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The flow field of a 70% concentrated noncolloidal o/w emulsion in a pipe has been investigated by means of Particle 
Image Velocimetry in a matched refractive index medium. At steady state and in laminar regime, the shape of axial 
velocity profiles is not parabolic and exhibits a shear-thinning behavior of the dense emulsion, with a flow index of 0.5 
and a negligible yield stress (less than 1 Pa). However, instead of a square root law, the pressure drop increases linearly 
with Um. To explain this apparent inconsistency, two mechanisms of different nature are considered. The first originates 
from a possible relation between the consistency factor and the drop mean diameter. The second mechanism is shear-
induced migration and leads to the development of a concentration gradient in the pipe cross section. Both mechanisms 
considered reconcile the experimental data, the apparent local shear-thinning behavior and the linear evolution of the 
pressure drop with the flow rate. CV 2017 American Institute of Chemical Engineers AIChE J, 63: 5182–5195, 2017 
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Introduction

Optimization and/or scaling-up of processes involving con-

centrated noncolloidal emulsions require adequate models for

the transport of these emulsions, and until now this issue

has motivated a large number of works devoted to the model-

ing of transport properties of emulsions (shear viscosity, nor-

mal stresses, diffusivity, and viscoelastic moduli), based on

theoretical, experimental and numerical rheological studies,

starting with the early works of Einstein and Taylor. Com-

pared to the case of suspensions, emulsions increase the level

of complexity, due to the deformability, the control of bound-

ary conditions at the oil/water interface (due to the presence of

contaminant or surfactants), and of the polydispersity. These

three parameters greatly influence the dynamic response of an

emulsion to a stress, and as a result, the development of rheo-

logical models for concentrated emulsions is still mainly based

on experimental studies in simple flow geometries (cf. for

instance, Derkach,1 Datta et al.,2 and Cohen-Addad and

H€ohler3). However, there are little data on the validation of

these rheological models for concentrated emulsions in real

flow conditions of Blondin and Doubliez,4 Meeker et al.,5 and
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Pouplin et al.,6 and this is mainly due to the difficulty of
implementing at a local-scale noninvasive measurement tech-
niques in such flows.7 The question of representativeness of
rheological laws for real flows therefore arises, in particular
when the shear rate field is not homogeneous such as in a pipe
flow.8,9

In a previous work, the local structure of a homogeneous
pipe flow of a noncolloidal oil-in-water emulsion has been
investigated in Pouplin et al.6 for a wide range of concentra-
tion (from dilute to 56%) and flow regimes (laminar, turbulent,
and intermittent). This work has clearly demonstrated the rele-
vance of the concept of effective medium (mixture viscosity)
for emulsions in fully developed laminar and turbulent
regimes (cf. Figures 1a, b). The shear viscosity is well
described by an Eilers’ or Krieger and Dougherthy’s law up to
a volume fraction / equal to 0.6, taking a maximum packing
fraction /M 5 0.74

lr5 12/=/Mð Þ22:5/M (1)

Note that the model of Choi and Showalter10 reasonably
well reproduces the experimental trend up to / 5 0.55, but
with a viscosity ratio k 4 times larger than its real value. A

similar trend is observed with the model proposed by Pal,11

which underestimates the evolution of the relative viscosity

with volume fraction of the present system (agreement is
obtained with a viscosity ratio equal to 8 instead of the current

value k 5 0.125). The model of Yaron and Gal-Or12 widely
underestimates the data over the whole range of concentration,
assuming mobile (k5ld/lc) or immobile (k!1) interfaces.

In transient regime,13 the macroscopic behavior is however

modified compared to a single Newtonian fluid and cannot be
solely described by a Reynolds number based upon mixture

viscosity and density, as previously observed by Matas et al.14

in horizontal flows of neutrally buoyant suspensions.
For larger drop volume fractions, the increase of the appar-

ent viscosity is accompanied with the emergence of a strong
non-Newtonian behavior, the transition occurring in the range

of concentration 60%–70%.15 Various non-Newtonian behav-
iors were reported in the literature that can be described by
macroscopic shear thinning or viscoelastic laws.16–18 The non-

Newtonian behavior is often attributed to polydispersity and/
or drop deformation.19 Note also that deviation from an effec-

tive fluid behavior of the emulsion was observed in micro-
channels by Goyon et al.,20 induced by finite drop size effects

or rough channel walls (nonlocal effects).
When the material is homogeneous, local constitutive laws

can be directly inferred from macroscopic rheological meas-
urements. This fact has been evidenced by local velocity

measurements in nonadhesive concentrated emulsion flows in
a wide-gap Couette apparatus,16 where a Herschel–Bulkley

model (shear-thinning with a yield stress) was found to fully
describe the local and macroscopic rheology of the homoge-

neous emulsion. However, the rheology of dense flows is not
always perfectly concordant at all length scales. For example,

in Couette flow laden with rigid particles at high solid volume
fraction, Ovarlez et al.21 showed that constitutive laws derived
from local velocity profile measurements disagree with that

deduced from the torque-rotation speed relation in the device.
They obtained a factor 5 (at 60% volume fraction) between

viscosities calculated at the local and rheometer scales. The
discrepancy was ascribed to the establishment of a concentra-

tion profile resulting from particle migration toward the outer
cylinder where the shear rate is the lowest.

In the present work, we have extended the pipe flow investi-
gations presented in Pouplin et al.6 to the case of a highly con-

centrated emulsion below the glassy transition (volume
fraction of 0.7) of noncolloidal (20 lm diameter) oil drops in

an aqueous phase, where shear-thinning behavior is usually
observed. Objectives are to test at a local scale in a nonuni-

form flow the relevance of the concept of effective medium in
this range of concentration. In particular, the local flow rheol-

ogy is investigated at different mixture velocities in the pipe
cross section and its consistency with the macroscopic
momentum balance is discussed.

The article is structured as follows: in the second section a

short description of the experimental setup and measurement
techniques are presented as well as the flow parameters.

Matching the refractive index of the two phases, the velocity
field in a 5-cm diameter pipe could be accurately measured at

different mixture velocities in laminar regime using Particle
Image Velocimetry (PIV) technique. For a steady, established,
and parallel emulsion flow with drop concentration homoge-

neously distributed over the pipe cross section, the measure-
ment of the velocity profile in the cross section provided a

stress–strain relation at a local scale. For each flow rate, the

Figure 1. (a) Wall friction factor as a function of the
mixture Reynolds number at various concen-
trations (Re m5qmUmD=lm) from Pouplin
et al.6; (b) relative viscosity as a function of
oil volume fraction (/M 5 0.74).

(. . .) Eilers; (– –) Krieger and Dougherty; (�) Blasius

friction factor; (3) Hagen–Poiseuille friction factor.



momentum balance in the streamwise direction can then be
evaluated thanks to the measurement of the pressure drop.

Radial velocity profiles and pressure drop are discussed in
the third section. For each flow rate investigated, the velocity
profiles are quite symmetric and suggest that the dense emul-
sion flow obeys a shear-thinning law with the same flow index
n 5 1=2 as that already observed in a wide-gap Couette
cell.15,17,22 This effective medium behavior is however not
consistent with the evolution of the pressure drop with the
mixture velocity, which is found to be linear instead of a
square root law.

The origin of this apparent contradiction is analyzed in the
fourth section through two mechanisms of different nature.
The first is related to the evolution of consistency factor with
drop size based on the experimental results of Pal15 in a homo-
geneous Couette flow. In our case, drop size variation would
be induced by the variation of pump rotation speed at different
flow rates. The second originates from shear-induced diffusion
and leads to the development of a weak gradient concentration
profile in the flow section, independent of flow rate. Assuming
a Newtonian behavior of the emulsion, the concentration pro-
file deduced from the local momentum balance at steady state

Table 1. Physical Properties of Liquid Phases at 298C

Phases q (kg m23) l (Pa s) nD r (N m21)

Dispersed n-heptane qd 5 684 ld 5 4 3 1024 1.385 0.031
Continuous water–glycerin (43% vol) qc 5 1102 lc 5 3.2 3 1023 1.385

Figure 2. Overview (a) and schematic (b) of the experimental rig.

[Color figure can be viewed at wileyonlinelibrary.com]
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is interpreted with the help of a simple Suspension Balance

Model (SBM), as that proposed by Zarraga et al.23 The appli-

cability of this model to the present emulsion pipe flow is dis-

cussed in terms of drop deformability, length of establishment

of the concentration profile, and sign of second normal stress

difference. Last section regroups the main conclusions and

perspectives of this work.

Experimental

Phase system

The o/w emulsion is composed of n-heptane as the dis-

persed phase and an aqueous solution of glycerin (43% v/v) as

the continuous phase. At 298C, refractive indices of both

phases are matched (nD 5 1.385) allowing the implementation

of PIV technique. Phase properties of the phases at 298C are

reported in Table 1.

Liquid-liquid rig and measuring techniques

The scheme of the experimental rig is reported in Figure 2.

The device is composed of an 8-m long cylindrical pipe made

of poly-methyl methacrylate (PMMA) of D 5 5 cm internal

diameter, a storage tank of 400 L from which the liquid phases

are pumped toward the pipe, and a secondary loop that regu-

lates the temperature in the pipe through a heat exchanger.

The pipe is first filled with both phases at the desired volume

concentration, and then the mixture is circulating in a closed

loop in the water circuit, the emulsion being produced and

transported by a centrifugal pump of variable rotation speed.

For each test, the volume concentration /0 is a posteriori
checked by settling an emulsion sample taken out from the

pipe flow. The flow rate in the pipe is measured by an electro-

magnetic flowmeter (0.5% accuracy).
In the range of pump rotation speed used in this study, the

mean drop diameter of the o/w emulsion is close to 20 lm

(measured in rather dilute conditions).
The shape of the drop size distribution (measured by a laser

granulometer) is found to be slightly sensitive to the pump

rotation speed. As the latter increases between 2200 and

2800 rpm, the distribution (measured only for /< 0.25) shifts

from a unimodal (Figure 3a) to a bimodal distribution (Figure

3b), resulting in a slight decrease of the mean drop diameter.

Therefore, in the range of flow rates employed for this study,

the emulsion is polydisperse.
The pressure drop is measured along the pipe with the help

of a differential pressure gauge with a maximum uncertainty

less than 10%. The velocity field in the emulsion is measured

by PIV. A vertical laser sheet is generated in a median plane

of the pipe at a distance L 5 3.3 m (66 pipe diameter D) from

the pipe inlet (Figure 4). The laser source is composed of a

high-frequency double cavity of 10 mJ each at a wavelength

of 527 nm. The flow is seeded with 20 lm PMMA particles

with encapsulated Rhodamine B, a fluorescent dye that reemits

light at a higher wavelength (584 nm). Volume fraction of

Figure 3. Drop size distribution at low concentration
(a) N 5 1900 rpm; (b) N 5 2400 rpm.

Continuous line (oil volume fraction of 12%); dashed

line (oil volume fraction of 8%).

Figure 4. (a) PIV system implemented on the pipe;
(b) illustration of phase index matching in
the pipe flow.

[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


these particles is of the order of 1025, so there impact on

emulsion flow is negligible. A high-speed video camera

(RS3000 Photron
VR

) with an image resolution of 1024 3 1024
pixels records the displacements of the seeding particles

between two successive images at a spatial resolution of

0.9 mm (56 data points in a pipe diameter). The camera is

equipped with a 100-mm lens and a high-pass filter (cut wave-
length of 540 nm) to filter the incident wavelength. Statistical

averages were performed over 2000 images corresponding to

an integration time of about 4 s, which is quite enough in

steady laminar regime (negligible velocity fluctuations).

Flow parameters

The volume concentration of the emulsion has been set to

/0 5 0.70 (60.02) in this study, beyond the range correspond-

ing to a hard sphere behavior of the emulsion.6 Four different
mixture velocities Um are investigated, involving different

pump rotation speeds (2200<N< 2800 rpm). Corresponding

pipe Reynolds number based upon emulsion viscosity lm

(using Newtonian law at / 5 0.7) and particle Reynolds num-
ber based upon continuous phase viscosity lc, (for a Sauter

diameter d32 5 20 lm) are reported in Table 2.
Although there is no surface-active species added to the sys-

tem, the presence of contaminants is unavoidable (due to

impurities in both phases and contamination due to flowing
through the different elements of the rig) and interfaces are

likely to behave as immobile interfaces (adhesion condition at

the interface). As a result, inter-drop coalescence time is rather

long, and even if the emulsion continuously separating with
time, it takes more than one day for an emulsion sample to

fully separate under gravity. Due to the small residence time

(few tens of seconds) of the emulsion in the pipe between the

pump outlet and the measuring section, the emulsion is unaf-
fected by coalescence, even at high concentration.

Flow Velocity Profile and Pressure Gradient

As discussed in Pouplin et al.,6 phase segregation can be visu-
alized by the distribution of seeding particles in the pipe cross

section. They are more concentrated in the zone where drops are

more concentrated, leading to a grey level gradient in the pipe

section. In the case of a 70% concentrated emulsion, no clear
gradient of the seeding particle concentration could be detected,

suggesting that, within a range of small concentration variation,

the emulsion flow is a priori homogeneous at all flow rates stud-

ied. However, this assessment is only qualitative and must
not be confused with an accurate measurement of the drop con-

centration profile in the cross section (see for instance, Refs. 16

and 21).

Axial velocity profiles

A typical instant velocity field is displayed in Figure 5a, for

a mixture velocity of 0.85 m s21. The flow seems to be quite

axisymmetric and parallel, corresponding to a fully laminar

regime, which is confirmed in Figure 5b by the perfect coinci-
dence of the axial velocity profiles taken at the two ends of

this instant field (z denotes the vertical coordinate in a median

plane along the pipe diameter). Note also that the velocity profile
significantly deviates from a parabolic profile, with a quasi-flat
shape near the centerline of the pipe section, characteristic of a
shear-thinning behavior. This velocity profile is reproduced at all
mixture velocities investigated as shown in Figure 6, where the
axial velocity profiles Vx(z/D) are reported (where x denotes the
coordinate in the streamwise direction, radial coordinate r and
vertical coordinate z are simply related through r/R 5 z/R 2 1).
In all cases, no significant velocity fluctuation has been mea-
sured, flows are fully laminar and established. Profiles are quite
symmetric with a slight larger gradient close to the bottom wall
than to the upper wall, which probably results from a slight drop
concentration difference following the vertical direction. To
illustrate the shear-thinning behavior, the parabolic profile has
been plotted in the case Um 5 1 m s21.

Table 2. Flow Parameters

Um (m s21) 0.56 0.7 0.85 1
N (rpm) 2200 2400 2400 2800
Re m5qmUmD=lm 32 40 49 57
Re p5Re mðlm=lcÞðd32=DÞ2 with lm5lcð12/=/mÞ22:5/m 2.8 3 1024 3.5 3 1024 4.3 3 1024 5 3 1024

Figure 5. (a) Instant velocity field for Um 5 0.85 m s21;
(b) axial velocity profiles at x 5 3.5 m (‡) and
x 5 3.55m (1).

(z is the vertical coordinate along pipe diameter; z/D 5 0:

bottom wall; z/D 5 1: upper wall; radial coordinate

2r/D 5 |2z/D-1| with D 5 2R).



Assuming a quasi-homogeneous flow (i.e., no concentration

gradient in the cross section) these velocity profiles can be used to

derive the rheological law of the emulsion at this concentration.
The momentum balance in the streamwise direction x of a

steady, laminar and established pipe flow, reduces to

srx5
r

2

dP

dx
(2)

where dP/dx is the established pressure gradient in the flow

direction, which is constant for a given mixture velocity. Shear

stress is hence proportional to the radial location in the pipe

section, r. Plotting the radial position as a function of the

radial derivative of the axial velocity therefore provides the

emulsion stress–strain curve in real flow conditions. Normal-

ized velocity gradient profiles dVx

dz
R

Um

� �
are reported in Figure

7a. They well collapse on a single curve, suggesting a single

rheological behavior at all mixture velocities. It is clearly not

a linear dependence but a power law (shear-thinning behavior)

instead with an apparent yield stress, which can be deduced

from the cancellation of the stress over a band of finite thick-

ness near the centerline. When zooming in this region (Figure

7b), one observes that the width of this band is in reality

smaller than the PIV resolution mesh size (0.0125D), which

would correspond to a maximum yield stress sy of order of 1

Pa for the maximum pressure drop considered (1800 Pa m21

at Um 5 1 m s21). Neglecting this quantity, stress–strain plots

have been tested against Oswald’s law

srx5jj _cjn21 _c with _c5dVx=dr (3)

where n is the flow index and j the consistency factor.

Substituting (3) in (2) and integrating along the radial direc-

tion provides the axial velocity profile

Vx rð Þ5Vxmax 12 r=Rð Þ
n11ð Þ=n

h i
(4)

Equation 4 assumes a no-slip boundary condition at the

wall. Note that the spatial resolution (0.6 mm) of the measured

velocity profile does not allow determining precisely if there is

a slip at the pipe wall, but in any case, its value would be
smaller than a few percent at most of the mean velocity and
can therefore be neglected. The profile of 1 – Vx/Vxmax in the
cross section is reported in Figure 8a on a log–log scale for all
mixture velocities. For each value of Um, two curves corre-
sponding to the upper and bottom section profiles have been
plotted. Based upon Eq. 4, the slope of each curve is equal to
(n 1 1)/n and therefore provides the flow index n. All profiles
can be perfectly fitted by a power law with an exponent close
to 0.5, which corresponds to the r*3 power law on this graph.
The exponent corresponding to the upper section is always
slightly larger than that of the bottom section, as a probable
result of a slight difference in concentration. Another way to
represent the data is to plot the apparent viscosity la5jj _cjn21

scaled by its wall value as a function of dimensionless shear
rate _c�5ðdVx=drÞðR=UmÞ

l�5la=law5j _c rð Þ= _c Rð Þjn21

5j n=3n11½ � _c�jn21
5

ffiffiffiffiffiffiffiffiffiffiffiffi
5=j _c�j

p
with n50:5

(5)

Experimental data are reported in Figure 8b for both upper
and bottom sections at each mixture velocity. Apparent viscos-
ity has been normalized by the wall-averaged value between
upper and bottom sections. It can be seen that all data well col-
lapse on the same curve and well compare with Eq. 5 with a
weak scattering. The point (5,1) on this graph represents the

Figure 7. (a) Velocity gradient profiles in the cross-section
at different mixture velocities (b) Zoom near the
centerline. R is the pipe radius (52.5cm).

Figure 6. Axial velocity profiles in the cross section at
different mixture velocities.

Dotted line is the parabolic profile at Um 5 1 m/s. Dashed

lines correspond for each mixture velocity to the power

law profile Vx5Vx max 12jz=R21ð jðn11Þ=nÞ with n 5 0.5. (z
is the vertical coordinate along pipe diameter) Vxmax is the

maximum velocity of Vx on the pipe centerline.



wall value obtained with Eq. 5. A slight dispersion can be

observed around this point due to the slight dissymmetry, but

the agreement is overall quite good. This flow index value of

0.5 is consistent with literature data obtained in wide-gap Cou-

ette flow geometries for noncolloidal dense emulsions in the

same range of drop size. Among those, Jager-L�ezer et al.22

have performed a detailed rheological analysis of concentrated

o/w emulsions (of order few microns in size) with different

techniques in a range of high concentrations (0.6–0.85). Their

data show that the yield stress of the emulsion starts to develop

rapidly in the range 0.65–0.7, increasing from 1 to several tens

of Pa. In the range [0.6, 0.7], the shear stress of the emulsion

is well described by a Herschel–Bulkley model with a flow

index close to 0.5.
Salmon et al.24 have identified a flow index of 0.4 6 0.1 for

a 75% concentrated nonadhesive o/w emulsion (2 lm drop

diameter). In the same range of concentration (>0.7), Ovarlez

et al.16 confirmed the validity of the Herschel–Bulkley model

with a constant flow index close to 0.5 for both adhesive and

nonadhesive o/w emulsion of few microns in size.
Setting the flow index n to 0.5 in Eq. 3, consistency factor j

can be deduced combining Eqs. 2 and 3. Profiles of j have

been plotted in Figure 9 for all mixture velocities. As can be
seen on this graph, a nearly constant value is obtained over the
entire pipe section for each mixture velocity (except near the
pipe center where consistency diverges because of the low val-
ues of the shear rate), confirming the good fit of emulsion rheol-
ogy with Oswald’s law. However, we note that the averaged
values of j over the pipe diameter increase from 1.1 to 1.6 Pa
s0.5 as the mixture velocity is increased from 0.56 to 1 m s21. As
the consistency factor is not dependent of the local shear stress,
its evolution can be ascribed to a modification of the emulsion
microstructure when the flow parameters are changed. Numeri-
cal values of j have been reported in Table 3 for the different
flow parameters. We can see that the change of mixture velocity
is accompanied with a variation of the pump rotation speed,
which is increasing with the flow rate. As the emulsion is pro-
duced by the passage through the centrifugal pump, the slight
modification of drop size distribution illustrated in Figure 3 can
be responsible of an increase of interfacial area due to a diminu-
tion of Sauter diameter with the increase of the pump rotation
speed, and consequently of an increase of the prefactor j in Eq.
3. This point will be discussed later.

The values of the wall apparent viscosity have been also
reported in Table 3. A slightly larger value is observed at the
top wall compared to that of the bottom wall, possibly due to a
slight sedimentation effect. The averaged value is close to
0.11 Pa s and surprisingly, it is found to be independent of
mixture velocity, and therefore of the wall velocity gradient.
Note that this value cannot be easily interpreted as the transi-
tion to a Newtonian regime at high shear rate that would lead,
at a concentration of 70%, to a wall viscosity based upon Eq.
1, four to five times higher than that measured. Therefore, a

Figure 9. Profiles of consistency factor j in the cross-
section at different mixture velocities.

Vertical dashed lines represent the z-averaged value for

each case (z is the vertical coordinate along pipe

diameter).

Table 3. Consistency Factor, Wall Apparent Viscosity, and

Pump Rotation Speed for the Each Mixture Velocity

Investigated

Um (m s21) 1 0.85 0.7 0.56
N (tr min21) 2800 2400 2400 2200
j (Pa s0.5) 1.6 1.4 1.36 1.13
law (Pa s; top) 0.127 0.124 0.133 0.136
law (Pa s; bottom) 0.104 0.097 0.100 0.089
law (Pa s; average) 0.116 0.111 0.117 0.113

Figure 8. (a) Radial profile of 1 – Vx/Vxmax. For each Um,
the upper and bottom profiles have been
reported.

Dashed line is (r/R)(n11)/n (5r*3 for n 5 0.5). (b) Appar-

ent viscosity versus shear rate. Continuous line repre-

sents Ostwald’s law with n 5 0.5 (the point (5,1) on this

graph is the corresponding wall value).



Newtonian behavior of the emulsion involves the development

of a concentration profile in the pipe section with a minimum

at the wall and a maximum at the centerline.

Pressure drop

The pressure drop was measured at a distance equal to 66D
(5 122R) from the pipe inlet and its evolution with mixture

velocity is reported in Figure 10. For an Oswald’s fluid, the

pressure drop should vary like the mixture velocity to the

power n (flow index), that is, as a square root law in the pre-

sent case���� dP

dx

����52
j
R

nVxmax

n11ð Þ2R

!n

52
j
R

n 3n11ð ÞUm

n11ð Þ2R

!n

(6)

However, such a scaling assumes a constant value of the

consistency factor at all flow rates, which is not the case here.

Instead, Figure 10 exhibits a good linear fit of the pressure

drop vs. the mixture velocity. To illustrate the effect of the

variation of j with Um, the different pressure drop-mixture

velocity curves have been reported in Figure 10 with the dif-

ferent values of j identified.
The square root dependence clearly cannot properly repre-

sent the evolution of the pressure drop with the mixture veloc-

ity. The dependence of the pressure drop with Um can be

written using the apparent viscosity at the wall, law���� dP

dx

����5 2 3n11ð Þ
n

law

R2
Um (7)

The linear fit obtained from experimental data is therefore

consistent with a constant value of the wall apparent viscosity

and taking n 5 0.5, the slope of the straight line gives

law 5 0.11 Pa s.

Discussion

The linear evolution of the pressure drop is a typical macro-

scopic response of a Newtonian flow in a pipe, while the

velocity field is a clear signature of local shear-thinning

behavior. Both measurements could be mutually consistent by

considering either a dependence of consistency factor on flow

parameters for a fully homogeneous emulsion or a locally

Newtonian behavior with the development of a concentration

gradient in the flow section (i.e., a nonhomogeneous emul-
sion). These two modeling approaches are quite different in

nature and their evaluation is an important issue regarding the
scaling-up of transport processes. As the concentration profiles
are not available in the present study as in Ovarlez et al.,16

they cannot be discriminated and will be examined more thor-
oughly separately in this section. Aside from these two mod-
els, another possible mechanism would be to consider a

homogeneous emulsion separated from the pipe wall by a
lubrication film of continuous (aqueous) phase, as already evi-
denced by Brice~no and Joseph25 in pipe flows of concentrated

foams. But it can be shown that the conservation of momen-
tum would then require a velocity at the film-emulsion inter-
face to be close to the mixture velocity (uniform plug flow),

which is indeed verified in the case of dense foam flows but
not in the present case, as demonstrated by the velocity pro-

files of Figure 6. This lubrication mechanism, even if present,
has a negligible contribution to the momentum balance (which
turns to be equivalent to neglect the slip velocity at the wall).

Homogeneous shear thinning

Assuming the flow to be fully homogeneous in the flow sec-
tion leads to identify a variable consistency factor, which sug-

gests a change in the emulsion microstructure when pump
rotation speed is modified. It seems difficult to imagine a con-
stitutive model able to identify the different contributions of

the emulsion microstructure to the shear-thinning behavior on
one hand and to the consistency factor (or apparent viscosity)
on the other hand. What we have observed in our experiments

is that the shear-thinning mechanism is approximately
unchanged when the pump rotation speed is varied whereas
the consistency factor is significantly affected. It is worth to

mention here the study of Pal15 on the effect of polydispersity
on the rheology of concentrated emulsions in Couette devices.

He showed that the relative viscosity data obtained with emul-
sions of different drop size distributions could be rescaled as a
power law of a particle Reynolds number based on the veloc-

ity perturbation _ca32, where a32 is the drop Sauter radius and _c
is the shear rate in the Couette cell

Re0p5 _ca2
32=vc (8)

Note that this Reynolds number should preferably be seen as
the inverse of a Schmidt number that scales the drop shear-
induced diffusion by the carrier fluid kinematic viscosity, mc.

For a 70% concentrated o/w emulsion of micrometric nonde-
formable drops, the scaling of the relative viscosity (although
not mentioned in the text of Pal’s paper15) can be derived

from a data set (Figure 7 in Pal’s paper)

lr5lm=lc ffi Re 020:5
p for 1025 < Rep

0 < 1022 (9)

From that relation, it can be deduced that the emulsion

behaves as a shear-thinning fluid with a flow index of 0.5 and
a consistency factor scaling as

j ffi 3lc

a2
32

vc

� �20:5

53
l3

c

qc

� �0:5
1

a32

(10)

This relation indicates that for a flow index of 0.5, the consis-

tency factor is inversely proportional to the Sauter radius of
the drop, and most probably proportional to the interfacial
area. Such a dependence has some physical grounds: for a

given polydisperse concentrated system, if we admit that the
flow index reflects an optimal rearrangement of the dispersion

Figure 10. Pressure drop vs. mixture velocity.



to minimize the resistance to a shear stress, decreasing the
average size of the emulsion while keeping the polydispersity
index constant is not expected to modify the internal structure

of this rearrangement under stress. In return, if we interpret j
as a scaling factor of a dissipation rate, increasing the interfa-
cial area will increase the number of inter-drop lubrication
films per unit volume, and hence increase the dissipation rate

and the value of j.
As the size and particle Reynolds number of the present

emulsion lies in the same range as that of Pal’s experiments,
scaling relation 10 can be tested with our data. For an aver-
aged drop radius of 10 lm, the expected value of j in the 70%

concentrated emulsion would be 1.63 Pa s, which has the same
order of magnitude as the value identified from pressure drop
measurements (see Table 3). It can be concluded that Eq. 10
extracted from Pal’s data predicts the right order of j in our

experiments.
Next question is to know if the observed evolution of j with

pump rotation speed as the flow rate is increased is compatible
with a reasonable estimate of rate of change of drop diameter.
The emulsion being produced by the centrifugal pump, the

main mechanism responsible of drop fragmentation is due to
turbulence produced at the impeller tip. At high concentration,
even if the radial flow between two consecutive blades is pos-
sibly laminar, the flow in the pump casing is probably turbu-
lent, with a dissipation rate of turbulent kinetic energy e
scaling as N3 (where N is the impeller rotation speed). Follow-
ing Kolmogorov’s theory, in the inertial range, drops maxi-
mum stable diameter will be scaled by e20.4, whereas in the
sub-Kolmogorov range it will be scaled by e20.5. By exten-

sion, the evolution of averaged drop radius a32 with N is
expected to scale as N21.2 or N21.5, and hence j will scale like
N1.2 or N1.5 from Eq. 10. As illustrated in Figure 11, fitting the
values of j by a power law of N leads to

j / N1:36 (11)

Even if not accurate, the exponent is comprised between 1.2
and 1.5, suggesting that this evolution is consistent with a
dependence of j with drop diameter in our experiments. Note

that according to this trend, between 2200 and 2800 rpm the
mean drop diameter would only vary between 20 and 15 lm.

As a conclusion, a homogeneous shear-thinning fluid of
flow index 0.5 is a correct representation of the 70% o/

w emulsion if the dependence of the consistency factor with

the interfacial area can be established. A scaling law derived

from an experimental data set of Pal15 and the estimation of

drop size evolution with pump rotation speed both provide a

good level of prediction of j, and thus a possible explanation

of the observed linear evolution of pressure drop with the flow

rate. However, at concentrations above the glassy transition

(i.e., with significant nonzero value of the yield stress), Ovar-

lez et al.16 have identified a Herschel–Bulkley’s model with a

flow index of 0.5 and a consistency factor that is not related to

the mean size of the drops. Therefore, if this dependence of j
with the drop size exists, it seems to be only valid in a limited

range of concentration below the glassy transition.

Shear-induced migration

The second emulsion model assumes that the shear viscosity of

the 70% concentrated emulsion is Newtonian and that its depen-

dence with local concentration is given by Eq. 1. This assumption

is supported by the fact that the micron sized droplets have a small

Capillary number (Camax 5lc _c Rð Þamax =r ffi O 1024
� 	

) based on

the maximum shear rate (_cðRÞ ffi 200 s21) and the maximum drop

size (amax ffi 30 lm), so deformation-related effects are a priori
negligible. Hence, it is likely that the emulsion behaves as a sus-

pension of polydisperse smooth spherical particles. As aforemen-

tioned, the value of the apparent viscosity identified at the wall

suggests that the concentration is smaller than 70%. Mass conser-

vation therefore involves the development of a negative gradient

of concentration in the radial direction. This concentration profile

/(r) can be deduced from the experiments and the momentum bal-

ance at any radial position r

srx5
r

2

dP

dx
5 lclrð/ðrÞÞ _cðrÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Newtonian model

5 2sy1jj _cðrÞjn21 _cðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Experimental fit

with _cðrÞ50 if 0 � r � r0;

sy52
r0

2

dP

dx
and lrð/ðrÞÞ5ð12/ðrÞ=/MÞ22:5/M

(12)

In Eq. 12, although written in same form, the right-hand side

term here no longer represents a Herschel–Bulkley model of

the emulsion rheology but must be seen as an experimental fit

of the shear stress in the radial direction. The concentration

profile in the pipe section can then be deduced at each radial

location from that equation. In the experimental fit of the shear

stress profile, a possible nonzero value of the shear stress near

the centerline is introduced to study the sensitivity of the con-

centration profile to this quantity (that would correspond to a

yield stress in the Herschel–Bulkley model), threshold param-

eterized by a radial distance r0 below which the shear rate can-

cels. Due to mass conservation requirements, this threshold

value of the shear stress cannot exceed the order of 1 Pa, cor-

responding to a maximum value of r0/R of the order of 5 3

1022 (at Um 5 1 m s21). Concentration profile can then be

deduced according to

/ rð Þ5/M 12
2sy1jj _c rð Þjn21 _c rð Þ

lc _c rð Þ

" # 21
2:5/M

0
@

1
A and

/ rð Þ5/M for 0 � r � r0

(13a)

which can be also expressed as a function of r0* 5 r0/R

Figure 11. Consistency factor j vs. pump rotation
speed N.
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This profile is plotted in Figure 12 for all mixture velocities
with n 5 0.5 and /M 5 0.74 and for r�0 5 0 (Figure 12a) and
r�0 5 5 3 1022 (Figure 12b). As a first observation, all profiles
are independent of the mixture velocity and a unique function
of r* is obtained, resulting from the fact that in Eq. 13b, the
product jVn21

xmax is nearly independent of the mean flow mix-
ture velocity. Concentration is decreasing from /M at the cen-
terline or below r�0 to a constant value at the wall /R close to
0.63. It can be verified that at this concentration, the emulsion
viscosity given by Eq. 1 is equal to 0.11 Pa s, which is the
same value as that deduced from the slope of the Pressure
drop-mixture velocity straight line, (cf. Figure 10). In the limit
of acceptable range, the effect of the threshold value is limited
to the near-axis region and its effect on the wall value is negli-
gible. The integration of the local mass flux in the section
(local concentration x local velocity) leads to an average con-
centration of 0.67, which is very close to the concentration of
the emulsion (0.7 6 0.2), a result that is obtained indepen-
dently from any mass balance constraint and which brings
some support to the shear viscosity model. Also, it is interest-
ing to note that the gradient along this profile is smooth and
that the concentration difference between the wall and the

centerline is only 0.1. In this range of concentration, the emul-
sion viscosity as modeled by Eq. 1 is highly sensitive to the
concentration and a relatively small variation of concentration
is enough to shift a parabolic velocity profile (that would be
obtained with a Newtonian emulsion without any concentra-
tion gradient) toward a cubic power law profile (cf. Figure 8a).
This small concentration gradient also explains why it is not
detectable by the grey level based on discrimination technique
developed in Pouplin et al.6 Similar observations were
reported for dense suspensions with rigid particles in Couette21

and pipe flows.26 For example, in Couette flow, particles
migrate toward the outer cylinder (where the shear rate is the
lowest), and the concentration profile is dependent on the aver-
age concentration value but independent of the rotation veloc-
ity at a given average concentration of particles.

In the absence of inertia, the only mechanism from which

this concentration gradient may result is shear-induced migra-

tion, which drives the dispersed matter from the high to the

low shear zones, from the pipe wall toward the centerline in

the present case. Since the early work of Leighton and Acri-

vos,27 shear-induced diffusion has been extensively studied

and evidenced in suspension flows of different geometries

and can be modeled using diffusing flux formulation or

Figure 12. Dispersed phase concentration radial pro-
files from Eq. 13.

(a) r�0 50; (b) r�0 5 5 3 1022.

Figure 13. Comparison of SBM predictions (Eq. 14)
with theoretical profile of / as derived from
Eq. 13.

(a) r�0 5 0; (b) r�0 5 5 3 1022.



SBMs.23,27–30 The derivation of the concentration profile in
the flow section is detailed in the Supporting Information
Appendix, using the SBM approach and constitutive laws of
Zarraga et al.23 for the emulsion rheology. The concentration
profile then reads

/ r�ð Þ5 /Mh r�ð Þ
/M=/R211h r�ð Þ with h r�ð Þ5r�d=3 12r�0

r�2r�0

� �1=3n

for

r� > r�0 and lim
r�!r�

0

/ r�ð Þ5/M

(14)

This profile, which is not dependent upon flow velocity, is
reported in Figure 13. It is compared, for different values of d,
to the theoretical profiles of Figure 12, derived from the exper-
imental velocity field data and assuming a Newtonian shear
viscosity in the momentum balance (Eq. 12). The SBM profile
remarkably fits these profiles for a value of d close to zero
or even slightly positive. The profile corresponding with
d 5 20.54 has a close trend but slightly overestimates the the-
oretical profile. There is little effect of a stress threshold value
which seems to shift the best fitting value of d from 0.2 to 0
when r�0 is increased from 0 to 5 3 1022. This result means
that the shear-induced migration mechanism as described by the
SBM is consistent with a nearly fully Newtonian suspension,
that is, with a Newtonian (concentration dependent) shear vis-
cosity and a quasi-null second normal stress difference.

Evolution of pressure drop with mixture velocity as pre-
dicted by the SBM is identical as that given by Eq. 12 in r 5 R.
In this case, pressure drop is obtained from Eq. 7 by substitut-
ing the apparent wall viscosity by the emulsion shear viscosity
at / 5 /R ffi 0.63, which is found to be independent of mixture
velocity ���� dP

dx

����5 2 3n11ð Þ
n

lc

R2
12/R=/Mð Þ22:5/M Um (15)

This relation is plotted in Figure 14 and confirms the consis-
tency between shear-induced migration mechanism with the
local velocity field and pressure drop experimental data.
However, the relevance of such mechanism in the present
study needs to be addressed, which comprises different
questions.

First of these is the correspondence between emulsion drops

and solid particles in the present case, which involves drop

deformation and boundary condition for shear stress at the

drop interfaces. Deformation of drops can be evaluated based

upon an estimation of particle phase pressure P, assuming an

isotropic structure (normal stress components identical).

According to Zarraga et al.’s models, particle phase pressure

will be given by

P rð Þ5 1

3

Xp

ii
rð Þ ffi 2a rð Þs rð Þ52lc

/ rð Þ
12/r=/M

� �3

_c rð Þ (16)

A local capillary number CaVR

can be defined according to

Ca rð Þ5 jP rð Þa32j
2r

ffi 1

2

/ rð Þ
12/r=/M

� �3 lr _c rð Þa32

r
(17)

This Capillary number is reported in Figure 15 for a 10 lm

Sauter radius. It grows from zero at the centerline to a maxi-

mum value at the wall, which is below 1022 at the maximum

mixture velocity investigated.
Even if the drops deformation is expected to be small in that

regime, it is difficult to estimate the effect of this small but

finite Capillary number on the emulsion rheology and radial

migration, especially in that range of concentration. Lowen-

berg and Hinch31 first achieved a numerical study on shear

flow of deformable and concentrated drops (up to 30% in vol-

ume) and Zinchenko and Davis32 did a similar work (but with

a different method) up to 55% in volume. They have shown

that emulsion shear viscosity is a decreasing function of Ca,

and that shear-thinning is sensitive at small values of Ca
(0.025<Ca< 0.3). Also, they find that the first normal stress

difference is positive and is a growing function of Ca, whereas

N2 is found to be negative at very small values of Ca (0.025)

but its absolute value is a weak increasing function of Ca. As

a consequence, at high concentration, there is a strong increase

of normal stress differences intensity between Ca 5 0 and a

small value of O(1022). However, it is difficult to extrapolate

their results to the present case, since these simulations are

performed with clean interfaces (continuity of tangential stress

is assumed at the interfaces) and are sensitive to the viscosity

ratio.
Then deformability of drops generates an additional convec-

tive contribution to the radial flux as first studied by Chan and

Figure 14. Evolution of pressure drop with mixture
velocity.

Comparison between experiments and SBM prediction.

Figure 15. Capillary number as function of radial posi-
tion in the pipe cross section.



Leal33 for an isolated drop. In the limit of dilute emulsions,

Ramachandran et al.34 have included this contribution in a
SBM model where they have identified the particle stress com-

ponents based on Lowenberg and Hinch31 and Zinchenko’s35

works. The solution in a Poiseuille flow leads to the establish-
ment of a concentration profile with a near-wall region free of

droplets when the deformation-induced radial convection

exceeds a critical value. Again, this term is highly sensitive to

the viscosity ratio and is therefore limited to the case of clean
interfaces. With contaminated interfaces, as it is the case in

the present study, or with surfactants that are generally present

in emulsions, the viscosity ratio could be no longer relevant or
taking an infinite value of this ratio would be more appropri-

ate. Doing so, in the estimated range of Capillary number of

the present study (1023<Ca< 1022), it is expected that the
contribution of deformation to the emulsion rheology is not

significant, but this point requests a dedicated study with ade-

quate rheological measurements. Another argument is that in
Pouplin et al.,6 the shear viscosity of the same emulsion was

verified to be Newtonian and well compares with a suspension

behavior up to a concentration of 56% (Figure 1b). Maximum

Capillary number as estimated by Eq. 17 was of order
O(1023) for that case, lying in the (lower range) of present

experiments.
Assuming deformation to have a negligible effect, the sec-

ond question to be addressed is the meaning of a zero or
slightly positive second normal stress difference N2, which is

not expected for suspensions of rigid particles, where both N1

and N2 are negative and their absolute value is an increasing
function of concentration. In a detailed numerical study of

concentrated sheared suspensions, Gallier et al.36 have decom-

posed the total stress components into hydrodynamic and non-

hydrodynamic contributions as a function of concentration for
different values of friction coefficient and surface roughness.

In particular, their results show that the main contribution to

N2 is due to contact forces, while hydrodynamic part is negli-
gible. It is worth noting that this hydrodynamic contribution to

N2 is slightly positive and nearly independent of concentration

and friction parameter. The relative weight of these contribu-
tions is reversed for N1, with |N1|< |N2|. In Figure 16, we have
compared the evolution of the normalized value of N2 with the
concentration as predicted by Zarraga et al.’s model with the
numerical predictions of Gallier et al.36 of hydrodynamic and
contact forces contributions.

It can be observed that the negative value of d in Figure 16a
corresponds to the contribution of contact forces in Figure
16b, which intensity depends on friction coefficient, whereas a
slightly positive value of d in Figure 16a would correspond to
the hydrodynamic contributions in Figure 16b. Therefore, the
range of values of d identified with the present system
(0< d< 0.2) could be interpreted as the signature of a suspen-
sion of smooth spherical drops separated by a lubrication film
and with negligible contact forces. It can be also considered
that polydispersity is likely to change drastically the rheologi-
cal behavior of the suspension compared to the monodisperse
case, in particular the radial pair distribution function that
would have an impact on the normal stress differences.

The last question to be addressed is the length of establish-
ment Le of the concentration profile in the pipe resulting from
shear-induced migration. To estimate this quantity, we simply
write the equality between the residence time in the pipe Le/
Um and the time of diffusion-induced migration over the pipe
radius R, which scales as R2/Ds, where Ds is the shear-induced
diffusion coefficient

Ds5a2 UM

R
D�s /ð Þ (18)

For a given geometry and particle (or drop) size, the length of
establishment is then a function of /, which can be written in
dimensionless form as

L�e5
Le

R

a

R

� �2

/ 1

D�s /ð Þ (19)

Experimental data have been collected at few meters from
the pump outlet O(10m). As (a/R)2 is O(1027), then Eq. 19
leads to

Figure 16. Evolution of N2 with concentration.

(a) Present model derived from Zarraga et al.’s closure law (Eq. 21) with d 5 20.54 and d 5 0.2 (d 5 0 corresponds to N2 5 0). (b)

Gallier et al.’s simulations in monodispersed sheared suspensions (Figure 13b from Gallier et al. JFM 757 (2014), doi:10.1017/

jfm.2014.507). Letter C stands for contact forces contributions and H for hydrodynamic forces contribution. White symbols cor-

respond to zero friction force and dark symbols to a friction coefficient of 0.5 (tangential to normal contact force ratio).



1024 < O L�e
� 	

< 1025 (20)

which requests that the dimensionless shear-induced diffusiv-

ity is a strong increasing function of /. Following Lecampion

and Garagash,26 it’s possible to estimate the length of estab-

lishment of the concentration profile in the pipe

L�e5
3

8

11dð Þ
/2

12/r=/Mð Þ4

312:5/
12/ð Þ2m

(21)

in which m is the exponent of the hindering function (Eq. A2

in Supporting Information Appendix). Evolution of L�e as a

function of ///M is reported in Figure 17. It can be observed

that it is a strongly decreasing function of ///M, and the rate

of decay is also a growing function of ///M, dropping over

two orders of magnitude when ///M varies between 0.92 and

0.97. We also observe that these curves are sensitive to the

hindering function exponent m. Thick dashed lines represents

the range of values for the present experiments, accounting for

measurement uncertainty of / (///M ffi 0.95 6 0.025). It can

be seen that the range of values given by Eq. 21 fits with the

condition expressed in Eq. 20.
From these trends, it can be concluded that the establish-

ment of the radial profile of volume fraction over a few meters

length is possible. It also explains why it was not observed at

lower concentration in laminar regime6 at the same measuring

section in the pipe (few meters). Note that polydispersity also

probably influences this length of establishment, because of

aforementioned effect on emulsion rheology and also due to

its probable effect on the hindering function.
It can be concluded that shear-induced migration is a possi-

ble effective mechanism in the present study and in the

absence of accurate measurements of concentration profile,

there is no way to discriminate it from the homogeneous

shear-thinning scenario with an interfacial area dependent

consistency factor. However, Ovarlez et al.16 have measured

the concentration profile of highly concentrated emulsions

(volume fraction of 0.73, 0.75, and 0.88) in a wide gap flow
cell and they did not observe any gradient resulting from a
migration effect but a quite uniform distribution of drops in
the gap. And this result was obtained with a well-marked
velocity gradient profile in the gap. With concentrated suspen-
sions, they had observed a concentration profile in the same
Couette apparatus.21 One possible explanation proposed by
the authors is that deformation is no longer negligible in their
systems and even small, it is responsible for inhibiting the
development of normal stresses. Close to jamming, migration
process would then be stopped or slowed down. Therefore, if
shear-induced migration is involved in concentrated emul-
sions, its range of existence seems to be limited at high con-
centration due to drop deformation.

Concluding Remarks

The flow of a 70% concentrated o/w emulsion in a pipe has
been investigated by means of Particle Image Velocimetry in
a matched refractive index medium. The emulsion is polydis-
perse and mean drop diameter measured in more dilute condi-
tions is about 20 lm. Velocity profiles are symmetric but not
parabolic, suggesting a non-Newtonian behavior of the emul-
sion. For a steady established flow, the derivation of the shear
rate profile in the section provides a stress–strain relation from
which the rheological behavior can be identified. At all veloci-
ties investigated, it is well described by a Herschel–Bulkley
model with a flow index of 0.5 and a nearly null yield stress,
which is consistent with the literature data obtained in Couette
flow devices in the same range of concentration. The consis-
tency factor is a growing function of the mixture velocity, sug-
gesting a possible variation of emulsion microstructure with
flow parameters, and more specifically of the drops interfacial
area with the pump rotation speed. Moreover, the linear
dependence of pressure drop with mean velocity contradicts
the expected behavior of a homogeneous fluid possessing
these rheological properties that should exhibit a square root
dependence instead. Two scenarios of different nature have
been investigated and both seem to be consistent with the
experimental observations.

First assumes that the fluid is indeed a homogeneous shear-
thinning fluid and that relative viscosity can be scaled as the
particle Reynolds number to the power 20.5 as experimen-
tally observed by Pal.15 This scaling implies a dependence of
consistency factor with the inverse of the drop diameter. Esti-
mation of j with this scaling law gives the same order of mag-
nitude as that measured in the present study. The possible
evolution of drop diameter with pump rotation speed, based
on a classical modeling of drop break-up in turbulent flow, is
consistent with the observed evolution of j. According to this
modeling of j, the linear evolution of pressure drop with mix-
ture velocity would therefore result from the increase of j
with the pump rotation speed.

The second involves shear-induced migration, which satis-
fies both mass and momentum balance, considering a Newto-
nian behavior of the shear viscosity of this emulsion (using a
Krieger–Dougherty’s type law). In the considered range of
Capillary number, drops are nearly spherical particles and
deformation can be safely neglected. The concentration pro-
file, resulting from the local experimental momentum balance,
is well described by a SBM as proposed by Zarraga et al.23

Concentration decreases from the maximum packing fraction
at the centerline (0.74) to 0.63 at the wall, independently from
the mixture velocity. This model is consistent with the

Figure 17. Evolution of length of establishment as a
function of concentration derived from
model of Lecampion and Garagash.24

Continuous line represents the calculation for mono-

disperse suspension. Dashed lines represent the estima-

tion with present system for two different values of the

exponent of the hindering function fð/Þ5ð12/Þm.

Thick dashed lines correspond to the range of uncer-

tainty of L�e with the present experiments.



experimental velocity profile and the linear pressure drop evo-
lution with mixture velocity. The best fitting between the
SBM and theoretical profile issued from the experimental data
corresponds to a zero or slightly positive value of second nor-
mal stress difference. Comparison with rheology of suspension
of solid rough particles36 suggests that the main contribution
to the normal stress in the present emulsion is due to hydrody-
namic interactions. The emulsion could be seen as a suspen-
sion of smooth particles separated by a lubrication film with
no contact forces. An estimation of the length of establishment
of the profile derived from Lecampion and Garagash’s
model26 makes possible the development of this concentration
profile in the present experiments. If both mechanisms consid-
ered here can explain quantitatively the experimental data
they don’t lead to the same results in terms of scaling up or
down of such emulsion flows. Due to shear-induced migration,
a given phase system could exhibit a Newtonian behavior in
short pipe of large radius and a non-Newtonian behavior
(shear thinning) in a long pipe of small radius. Interestingly,
data of Ovarlez et al.16 collected in concentrated emulsions
above the glassy transition, do not confirm any mechanisms
considered in this study, the dependence of the consistency
factor with mean drop size and the shear-induced migration as
well. It is therefore probable that the observed and sometimes
contradictory behaviors of emulsions near the glassy transition
are highly sensitive to the Capillary number based on the local
granular pressure.
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