluid, enriched in salt by water-rock 

interaction and dissolution of evaporitic rocks (e.g. halite) which did not buffer the fluid 

oxygen isotopic composition or (2) trapping of an initial highly saline brine from an 

evaporative context that would then be diluted by meteoric waters until reaching a δ
18

Owater 

close to marine values and intermediate salinity values.  

 

These cases underline the strength of coupling 47–FIM on the same samples for reaching 

more complete and/or accurate reconstruction of the diagenetic history, since the complexity 

of the origin and evolution of the fluid recorded might not have been as clearly/confidently 

decoded if only one of the two methods was applied – see more details in section 4.3 (case 1). 

 

4.3. Benefits of coupling FIM and 47 measurements  
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This section presents different possible scenarios that can be observed when combining 47 

and FIM measurements on the same carbonate specimens. It also underlines that, in some 

cases, the combination of 47 and FIM measurements can help putting further constraints on 

the peak burial temperatures experienced by the host-rocks or the pressure at which 

carbonates precipitated. 

  

The susceptibility of post-genetic alteration of the primary 47 and FI signals is critical for the 

confident reconstruction of the mineral paragenesis and thermal history of the investigated 

rocks and, at a larger scale, the sedimentary basins. However, as discussed above thermal 

resetting might, in some conditions, obscure the primary signal of either 47 and/or FIM and 

lead to false interpretations (even if kept as a closed system). As both thermometers can be 

reset internally in the absence of recrystallization such resetting might be particularly 

challenging to detect, notably because the degree to which the original signature is changed 

depends on several factors. Known controls over FI stretching or leakage (due to thermal 

reequilibration processes) include the softness of the host mineral, the size and shape of the 

FIs, their proximity to lattice imperfections or crystallographic orientations, the strain rate and 

heating duration, the fluid composition and the amount of overheating and confining pressure 

(Tobin and Claxton, 2000 and references therein). On the other hand, previous studies suggest 

that the susceptibility or rates of 
13

C-
18

O bonds reordering include temperature and 

heating/cooling duration (e.g., Dennis and Schrag, 2010; Henkes et al., 2014; Passey and 

Henkes, 2012), mineralogy (e.g., Bonifacie et al., 2013; Lloyd et al., 2017), crystal coarseness 

(e.g., Siman-Tov et al., 2016; Winkelstern and Lohmann, 2016) and/or optical properties 

(e.g., Shenton et al., 2015). We underline here the importance of coupling FIM and 47 

measurements to detect such resetting processes, and to reconstruct temperature, salinities and 


18

O compositions of the mineralizing fluids in the most confident way.  

 

Figure 9 illustrates four hypothetical burial scenarios that can be found in natural/geological 

conditions, and summarizes the kind of information that can be obtained from coupling 47 

and FIM measurements. Importantly, Figure 9 only describes cases for which neither 

dissolution/recrystallization nor petrographic changes have occurred in the host-carbonate 

(e.g., no change of 
18

O, 
13

C or elemental compositions since the time of precipitation), 

together with no change on FI chemistry (assuming that no refill processes have occurred). 

We however acknowledge that other/more complex cases are possible in nature, and 

recommend the authors of future applied studies to consider independent geological 

information to comfort their interpretations when possible.  

 

Case 1 (Fig. 9) describes a situation where trapping temperatures (Tt) match T47 values, 

likely due to the absence of thermal resetting of both initial FIM and 47 signatures since the 

original carbonate crystallization. In such case, 47 and FIM measurements allow to have 

direct access to important information on the temperature and the composition of the 

mineralizing fluid: its salinity (that is directly measured) and its oxygen isotopic composition 


18

Owater (that is precisely estimated from 
18

Ocarb and T47). This case is illustrated by the 

Paris basin investigated here with examples of the revealed information presented above 

(Section 4.2).  
   

It is noteworthy that for our case study, FI thermometry displays systematically higher 

uncertainties on temperature estimates (between 9 and 20°C) than 47 thermometry (between 

3 and 7°C).  Though we acknowledge that these uncertainties are inherent to our study, it is 

likely that such higher variability on Th estimates might be observed in several other case 
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studies since likely resulting from two practical aspects of FIM measurements. First, FIM is 

focused on optical appreciation of phase transitions (between vapor, liquid states) that could 

induce a user-dependent bias on the measurements reproducibility. Second, the petrographic 

attribution of a FI population to a single fluid event is not easy. Hence, a misinterpretation 

between primary, pseudo-secondary or secondary FIs in carbonate minerals could lead to 

mixing between genetically different FI assemblages and consequently to a substantial bias on 

Th measurements. All these processes are inevitably propagated in the overall uncertainties on 

the trapping temperatures (Tt) and might contribute to the more scattered (and sometimes less 

accurate) temperature FI data than T47 (as observed in the Paris basin). Importantly, we 

underline here that because of all these sources of cumulative uncertainties on FIM 

temperature data, the 
18

Owater values that were until recently commonly calculated from Th 

and 
18

Ocarb might have been associated to relatively large uncertainties (that could be 

typically of several per mil), and could thus have led to misinterpretations in some cases 

(notably when FIs are rare or metastable and/or when paleo-pressure conditions are unknown 

and/or when FI’s post entrapment re-equilibration are difficult to evaluate, particularly for 

soft minerals like calcite).  

 

Finally, we emphasize here that in such context, coupling 47 and pressure-dependent FIM 

measurements may allow to evaluate paleo-pressure conditions of aqueous fluids precipitating 

carbonates. Indeed, a difference between the homogenization (Th) and the trapping (Tt) 

temperature is expected because of the pressure at trapping conditions and the compressibility 

of the fluid; with Th+Pc=Tt=T47 (with T47 and Th as known/measured values). Isochores 

that can be reconstructed from fluid inclusion measurements can then be associated with the 

independent T47, so that both the temperature and pressure conditions during precipitation of 

the analyzed mineral can be reconstructed. Note that in the case of the Paris basin, 

paleopressures were too low to generate a significant and measureable offset between Th and 

Tt.  

 

Case 2 (Fig. 9) considers partial or total resetting of FIM information as due to FI stretching 

or leakage by thermal reequilibration processes (e.g. overheating during further burial) in a 

carbonate mineral for which 47 primary composition is preserved. Here, FIM temperatures 

record the peak burial temperature of the FI host-rock (Tobin and Claxton, 2000) whereas the 

47 signatures have still preserved the primary mineral growth temperature. All the samples of 

McDonalds et al. 2017 and some of Came et al. 2016 (c.f. D2 Aguthuna, D2 Catoch, D3 

BoatHarbour) may reflect this configuration, as discussed by these authors. Such scenario 

records poly-phased thermal information of the host-rock (mineral growth and peak-burial 

temperatures), and preserves unbiased information on the fluid 
18

Owater (precisely calculated 

based on T47) and salinity that governed mineral crystallization (assuming that no refill 

processes have occurred). Note that the calculation of paleopressure becomes here impossible 

as the thermal reequilibration process implies that FI have changed volume, density and 

liquid/vapor proportions (ie., Th+Pc>Tt >T47).  

Case 3 (Fig. 9) considers that 47 composition was partially or totally reset during burial via 

reordering of the isotopes distribution inside the carbonate lattice, whereas FIs retained their 

primary information (Th+Pc=Tt<T47). This scenario preserves the mineral growth 

temperature derived from FIs, whereas the 47 value reflects an apparent temperature. This 

apparent T47 can represent any intermediate temperature between the crystallization 

temperature and the peak burial temperature or the present-day borehole temperature, 

depending on the degree (from partial to full) of isotopic redistribution/re-equilibration. Some 
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samples of Came et al. 2016 (c.f. D2BoatHarbour, D3Catoch) may reflect this configuration, 

as discussed by these authors.  

 

In this case, it is thus recommended to use Th (preferably corrected for pressure) to calculate 

the 
18

Owater (as using T47 for this calculation would be meaningless). In such unaltered FIs, 

with the assumption that no refill processes have occurred, the measured FI salinity can then 

be interpreted as the original salinity of the precipitating fluid. The calculations of 

paleopressure (Pc) is impossible.  

 

Case 4 (Fig. 9) illustrates thermal alteration of both thermometers. It is likely that the two 

thermometers would not be affected in similar ways, because FI stretching or leakage are 

controlled by different parameters (Tobin and Claxton, 2000) than those governing 
13

C-
18

O 

bond reordering (e.g.; Henkes et al., 2014; Siman-Tov et al., 2016; Stolper and Eiler, 2015). 

No study to date have reported such configuration.  

 

5. CONCLUSION 

This study reports the first cross-consistent temperature estimates out of FIM and 47 

measurements on both calcitic and dolomitic cements. This provides a rock-based validation 

of the inter-laboratory experimental 47–T calibrations for calcite and dolomite recently 

published (Bonifacie et al. 2017), at least in the temperature range of 60-100°C. This also 

confirms that high-salinity fluids (from 0 to > 15 wt.% NaCl eq.) do not affect 47 signatures 

over crystallization of natural calcite and dolomite, as previously suggested for calcite based 

on laboratory experiments (Kluge and John 2015). 

 

For the Middle Jurassic limestones of the Paris basin, the application of this methodology 

allows to constrain with high confidence the following characteristics for multiple diagenetic 

episodes that affected this formation (with 47 measurements allowing higher precision on 

precipitation temperature and δ18
Owater values, while significantly less time-consuming than 

FIM measurements, particularly for the Cal1 population for which FI were rare and 

metastable): 

 

 Cal1: T47 = 65±3°C ; TFIM =70±11°C ; δ
18

Owater = 3.1‰ ; Salinity = 14 wt.% NaCl eq. 

 Dol1: T47 = 98±7°C ; TFIM =102±9°C ; δ
18

Owater = 0.9‰ ; Salinity = 11.5 to 10.1 wt.% 

NaCl eq.  

 Cal2: T47 = 84±4°C ; TFIM =88±15°C  ; δ
18

Owater = -3.4‰ ; Salinity = 12.8 to 0.2 wt.% 

NaCl eq.  

 

More broadly, the combined application of FIM and 47 thermometry has the remarkable 

advantage to relieve the application of each proxy from its individual limitations, tied to either 

proxy conservativeness or working hypotheses. As such, this combined approach allows to 

access with an unprecedented level of confidence (in terms of both accuracy and precision) 

the paleofluid temperatures, salinity and oxygen isotopic composition. It can also, in some 

cases, reveal peak burial temperatures experienced by the host-rocks or the pressure at which 

carbonates precipitated. Importantly, we underline here that δ
18

Owater values can now be 

determined with typical uncertainties of ~ ±1‰ when calculated from T47 values. This 

contrasts to the several per mil uncertainties commonly reached when calculating δ
18

Owater 

values via FIM temperature estimates often associated to several cumulative uncertainties 

resulting from strong working hypotheses (e.g., uncertainties on the paleo-pressure conditions 

and/or on the potential FI’s post-entrapment re-equilibration, particularly for soft mineral like 
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calcites) or the characteristics of the FIs themselves (ie., rare and/or metastable). 

 

Finally, joint application of FIM and 47 thermometry is highly recommended to interpret FI 

and 47 data in the most confident way as possible for the reconstruction of the paleo-

temperature in sub-surface environments, and on samples that have been submitted to high 

temperature-time geological histories (for instance conditions sufficient to reach gas windows 

– 120/180°C).  
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FIGURES CAPTIONS:  

 

Figure 1. Macrophotograph, microphotograph (CL and transmitted light) and thin section 

scan showing the major petrographic features of the investigated diagenetic cements. A, C) 

Cal1 consists of blocky crystals of non-ferroan calcite, displaying a very homogeneous bright 

orange CL pattern. Rock samples: BEBJ8 (1788,7m depth) and BEBJ12 (1785,3m depth), 

Baulne en Brie core interval. B) Cal2 consists of blocky crystals of non-ferroan calcite and 

displays a uniform dull red-to-brown CL pattern, with sectorial zoning. Rock sample: BEBJ2 

(1792,8m depth), Baulne en Brie core interval. D) Dol 1 consists of not-luminescent saddle 

dolomite crsytals with distinctive curved crystal faces. Rock sample: FOS1610 (1610,3m 

depth), Fossoy core interval.  

 

Figure 2. Schematic representation of the principle of 47 thermometry. Expected distribution 

of bonds between carbon and oxygen isotopes in calcite minerals precipitated from either cold 

or hot fluids (left and right cases, respectively).  Carbonate ions CO3
2-

 contain either clumped 

species, that is containing bonds between two heavy isotopes (ie., mostly 
13

C
18

O
16

O2, but also 
13

C
17

O
16

O2) colored in yellow, or not-clumped species colored in black (ie., mostly 
12

C
16

O3, 

but also 
13

C
16

O3, 
12

C
17

O
18

O
16

O, etc). Ca
2+

 cations are colored in blue. The amount of clumped 

species is here exaggerated for the graphical representation.  

 

 

Figure 3. Photomicrographs showing some petrographic features of the investigated FIs in 

the various mineral phases. A, C) Inclusion-rich saddle dolomite crystals (Dol1). B) Detail of 

FIs in Dol1, displaying variable shapes (e.g. crystallographically controlled, oblate or 

irregular) and consistent liquid/vapor ratio. D) Detail of two FIs with crystallographically 

controlled morphology and a liquid/vapor ratio of 0.90-0.95.  E) Inclusion-rich Cal 1 crystals, 

that host two different FIA (in patch and along micro-fractures).  F) Detail of a Cal1 crystal 
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where mono- and bi-phase FIs are densely distributed with shape controlled by 

crystallography.  

Figure 4. Frequency histogram of homogenization temperatures (Th) in various mineral 

phases (orange for Cal1, red for Cal2 and grey for Dol1), compared with the 47 temperatures 

(T47) measured in the same specimen (black bars). The 47 measurements were made on the 

same petrographic sub-zones where Th were measured. The width of the T47 black bars are 1 

S.E., their heights are arbitrary.  A) and B) Cal1 blocky calcites samples BEBJ12 and BEBJ8, 

respectively). C) and D) Cal2 blocky calcites (samples BEBJ2 and BEBJ12, respectively). E) 

Dol1 saddle dolomite (sample FOS1610).  

 

Figure 5. Trapping temperature (Tt) and pressure (Pt) calculation. A realistic geothermal 

gradient of 30°C/km in hydrostatic pressure conditions (10 MPa/km) has been used, together 

with surface temperatures of 20±5 °C 

 

Figure 6. Transect of carbon (
13

Ccarb) and oxygen (
18

Ocarb) stable isotope compositions 

through a single Cal1 cement specimen of about 2 cm in length (sample BEBJ8). 
13

Ccarb 

and
18

Ocarb values (reported in ‰ VPDB in red and black, respectively) are very 

homogeneous throughout the whole sample.  

 

Figure 7. Precipitation temperatures obtained via Δ47 data (TΔ47) versus oxygen stable isotope 

compositions of carbonate (
18

Ocarb). The color code is the same than in Figure 4. The five 

selected samples for the 47-FIM inter-comparison are highlighted by bold squares. Reported 

uncertainties on Δ47 and TΔ47 are one standard error of the mean and are included in the 

symbol size for 
18

Ocarb. The long-term external reproducibility on 47 measurements obtained 

on more than 49 carbonate standards over the course of this study (ie.,  ± 0.018‰) is also 

reported on the upper right side for comparison. The average temperature calculated from all 

the samples of each of the three generations are also reported. 

 

Figure 8. Comparison of temperature estimates derived from FIM and 47 measurements 

from this study and previous ones. Squares = data from the same cement specimens from this 

study (red and orange squares = calcites; grey square = dolomite). The dotted 1:1 line 

illustrate a configuration where T47 = Th. Black circles = data from Came et al. (2016). Blue 

circles = data from MacDonald et al. (2017). Red circle = data from Millan et al. (2016). Th 

values were corrected for pressure effects in this study only (translucent squares). 

Uncertainties are reported as 1 S.E. for T47 values for all studies and as 1 S.D. for Th data 

from all studies excepted for MacDonald et al. (2017) [for which uncertainties on Th data 

were not reported because of the large spread of Th data suggesting FIs reequilibration 

temperatures in each cement specimen]. 

 

Figure 9. Fate of FI and 47 thermometers in different hypothetical heating scenarios. This 

figure only describes cases for which neither dissolution/recrystallization nor petrographic 

changes of the host-crystals have occurred (e.g., no change of 
18

O, 
13

C or elemental 

compositions since the time of precipitation) together with no change on fluid inclusion 

chemistry (assuming no refill). The notation Tt refers to the true FI trapping temperature, Th 

is the measured homogenization temperature, Pc is the pressure correction and T47 is the 

temperature measured in the host-carbonate. Both T47 and Tt can be either unaltered or 

(partially to fully) re-equilibrated since the time of the carbonate precipitation). 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 18 

REFERENCES 

 
Bakker, R.J., 2003. Package fluids 1 : Computer programs for analysis of fluid inclusion data 

and for modelling bulk fluid properties. Chem. Geol. 194, 3–23.  

 

Bakker, R.J., 2009. Package fluids 3: correlations between equations of state, 

thermodynamics and fluid inclusions. Geofluids. 9, 63–74.  

 

Bodnar, R, J. and Vityk, M, O., 1994. Interpretation of microthermometric data for H2O-NaCl 

fluid inclusions. Fluid inclusions Miner. methods Appl. 18, 221-236 

 

Bodnar, R., 1993. Revised equation and table for determining the freezing point depression of 

H2O-NaCl solutions. Geochim. Cosmo. Acta. 57, 683–684. 

 

Bonifacie, M., Calmels, D. and Eiler, J.M., 2013. Clumped isotope thermometry of marbles as 

an indicator of the closure temperatures of calcite and dolomite with respect to solid-state 

reordering of C – O bonds. Goldscmidt Conf. doi:10.1180/minmag.2013.077.5.2 

 

Bonifacie, M., Calmels, D., Eiler, J.M., Horita, J., Chaduteau, C., Vasconcelos, C., Agrinier, 

P., Katz, A., Passey, B.H., Ferry, J.M. and Bourrand, J.J. 2017. Experimental calibration of 

the dolomite clumped isotope thermometer from 25 to 350°C, and implications for the 

temperature estimates for all (Ca, Mg, Fe) CO3 carbonates digested at high temperature. 

Geochim. Cosmochim. Acta. 200, 255-279.  

 

Brand, W.A., Assonov, S.S. and Coplen, T.B., 2010 Correction for the 
17

O interference in 

δ
13

C measurements when analyzing CO2 with stable isotope mass spectrometry. Pure Appl. 

Chem., 82, 1719–1733.   

 

Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M. and Grotzinger, J.P., 2011. A 

hydrothermal origin for isotopically anomalous cap dolostone cements from south China. 

Nature 474, 68–71.  

 

Came, R.E., Azmy, K., Tripati, A.K. and Olanipekun, B.-J., 2016. Comparison of clumped 

isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature 

range of 73 to 176 °C. Geochim. Cosmochim. Acta. 199, 31-47.  

 

Came, R.E., Eiler, J.M., Veizer, J., Azmy, K., Brand, U. and Weidman, C.R., 2007. Coupling 

of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. 

Nature 449, 198–201.  

 

Dale, A., John, C.M., Mozley, P.S., Smalley, P.C. and Muggeridge, A.H., 2014. Time-capsule 

concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate 

clumped isotopes. Earth Planet. Sci. Lett. 394, 30–37.  

 

Defliese, W. and Lohmann, K., 2015. Non‐linear mixing effects on mass‐47 CO2 clumped 

isotope thermometry: Patterns and implications. Rapid Commun. Mass. Spect. 81, 901–909. 

doi:10.1002/rcm.7175 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 19 

Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P. and Eiler, J.M., 2011. Defining an 

absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim. Cosmochim. Acta 

75, 7117–7131. doi:10.1016/j.gca.2011.09.025 

 

Dennis, K.J. and Schrag, D.P., 2010. Clumped isotope thermometry of carbonatites as an 

indicator of diagenetic alteration. Geochim. Cosmochim. Acta 74, 4110–4122. 

doi:10.1016/j.gca.2010.04.005 

 

Eiler, J.M., 2007. ‘Clumped-isotope’ geochemistry- The study of naturally-occurring, 

multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327. 

doi:10.1016/j.epsl.2007.08.020 

 

Ferry, J.M., Passey, B.H., Vasconcelos, C. and Eiler, J.M., 2011. Formation of dolomite at 

40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope 

thermometry. Geology 39, 571–574. doi:10.1130/G31845.1 

 

Gaulier, J.M. and Burrus, J., 1994. Modeling present and past thermal regimes in the Paris 

Basin - petroleum implications. Hydrocarb. Pet. Geol. 2, 61–75. 

 

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D. and Eiler, 

J.M., 2006. 
13

C–
18

O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. 

Cosmochim. Acta 70, 1439–1456.  

 

Gleadow, A.J.W., Duddy, I.R., Green, P.F. and Lovering, J.F., 1986. Confined fission-track 

lengths in apatite - a diagnostic-tool for thermal history analysis. Contrib. to Mineral. Petrol. 

94, 405–415. 

 

Goldstein, R. and Reynolds, J., 1994. Systematics of Fluid Inclusions. SEPM Short Course 

Notes 31,188pp 

 

Gonçalvès, J., Violette, S., Guillocheau, F., Robin, C., Pagel, M., Bruel, D., De Marsily, G. 

and Ledoux, E., 2004. Contribution of a three-dimensional regional scale basin model to the 

study of the past fluid flow evolution and the present hydrology of the Paris basin, France. 

Basin Res. 16, 569–586. doi:10.1111/j.1365-2117.2004.00243.x 

 

Goncalves, J., Violette, S., Robin, C., Pagel, M., Guillocheau, F., de Marsily, G., Bruel, D. 

and Ledoux, E., 2003. 3-D modelling of salt and heat transport during the 248 My. evolution 

of the Paris Basin; diagenetic implications. Bull. la Soc. Geol. Fr. 174, 429–439. 

 

Götze, J., 2012. Application of cathodoluminescence microscopy and spectroscopy in 

geosciences. Microsc. Microanal. 18, 1270–84. doi:10.1017/S1431927612001122 

 

Green, P.F., Crowhurst, P. V, Duddy, I.R., 2004. Integration of AFTA and (U-Th)/He 

thermochronology to enhance the resolution and precision of thermal history reconstruction in 

the Anglesea-1 well, Otway Basin, SE Australia. PESA East. Australia. Basins Symp. II 15. 

 

Gonçalvès, J., Pagel, M., Violette, S., Guillocheau, F. and Robin, C., 2010. Fluid inclusions as 

constraints in a three-dimensional hydro-thermo-mechanical model of the Paris basin, France. 

Basin Res. 22, 699–716. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 20 

Guilhaumou, N. and Gaulierc, J.M. 1991. Détermination de paléotempératures dans les 

roches-mères du bassin de Paris : Etude d’inclusions fluides et implications pour l’histoire 

thermique du bassin. Compte. R. Acad. Sci. Paris. 42, 773-780. 

 

Henkes, G., Passey, B.H., Grossman, E.L., Shenton, B.J., Pérez-Huerta, A. and Yancey, T.E., 

2014. Temperature limits for preservation of primary calcite clumped isotope 

paleotemperatures. Geochim. Cosmochim. Acta 139, 362–382. doi:10.1016/j.gca.2014.04.040 

 

Henkes, G., Passey, B.H., Wanamaker, A.D., Grossman, E.L., Ambrose, W.G. and Carroll, 

M.L., 2013. Carbonate clumped isotope compositions of modern marine mollusk and 

brachiopod shells. Geochim. Cosmochim. Acta 106, 307–325. doi:10.1016/j.gca.2012.12.020 

 

Hill, P.S., Tripati, A.K. and Schauble, E., 2014. Theoretical constraints on the effects of pH, 

salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species 

and precipitating carbonate minerals. Geochim. Cosmochim. Acta 125, 610–652. 

doi:10.1016/j.gca.2013.06.018 

 

Horita, J., 2014. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 

to elevated temperatures. Geochim. Cosmochim. Acta 129, 111–124. 

doi:10.1016/j.gca.2013.12.027 

 

Huntington, K.W. and Lechler, A.R., 2015. Carbonate clumped isotope thermometry in 

continental tectonics. Tectonophysics 647–648, 1–20. doi:10.1016/j.tecto.2015.02.019 

 

Huntington, K.W., Wernicke, B.P. and Eiler, J.M., 2010. Influence of climate change and 

uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. 

Tectonics 29, 125-140. doi:10.1029/2009TC002449 

 

Katz, A., Bonifacie, M., Hermoso, M. and Calmels, D., 2017. Laboratory-grown coccoliths 

exhibit no vital effect in clumped isotope composition on a range of geologically relevant 

temperatures. Geochim. Cosmochim. Acta in press. doi:http://dx.doi.org/10.1016 

 

 ele, S., Breitenbach, S.F.M., Capezzuoli, E., Nele Meckler, A.,  iegler, M., Millan, I.M., 

 luge, T., De k, J., Hanselmann, K., John, C.M., Yan, H., Liu, Z. and Bernasconi, S.M., 

2015. Temperature dependence of oxygen and clumped isotope fractionation in carbonates : a 

study of travertines and tufas in the 6-95°C temperature range, Geochim. Cosmochim. Acta 

168, 172-192.  

 

Kelson, J.R., Huntington, K.W., Schauer, A.J., Saenger, C., Lechler, A.R., 2017. Toward a 

universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods 

suggest a single temperature relationship. Geochim. Cosmochim. Acta 197, 104–131. 

doi:10.1016/j.gca.2016.10.010 

 

Kluge, T. and John, C.M., 2015. Effects of brine chemistry and polymorphism on clumped 

isotopes revealed by laboratory precipitation of mono- and multiphase calcium carbonates. 

Geochim. Cosmochim. Acta 160, 155–168. doi:10.1016/j.gca.2015.03.031 

 

Kluge, T., John, C.M., Jourdan, A.-L., Davis, S. and Crawshaw, J., 2015. Laboratory 

calibration of the calcium carbonate clumped isotope thermometer in the 25–250°C 

temperature range. Geochim. Cosmochim. Acta 157, 213–227. doi:10.1016/j.gca.2015.02.028 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 21 

 

Krumgalz, B.S., Pogorelsky, R. and Pitzer, K.S., 1996. Volumetric properties of single 

aqueous electrolytes from zero to saturation concentration at 298.15   represented by Pitzer’s 

ion-interaction equations. J. Phys. Chem. 25, 639–663. 

 

Loyd S. J., Corsetti F. A., Eagle R. A., Hagadorn J. W., Shen Y., Zhang X., Bonifacie M. and 

Tripati A. K. 2015. Evolution of neoproterozoic Wonoka-Shuram anomaly-aged carbonates: 

evidence from clumped isotope paleothermometry. Precambrian Res. 264, 179–191. 

 

Lloyd, M.K., Eiler, J.M. and Nabelek, P.I., 2017. Clumped isotope thermometry of calcite and 

dolomite in a contact metamorphic environment. Geochim. Cosmochim. Acta 197, 323–344. 

doi:10.1016/j.gca.2016.10.037 

 

Loyd, S.J., Corsetti, F., Eiler, J.M. and Tripati, A. K., 2012. Determining the Diagenetic 

Conditions of Concretion Formation: Assessing Temperatures and Pore Waters Using 

Clumped Isotopes. J. Sediment. Res. 82, 1006–1016. doi:10.2110/jsr.2012.85 

 

Macdonald, J.M., Girard, J. and Larribau, A. E., 2017. Testing clumped isotopes as a 

reservoir characterisation tool: a comparison with fluid inclusions in a dolomitised 

sedimentary carbonate reservoir buried to 2-4 km. Geol. Soc. London submitted. 

 

Machel, H.G., 1985. Cathodoluminescence in calcite and dolomite and its chemical 

interpretation. Geosciences Canada, 12, 139-147 

 

Mangenot, X., Gasparrini, M., Rouchon, V. and Bonifacie, M. (in press). Basin scale thermal 

and fluid-flow histories revealed by carbonate clumped isotopes (47) - Middle Jurassic of the 

Paris Basin. Submitted to Sedimentology.  

 

Matray, J.M., Lambert, M. and Fontes, J.C., 1994. Stable isotope conservation and origin of 

saline waters from the Middle Jurassic aquifer of the Paris Basin, France. Appl. Geochemistry 

9, 297–309. doi:10.1016/0883-2927(94)90040-X 

 

Mcneil, B. and Morris. E. 1992.The preparation of double-polished fluid inclusion wafers 

from friable, water-sensitive material. Mineralogical Magazine, 56 120-122. 

 

Ménétrier, C., Élie, M., Martinez, L. and Le, A., 2005. Estimation of the maximum burial 

palaeotemperature for Toarcian and Callovo-Oxfordian samples in the central part of the Paris 

Basin using organic markers. Comptes Rendus Geosci. 337, 1323–1330. 

 

Millán, M.I., Machel, H. and Bernasconi, S.M., 2016. Constraining temperatures of formation 

and composition of dolomitizing fluids in the upper devonian nisku formation (Alberta, 

Canada) with clumped isotopes. J. Sediment. Res. 86, 107–112. doi:10.2110/jsr.2016.6 

 

Müller, I.A., Fernandez, A. Radke, J., Dijk, J.V., Bowen, D., Schwieters J. and Bernasconi, 

S.M., 2017. Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) 

workflow: scratching at the lower sample weight boundaries. Rapid Commun. Mass 

Spectrom., 31, 1057–1066.  

 

O’Neil J. R., Clayton R. N. and Mayeda T.  . (1969) Oxygen isotope fractionation in divalent 

metal carbonates. J. Chem. Phys. 51, 5547–5557. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 22 

 

Passey, B.H. and Henkes, G., 2012. Carbonate clumped isotope bond reordering and 

geospeedometry. Earth Planet. Sci. Lett. 223–236. doi:10.1016/j.epsl.2012.07.021 

 

Roedder, E. and Bodnar, R. 1980. Geologic pressure determinations from fluid inclusion 

studies. Ann. Rev. Earth Planet 8, 263–301. 

 

Rosenbaum, J. and Sheppard, S.M. 1986. An isotopic study of siderites, dolomites and 

ankerites at high temperatures. Geochim. Cosmochim. Acta, 50, 1147–1150. 

doi:10.1016/0016-7037(86)90396-0 

 

Schauble, E., Ghosh, P. and Eiler, J.M., 2006. Preferential formation of 
13

C–
18

O bonds in 

carbonate minerals, estimated using first-principles lattice dynamics. Geochim. Cosmochim. 

Acta 70, 2510–2529. doi:10.1016/j.gca.2006.02.011 

 

Sharp, Z.D. and Kirschner, D.L., 1994. Quartz-calcite oxygen isotope thermometry: A 

calibration based on natural isotopic variations. Geochim. Cosmochim. Acta 58, 4491–4501. 

doi:10.1016/0016-7037(94)90350-6 

 

Shenton, B.J., Grossman, E.L., Passey, B.H., Henkes, G., Becker, T.P., Laya, J.C., Perez-

Huerta, A., Becker, S.P. and Lawson, M., 2015. Clumped isotope thermometry in deeply 

buried sedimentary carbonates: The effects of bond reordering and recrystallization. Geol. 

Soc. Am. Bull. B31169.1. doi:10.1130/B31169.1 

 

Siman-Tov, S., Affek, H.P., Matthews, A., Aharonov, E. and Reches, Z. 2016. Shear heating 

and clumped isotope reordering in carbonate faults. Earth Planet. Sci. Lett. 445, 136–145. 

doi:10.1016/j.epsl.2016.03.041 

 

Stolper, D.A. and Eiler, J.M. 2015. The kinetics of solid-state isotope-exchange reactions for 

clumped isotopes: A study of inorganic calcites and apatites from natural and experimental 

samples. Am. J. Sci. 315, 363–411. doi:10.2475/05.2015.01 

 

Tang, J., Dietzel, M., Fernandez, A., Tripati, A.K. and Rosenheim, B.E. 2014. Evaluation of 

kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. 

Geochim. Cosmochim. Acta 134, 120–136. doi:10.1016/j.gca.2014.03.005 

 

Tobin, R.C. and Claxton, B.L. 2000. Multidisciplinary thermal maturity studies using vitrinite 

reflectance and fluid inclusion microthermometry: A new calibration of old techniques. Am. 

Assoc. Pet. Geol. Bull. 84, 1647–1665. doi:10.1306/8626BF29-173B-11D7-

8645000102C1865D 

 

Urey, H. C., Lowenstam, H. A., Epstein, S. and Mckinney, C. R. 1951. Measurement of 

paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the 

Southeastern United States. Geological Society of America Bulletin. 62, 399-416. 

 

Vityk, M, O., Bodnar, R. and Schmidt, C. 1994. Fluid inclusions tectonothermobarometers : 

relation between pressure-temperature history and reequilibration morphology during crustal 

thickening. Geology, 22, 731–734. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 23 

Watkins, J.M. and Hunt, J.D. 2015. A process-based model for non-equilibrium clumped 

isotope effects in carbonates. Earth Planet. Sci. Lett. 432, 152–165. 

doi:10.1016/j.epsl.2015.09.042 

 

Williams, S.H., Burden, E.T. and Mukhopadhyay, P.K., 1998. Thermal maturity and burial 

history of Paleozoic rocks in western Newfoundland. Can. J. Earth Sci. 35, 1307–1322. 

doi:10.1139/e98-045 

 

Winkelstern, I.Z. and Lohmann, K.C. 2016. Shallow burial alteration of dolomite and 

limestone clumped isotope geochemistry. Geology 44, 467–470. doi:10.1130/G37809.1 

 

Worden, R. H. and Matray, J. M., 1995. Cross formational flow in the Paris Basin. Basin Res. 

7, 53–66. 

 

 

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 24 

Sample 

Name  

Phase(1) FI Occurence Shape(2) Size(3)  Filling 

degree (4) 
Homogeneization temp.  (Th) Ice melting temp. stable 

FI  

Ice melting temp. 

metastable FI  

Salinity 

Freq. 

Mode  

Mean STD Range Mode Range Mode Range Mode Range 

°C °C °C °C °C °C °C °C % wg. 

NaCl 

% wg. NaCl 

                  

BEBJ8 Cal1 Isolated - in patch  CR, IR, 
RO 

2-15 0.93/0.98 65/70 62 (30) 11 45-90 (30) -11 (5) -12.8/-10.1 (5) -11.75 (14) -15.3/-7.8 
(14) 

14 (5) 8.4/18.8 (5) 

  
BEBJ12 Cal1  isolated CR, IR 2-15 0.95/0.98 55/65 64 (26) 12 44-85 (26) - - - - - - 

                

BEBJ2 Cal2 isolated or patch CR, EG 2-10 0.90/0.98 75/85 80 (32) 10 60-100 (32) -6 (11) -9/-0.1 (11) -7 (7) -7/-3 (7) Bimodale 0.2/12.8 (11) 

BEBgeode Cal2 In patch and along trail CR, IR - 0.90/0.98 75/80 73 (31) 20 60-95 (31) - - -0.2 (3) -0.4/1.2 (3) - - 
                       

          

FOS1610 Dol1 In patch (mineral core)  CR, IR >5 0.90-0.96 90/95 92 (31) 9 70-110 (31) -7.3 (9) -6.7/-7.8 (9) - - 10.5 (9) 10.1/11.5 (9) 

 

 NOTES: 

(1) Carbonate cement phases investigated: Cal1 and Cal2 from the Baulne en Brie core section and Dol1 from the Fossoy core 

(2) The FIs shapes is distinguished as crystallographycally controlled (CR), irregular (IR), Elongated (EG) 

(3) The inclusion size is given as length in µm 

(4) F (degree of fill) stands for the volume fraction of the liquid phase at room temperature relative to the FI total volume 

 

Table 1. Petrographic features of the main types of bi-phase FIs analyzed and microthermometric data, i.e. homogenization temperatures (Th), 

ice melting temperatures in stable (Tmi) and metastable (TmMET) conditions. In parenthesis is reported the number of measurements 

accomplished for each of the three parameters. Salinities are expressed in wt. % NaCl eq. and were calculated, from stable Tmi only, following 

the equation of Bodnar (1993). 
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Sample Cement  CL character n  
18

O 
13

C  47CDES90
(1)

 

 
47CDES25

(2)
 

 

1SE
 (3)

  T47
(4)

 
18

Owater
(5)

 

(‰, VPDB) (‰, VPDB) (‰, CDES) 

 

(‰,CDES) 

  

(‰)  °C
 
 (‰, SMOW) 

BAULNE EN BRIE CORE INTERVAL 

First generation of block calcite (Cal1 cements)  

BEBJ8 (X) Cal1 Bright orange 3 -7.23±0.03 1.18±0.02 0.494±0.004 0.586 0.010  66±4 2.4 

BEBJ6 Cal1 Bright orange 3 -5.62±0.14 2.04±0.07 0.500±0.024 0.592 0.014  63±6 3.6 

BEBJ9 Cal1 Bright orange 2 -6.47±0.08 1.25±0.02 0.480±0.004 0.572 0.013  72±4 4.0 

BEBJ11 Cal1 Bright orange 3 -6.06±0.04 1.78±0.03 0.496±0.006 0.588 0.010  65±6 3.4 

BEBJ12(X) Cal1 Bright orange 3 -5.84±0.05 1.65±0.02 0.504±0.010 0.596 0.010  61±4 3.0 

BEBJ21 Cal1 Bright orange 2 -6.95±0.01 0.9±-0.01 0.501±0.025 0.593 0.018  62±8 2.2 

BEBJ13 Cal1 Bright orange 2 -7.06±0.03 1.04±0.03 0.501±0.004 0.593 0.013  62±6 2.1 

BEBJ5 Cal1 Bright orange 2 -5.86±0.04 1.66±0.01 0.493±0.018 0.585 0.013  66±7 3.7 

BEBJ2 b Cal1 Bright orange 2 -7.35±0.20 1.7±0.05 0.487±0.013 0.579 0.013  69±7 2.7 

BEBJ2 c Cal1 Bright orange 2 -5.69±0.06 1.45±0.07 0.500±0.011 0.592 0.013  63±6 3.5 

CAL 1 -CEMENT POPULATION 24 -6.41±0.68 1.45±0.36 0.496±0.007 0.588 0.004  65±3 3.1±0.7 

Second generation of block calcite (Cal2 cements)  

BEBJgeode (x) Cal2 Dull red-brown 3 -15.26±0.06 1.99±0.17 0.459±0.011 0.551 0.010  83±6 -3.5 

BEBJ2 (X) Cal2 Dull red-brown 2 -15.15±0.01 1.79±0.18 0.456±0.001 0.548 0.013  84±6 -3.3 

CAL 2 -CEMENT POPULATION 5 -15.26±0.08 1.45±0.36 0.457±0.002 0.550 0.008  83±4 -3.4±0.1 

FOSSOY CORE INTERVAL 

First generation of saddle dolomite (DOL1)   

FOS1610 (x) Dol1 not-luminescent 3 -9.57±0.05 1.76±0.03 0.432±0.008 0.524 0.010  98±7 0.9 
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Note.  
(n) is the number of replicate measurements of the same carbonate powder, except for population averages (values in italic and bold font) for which the reported n is the 
total number of discrete analyses for the whole population.  
(X) Selected samples for the comparison with FIM  

(1) 47CDES90 are values relative to the ‘carbon dioxide equilibrium scale’ CDES and the 90°C acid digestion frames (ie., without acid fractionation correction). In this column, 
the reported uncertainties are one standard deviation for replicate measurements of the same carbonate powder.  

(2) 47CDES25 are values relative to the ‘carbon dioxide equilibrium scale’ CDES, to which have been applied an acid fractionation factor of 0.092‰ (following Henkes et al. 

2013) to transfer the 47CDES90 data into the 25°C acid digestion reference frame. 
(3) S.E. = S.D / √n. When the standard deviation of the sample was lower than the long-term standard deviation of the homogeneous standards (average of ±0.018‰, n=49 
in this study), SD of the standards were used to calculate SE for the samples. 

 (4) Paleotemperatures calculated using the inter-laboratory composite 47-T calibration (Eq. 3 from Bonifacie et al. 2017) 

(5) Oxygen isotope compositions of mineralizing waters calculated using T47 and the equations of fractionation of oxygen isotopes between the carbonate and water of 
either O’Neil et al. (1969) for calcite and Horita (2014) for dolomite.  

 

Table 2. Stable isotope 47, 18O and 13C results from the diagenetic cements of Baulne en Brie and Fossoy core intervals.  

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 27 

 

 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 31 

 

Fig. 5 
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Fig. 6 
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Fig. 8 

 

Fig. 9 
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