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Abstract :  

Macroporous -alumina ceramics is a granular-like medium composed of agglomerated mesoporous 

grains allowing inter-granular macroporosity. Macropores, whose equivalent diameter is larger than 

1µm, represent a volume fraction of 14.5%. The mechanical properties of the macroporous material 

are very low compared with the mesoporous matrix. In this work, the ductile damage mechanisms of 

the considered porous alumina are numerically investigated on a wider range of stress triaxiality ratio 

than experimentally thanks to a full-field homogenization approach based on a 2D Finite Element 

Method (FEM). The microstructure geometry is extracted from Scanning Electron Microscopy (SEM). 

The complexity of the macropores shape is closely transcribed from image treatment process to 

meshing. The matrix behavior is considered elastic-plastic and follows a Drucker-Prager yield surface. 

A reference plastic dissipation, adjusted on experimental uniaxial compression tests is used to 

approximate the plastic domain under negative mean stress. The calculated yield surface of the porous 

Drucker-Prager matrix presents a cap-form which is consistent with the shape identified 

experimentally. The overall yield surface is qualitatively the same cap-form as those obtained in 

literature for isotropic porous media containing spherical voids embedded in a Drucker-Prager matrix, 

which seems to show that the pore shape does not strongly affect this cap-form since the overall 

isotropy is respected. 

 

Keywords : Alumina; porosity; non-convex pores; frictional cohesive material; ductile damage; Finite 

Element Method; digital image processing; full-field homogenization; Drucker-Prager yield surface; 

closed-form criterion 

 

1 Introduction, Porous -alumina solids 

 

Engineered porosity in ceramic materials extends their range of properties and offers promising 

performance for numerous applications. In the context of oil-refining, porous alumina ceramics are 

used as catalyst supports because of their large specific area – up to 250 m²/g – and of the possibility 

to control pore size and distribution. High mass transfer, low pressure drop and good heat management 

are essential features to obtain an efficient catalytic activity. The improvement of catalytic processes 

goes along with a general trend to increase the porous volume and the specific surface area of the 

supports, at the disadvantage of the mechanical stability. Mechanical strength is a key feature for 

catalysts supports. Catalytic activation, transport and in-service life generate various types of 

mechanical loading on catalyst grains, like multi-axial compression, traction induced by bending and 

shearing. Therefore, a fine understanding of the impact of the porosity on the fracture behavior of the 

supports under triaxial loads is needed to optimize the material design. 

 

The present study focuses on hydro-treatment catalysts that are used in large fixed bed reactors of 

several meters high and wide. These solid catalysts are few millimeter long extrudates, composed of a 

polycrystalline -alumina phase forming a porous network on which a catalytic active phase is 

deposited. Depending on the process, two types of materials are used. Their textural properties, as 

obtained by mercury intrusion porosimetry, are presented in Table 1. Pore sizes are estimated thanks 

to the Young-Laplace equation relating the mercury pressure to a capillary radius (Lowell and Shields, 

1991). The first material, noted mesoporous material, presents a monomodal and narrow pore size 

distribution centered under 10 nm. The second material, noted macroporous material, presents a 

supplementary population of large pores which size can extent up to 10 µm. Figure 1 reveals the 
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microstructure of both materials. Mesoporous material is composed of grains fully enclosed in a 

matrix, both made of mesoporous -alumina. Macroporous material is composed of mesoporous -

alumina grains freely agglomerated, allowing intergranular macroporosity. As a consequence, 

macropores have complex shapes : cross-sections are frequently non-convex with multiple branches. 

Porosimetry analysis indicates that the macropores network is connected. 

 

Table 1 : Textural properties of mesoporous and macroporous materials as obtained by mercury 

intrusion porosimetry 

  Mesoporous material Macroporous material 

meso-

porosity 

volume 0.65 mL/g 0.65 mL/g 

fraction 66% 55.5% 

pore size <10 nm <10 nm 

macro-

porosity 

volume - 0.22 mL/g 

fraction - 18% 

pore size - 0.4 µm - 10 µm 

 

a) 

 

b) 

 
Figure 1 : Scanning electron microscopy of (a) mesoporous material and (b) macroporous 

material; backscattered electrons, polished surface after resin impregnation, porosity in black. 

 

The mechanical behavior of -alumina catalyst supports has been characterized by (Staub et al., 2015; 

Staub et al., 2016). An elastic brittle behavior has been observed under tension. The macroporous -

alumina exhibits a low mechanical strength compared with the mesoporous material (typically 8 MPa 

against 17 MPa in bending). A quasi-brittle behavior has been observed under compression and 

inelastic strains have been obtained under confined compression. Plasticity has been used to represent 

such a ductile damageable behavior under compression of both materials. Plastic yield surfaces have 

been identified and are detailed further. The macroporous material undergoes lower strength than the 

mesoporous material and residual macro-strains have been associated with a closure of the macro-

porosity. In order to improve mechanical strength of future materials, the role of the macroporosity has 

to be clarified. 

The purpose of the study is to determine the impact of the complex macroporosity morphology on the 

damage mechanism and the global inelastic behavior, as there is no available criterion at the moment 

for this kind of porous material. 

 

The major impact of porosity ratio on the mechanical strength of ceramics have been shown in pioneer 

work of (Duckworth, 1953). Since then numerous empirical relationships have then proposed to 

estimate the elastic stiffness and the axial strength of porous materials, see for instance (Wagh et al., 

1993). Physical models have been developed and compared with a large experimental database, like in 

works of (Rice, 1993), based on the minimal surface area concept. Such concepts assume a periodic 

assembly of grains. These models mainly focus on elasticity and purely brittle behavior.  

 

A first physical model of quasi-brittle behavior under uniaxial axisymmetric compression has been 

given by (Ashby and Sammis, 1990). Their model introduces stability and damage notions based on 

fracture mechanics concepts and does not explicitly involve porosity. More recently, the pore-pore 



3 

interactions and their impact on fracture have been investigated from several approaches. An increase 

of damage dissipation with porosity has been observed in lightweight concrete by (Miled et al., 2004) 

and an analytical model was developed to predict its quasi-brittle behavior. The dominating fracture 

mechanism was determined by comparison of the local fracture process zone with a characteristic 

length of the microstructure. A transition from brittle to quasi-brittle behavior has also been observed 

by (Meille et al., 2012) under uniaxial compression as porosity increases from 30% to 75%. The 

porosity at which the transition occurs, around 60%, is estimated by a simple model taking into 

account the competition between the crack length initiating from spherical pores and the mean 

distance between pores. The model thus explains why pore size distribution and spatial homogeneity 

acts upon fracture mechanisms by modifying the wall size between pores.  

 

In addition to the description of the fracture under uniaxial tension and compression, a lot of studies in 

literature deal with the determination of multiaxial constitutive laws for these granular-like porous 

materials. Micromechanical homogenization models based on mean fields approach have brought a 

new and promising frame (Bornert et al., 2001). Porosity morphology can be taken into account 

through the aspect ratios of ellipsoidal pores or ellipsoidal grains. Pore size distribution does not have 

an influence as soon as the scale separation assumption is respected. Macroscopic criteria have been 

obtained in case of spherical pores in a matrix for numerous types of plastic behaviors (Barthélémy 

and Dormieux, 2003). Granular cohesive behavior of polycrystal materials have also been estimated 

by homogenization of a medium composed of ellipsoidal elastic inclusions joined by brittle or ductile 

interfaces (Maalej et al., 2009; Sanahuja et al., 2010). Numerous types of pressure sensitive behavior 

of the matrix can be taken into account, e.g. (Shen et al., 2015). Moreover some studies combine 

classical fracture mechanisms approach or limit analysis of hollow sphere obeying a plastic criterion 

with FE simulation to search for macroscopic criterion, e.g. (Thoré et al., 2009). These methods lead 

to multiaxial behavior laws. The impact of porosity ratios is successfully reproduced when pores can 

be considered as ellipsoids. However, no equivalence exists to translate a complex porosity shape into 

ellipsoidal shape ratio. This gap is particularly detrimental to determine macroscopic properties if the 

solid phase is close to the loss of percolation and the mechanical strength strongly decreases . 

 

As an alternative to micromechanical models, direct numerical simulation aims at deriving complete 

constitutive laws with minimum assumptions about the morphology of microstructures. Such 

techniques have extensively been developed in recent years thanks to the improvement of observation 

techniques and the growth of computing capacity. The geometry of the microstructure, determined by 

digitization of observations, can be used directly in simulations. Or, morphological models can be 

adjusted on observations in order to simplify numerical models construction (Jeulin, 2001). Numerical 

homogenization of porous material behavior can be carried out by several techniques. Discrete 

Element Methods (DEM) seem naturally adapted for cohesive granular materials (Jauffrès et al., 

2012). However, the representation of the porosity morphology and of the grains shape is limited. The 

homogenization problem has also been addressed using periodic full fields approaches solved thanks 

to a Fast Fourier Transformation (FFT) method developed by (Moulinec and Suquet, 1998), later 

modified for porous materials by (Michel et al., 2001). FFT methods advantageously use 2D or 3D 

images of the microstructure to describe the geometry of phases. Pressure-sensitive plasticity models 

needs to be further implemented to be applied to granular materials. Eventually, the Finite Element 

Method (FEM) remains broadly used for direct numerical homogenization. This method becomes 

computationally affordable when combined with morphological models that helps meshing operation 

thanks to analytic descriptions of geometries (Ayyar and Chawla, 2006; Dirrenberger et al., 2014; 

Fritzen et al., 2012; Keleş et al., 2013; Khdir et al., 2014; Shen and Brinson, 2007). By combining 2D 

FE simulations and classical fracture mechanics, (Keles et al., 2013) have evidenced the influence of 

stress triaxiality on the fracture strength of brittle porous materials. More recently, image processing 

techniques have been combined with meshing tools to allow Digital Image Based Finite Element 

Analysis (DIB-FEA). This method has been proved reliable to estimate the elastic and plastic 

properties of materials, for instance ceramics obtained by gel casting of yttria partially stabilized 

zirconia powders (Bartuli et al., 2009), cellular ceramics (Petit et al., 2013), stainless steels (Dancette 

et al., 2016) or sintered steels (Chawla and Deng, 2005). In this last example, simulation demonstrates 

how irregular and highly clustered pores contribute to significant strain localization and early failure. 
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The choice of FEM is relevant when driven by the will to address highly non-linear problems with a 

fine description of the morphology.  

 

In the next section, the macroscopic mechanical properties of porous -alumina materials used as 

catalyst supports are shown. A numerical finite element analysis (FEA) based on a real microstructure  

acquired from scanning electron microscopy (SEM) is then presented in order to assess the impact of 

macro-porosity on the global behavior. The macroporous material is modeled as a mesoporous matrix 

with realistic non-convex macropores. Homogenized macroporous behavior is then compared with 

experimental data and the results are finally discussed. 

 

2 Macroscopic behavior of meso and macroporous -alumina 

 

The macroscopic behavior of -alumina catalyst supports has been characterized by Staub et al. (Staub 

et al., 2015; Staub et al., 2016), thanks to series of laboratory tests. Tensile strengths t have been 

determined from bending tests. Dispersion of brittle fracture strength under tension can be expressed 

by a Weibull distribution of the fracture probability PF
 
: 

PF = 1 − exp [−(
σt
A
)
m

] Eq. 1 

where m is the Weibull modulus and A is reference stress, given in Table 2 together with the mean 

tensile strength σt. 
 

A ductile damageable behavior under compression has been characterized by instrumented spherical 

indentation tests and plastic yield surfaces have been estimated. Both materials exhibit a sensibility of 

the strength to the mean stress. Such a frictional cohesive behavior is coherent with the granular 

microstructure of these materials, like rocks or concrete. As promoted by works of (Rudnicki and 

Rice, 1975) for brittle rock, a plasticity model has been used by (Staub et al., 2016) to describe the 

inelastic behavior likely produced by nucleation and growth of micro-cracks and by frictional sliding 

of the micro-crack surfaces. The monomodal mesoporous alumina ductile damage criterion was shown 

to be represented by a Drucker-Prager yield surface (Drucker, 1966) :  

σeq + tan(βmeso) . σm − dmeso = 0 Eq. 2 

where m is the mean stress of the Cauchy stress tensor  : σm =
1

3
tr(σ) , eq is the equivalent stress 

of von Mises : σeq = √
3

2
. s: s with s the deviatoric stress tensor s = σ − σm. I and I the 2

nd
 order 

identity tensor, meso is the internal friction angle and dmeso is the cohesion of the material.  

 

As concerns macroporous alumina, the fracture criterion was shown to be represented by a Drucker-

Prager yield surface closed by a cap surface that expresses the ability of the material to admit plastic 

compaction for high pressure loads, as observed experimentally by the closure of macropores: 

√[σm − σm1]
2 + [R. σeq]

2
− R. [dmacro − σm1. tan(βmacro)] = 0 Eq. 3 

where m1 is the mean stress above which plastic compaction can occur (m1<0), R is the shape factor 

of the cap, a quarter of ellipse in the meridional plane (meq). R can be related to the yield pressure 

in pure hydrostatic compression m2:  

R =
σm1 − σm2

dmacro − σm1. tan(βmacro)
 Eq. 4 

All material behavior parameters are reported in Table 2. Under uniaxial tension, macroporous -

alumina exhibits low mechanical strength compared with the mesoporous material (typically 8 MPa 

against 17 MPa in bending). Under compression, the experimental results reveal that the cohesion of 

the macroporous alumina is twice lower than the cohesion of the mesoporous alumina (17 MPa against 

30 MPa). Otherwise, a plastic compaction has been estimated on macroporous material for pressures 

higher than 21.5 MPa, whereas compaction has not been detected on mesoporous material under 

pressures up to 28 MPa. By comparison with the mesoporous material, the low mechanical strength of 
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the macroporous material might be caused by macroporosity. The size and the morphology of the 

macropores is suspected to play an essential role. In the next section, a full-field homogenization by 

FEM based on SEM images of the porous microstructure of macroporous alumina is set up in order to 

better understand the impact of the macroporosity on the macroscopic inelastic behavior and on the 

local damage mechanisms. 

 

Table 2 : Material behavior parameters as identified in (Staub, 2014), (1) from compressive tests 

on cylinders, (2) from 3-points-bending tests, (3) from spherical indentation tests 

 

 Elasticity (1) Tensile strength (2) Compressive strength (3) 

 
E 

[GPa]


σt 
[MPa] 

A 

[MPa] 
m 

d 

[MPa] 
 [deg] 

m1 

[MPa] 

m2 

[MPa] 

Mesoporous 

Alumina 
5.7 0.22 17.1 18 7.5 30 43 / / 

Macroporous 

Alumina 
2.5 0.22 8.1 9 8.9 17 13 21.5 26 

 

3 Full-field homogenization based on FEM and SEM digital images 

 

3.1 Digital images processing 

 

The macroscopic properties obtained in the homogenization approach are valid if the sample is a 

Representative Volume Element (RVE) of the material for the property of interest. Alumina 

macropores range from 0.05 µm to 10 µm. Representative samples of the microstructure are larger 

than 100 µm
3
. Laboratory x-ray computed tomography can generate 3D images of such volume with a 

resolution around 1µm. However, noise is too high at this resolution to catch fine details of the pores 

geometry. High resolution tomography, as with synchrotron x-ray sources, would be appropriate; 

however such data is not available so far on the material of the study. Focused Ion Beam (FIB) cutting 

coupled to SEM also provides 3D images with excellent resolution, around 10 nm. The resolution 

obtained with this technique is gradually worsened by curtaining effect due to porosity and final 

sampled volumes are too small to be representative of the microstructure. Finally, 2D SEM images of 

microstructure cross-section offer a good compromise. The porosity surface fraction can be considered 

equal to the pore volume fraction under stationary and ergodicity assumptions. Only the apparent pore 

size is altered by the 2D sampling. The resolution is well adapted to reveal the complexity of the 

porosity morphology and to sample a RVE. This technique was thus selected for the present study. 

 

The resolution of SEM images used for the analysis was 450nm/pixel. Square images of 100µm, 

200µm and 300µm were sampled. Samples were processed with a Flowing Bilateral Filter (Moreaud 

and Cokelaer, 2015) to reduce noise, then segmented in two phases thanks to a threshold gray level. 

The threshold was obtained by maximization of interphase variance (Otsu, 1979). Pores lower than 4 

pixels i.e., pores whose geometry was poorly described, were removed for simplification. The pore 

surface fraction obtained by this segmentation was around 14.5%. As a consequence, a pore volume 

fraction estimated around 3.5% was not taken into account in the analysis. It corresponds to pores 

smaller than 0.9µm. Figure 2 shows the SEM image sample and the segmented image resulting from 

the image processing. 

 

The covariance C(X,h) gives the probability of 2 points in an image at a distance h to be in the same 

phase X, (Matheron, 1972). The distance hc for which C(X,hc)=C(X,0)² is a characteristic size for the 

phase X. Figure 3 shows the covariance of the porosity phase in the segmented image. As the image 

orientation had been chosen randomly and horizontal and vertical covariances are identical, the 

microstructure can be considered isotropic. The characteristic pore size obtained on this image of size 

of 200x200 µm² was close to 5µm. For a Boolean scheme of spheres, RVE for calculation of elastic 

properties is reached for a volume greater than 8 times the average size of a sphere (El Moumen et al., 

2013). Here the volume is 40 times greater than the average inclusion size, so we can consider almost 
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surely that the images are representative of the morphology of the porosity for the calculation of 

elastic mechanical properties. 

The contours of pores were extracted from the segmented image as a list of coordinates of pixels at 

boundaries. At this step, pores are polygones that can have sharp angles because of limited resolution. 

Higher resolution images have proven that these sharp angles are not realistic. So, the pore contours 

were smoothed to improve the relevance of the geometry transcription. Each point coordinate xi was 

weighted by its neighbors to obtain smoothed coordinate x’i : xi
′ =

xi−1+2xi+xi+1

4
 . The porosity fraction 

could be slightly affected by this operation. In this case, a homothetic growth around the pore 

barycenter restored the initial porosity. The smoothed contours points were used to re-build the 

geometry of the porous matrix in pre-processing software Abaqus/CAE®.  

 

a) 

 

b) 

 
Figure 2 : a) Sample of SEM observations of a macroporous γ-alumina, 200x200µm 

b) Segmented image (porosity in black) 

 

 
Figure 3 : Covariance of the porous phase in segmented SEM image  

 

3.2 Mesh generation 

 

Abaqus® Finite Element package was used to generate meshing and to achieve simulations. Second 

order triangular elements were used with a generalized plane strain formulation. A basic analysis has 

shown that the macroscopic behavior did not significantly depend on the characteristic mesh size. 

However, very fine meshes produced early divergence of simulations because of excessive local 

strains in small elements. The chosen characteristic element size was finally close to the pixel size of 

the SEM image used to build the geometry. Figure 4 illustrates a detail of the mesh. For example, 

230 000 elements were typically generated for a 200x200µm² image. 
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Figure 4 : Detail of solid matrix meshing around a large pore; geometry based on pores contours 

extracted from segmented SEM image  

 

3.3 Numerical Model 

 

3.3.1 2D formulation 

As explained in introduction of the paper, direct 3D simulations were not possible since the porosity 

geometry was not available in 3D. By default, 2D simulations poorly estimate the out-of-plane 

behavior. In basic plane stress and plane strain formulations, only a narrow range of triaxiality values 

are accessible since macro stress 33 is not controlled. The generalized plane strain formulation was 

chosen in this study since it allowed to investigate all stress triaxiality ratios and thus to estimate the 

ductile damage onset in a (eq;m) plane.  

 

3.3.2 Boundary conditions 

Solving the homogenization problem consists in obtaining the relation between the macroscopic strain 

and stress tensors, by imposing one and calculating the other. By definition, these tensors are equal to 

the average of the microscopic tensors. The average values can be controlled by imposing values on 

the contour of the domain only, i.e., by imposing boundary conditions. Numerous types of boundary 

conditions sets have been evaluated for homogenization issues. It has been shown that they have an 

impact on the homogenized macroscopic behavior if the sample volume is smaller than the RVE 

(Hazanov and Huet, 1994). Kinematic uniform boundary conditions (KUBC), obtained by artificially 

constraining nodes displacements, naturally tend to over-estimate the macroscopic stiffness. Static 

uniform boundary conditions tend to under-estimate stiffness by assuming absolutely no kinematic 

influence of the exterior media. Boundary conditions that mix static and kinematic constraints offer 

good compromise between these two limits. Periodic boundary conditions also provide interesting 

results since the shape of the period is free, so the kinematic constraint is lower than in pure KUBC. 

However, this method requires a periodic domain. In the present study, mix boundary conditions were 

used : on each face, the normal displacement was uniform and the tangential displacement was free. 

As a consequence, the macroscopic tangential component of the stress vector was zero on each face. 

Uniform normal displacement was obtained by imposing a kinematic coupling on each face between 

an auxiliary node and all the nodes of the face. Similarly, by definition of the generalized plane strain 

conditions, an auxiliary point was used to control the out-of-plane strain of the entire domain. 

Depending on the loading case, the auxiliary points were displacement-controlled or load-controlled. 

The macroscopic stress components were calculated by dividing the forces at auxiliary nodes by the 

face area.  
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3.3.3 Matrix behavior 

The matrix behavior was supposed to match the mesoporous material behavior. According to 

experimental characterization, the mesoporous material obeys a ductile damageable behavior under 

compression, likely produced by nucleation and growth of micro-cracks and by frictional sliding of the 

micro-crack surfaces. Plasticity was favored to represent ductile damage in the simulation whatever 

the load case, even if the failure mechanisms are brittle-like under tension. So, only non-linear effects 

due to plasticity were simulated. 

The plastic behavior of the matrix was thus characterized by a Drucker-Prager yield surface whose 

parameters are given in Table 2, with associated plastic flow and no hardening. Self-contact was taken 

into account in case of pore closure. Post-processing showed that this situation is very rarely 

encountered. 

3.3.4 Applied loads 

Two sets of simulations were performed to estimate the effective elastic and inelastic properties of the 

macroporous material. 

The first set of simulations aimed at assessing the macroscopic elastic tensor 
hom

 of the macroporous 

material, such that = 
hom

:, with  and  respectively the macroscopic stress and strain tensors, 

equal to the average of the local stress and strain tensors in the RVE. We only focused on the in-plane 

components of the tensor. Three elementary macroscopic strains  were applied to the domain by 

imposing uniform displacements of faces. In Voigt notation :  

- an axial strain of 1% in direction 1, i.e. E = 0.01
.
(1,0,0,0,0,0) 

- an axial strain of 1% in direction 2, i.e. E = 0.01
.
(0,1,0,0,0,0) 

- a shear strain of 1% in the (1;2) plane, i.e. E = 0.01
.
(0,0,0,0,0,1) 

Simulations were achieved under linear static analysis, assuming small displacements and strains. For 

these load cases, the matrix was assigned a purely elastic behavior, with elastic properties of the 

mesoporous material, Table 2. 

 

The second set of simulations aimed to assess the macroscopic ductile behavior of the macroporous 

material. Series of loads were applied in order to explore the RVE behavior in all directions of the 

(eq;m) plane, i.e. with different values of stress triaxiality ratio. Normal forces were applied to 

domain faces through the auxiliary points. The macroscopic stress tensor  was imposed with 

following features : 

Σ = (
1 0 0
0 α 0
0 0 α

) . Σ̇. t Eq. 5 

with t the virtual time, time increment being automatically adapted as a function of convergence 

quality, Σ̇ the stress rate, equal to -40 MPa.s
-1

 for compressive loads and 40 MPa.s
-1

 for tensile loads 

and  a scalar parameter driving the triaxiality ratio, adopting values in range [-0.5, 1]. The out-of-

plane macro stress 33 was deliberately chosen equal to 22 in order to simplify the parameterization.  

 

Such a parameterization led to following expressions of mean stress m and equivalent von Mises 

stress eq : 

Σm =
1

3
(1 + 2α). Σ̇. t Eq. 6 

Σeq = |(1 − α). Σ̇|. t Eq. 7 

and the macroscopic stress triaxiality ratio  could be written as follows : 

τ = Σm Σeq⁄ =
1 + 2α

3. |1 − α|
. sign(Σ̇) Eq. 8 

Thus, for  = 0, the applied load corresponded to a pure traction or compression. For  = 1, the 

applied load corresponded to a hydrostatic traction or compression. For  = -0.5, the applied load 

corresponded to a pure deviatoric macro-stress.  

Moreover, the macroscopic volumic strain vol and equivalent strain eq were computed as follows :  
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Εvol = Ε11 + Ε22 + Ε33 Eq. 9 

Εeq = √2.√(Ε11 − Ε22)
2 + (Ε22 − Ε33)

2 + (Ε33 − Ε11)
2 Eq. 10 

and the plastic components were deduced by subtracting the elastic parts :  

Εvol
pl

= Εvol −
Σm
K

 Eq. 11 

Εeq
pl

= Εeq −
Σeq

G
 

Eq. 12 

where K and G are respectively the effective elastic bulk and shear modulus measured at the first 

increment of each simulation, as the plastic strain is zero. 

 

Simulations were carried out with large displacement and large strain assumptions. An implicit 

integration scheme was used to solve iteratively the mechanical equilibrium at each time increment. 

The simulation ended if convergence was not achieved within a time increment lower than 10
-5

 s 

corresponding to a stress increment lower than 0.4 kPa.  

 

4 Numerical results 

 

4.1 Elasticity 

Considering elementary macro strain  imposed in each elastic simulation, the components of the 

macroscopic elastic tensor 
hom

 were easily deduced from the stress tensors obtained 

numericallyThe in-plane components of the tensor in Voigt notation are given below and compared 

with the experimental values computed with elastic constants given by (Staub et al., 2016) :  

ℂ2D
hom = |

2.889 0.696 0
0.696 2.819 0
0 0 0.677

| GPa  ℂ2D
exp

= |
2.837 0.624 0
0.624 2.837 0
0 0 0.553

| GPa 

The tensor is close to isotropy since the difference between components C11
hom

 and C22
hom

 is less than 

2.5% and the microstructure is isotropic. The homogenized values are close to the experimental elastic 

tensor of the macroporous material : differences between homogenized and experimental values of C11 

and C22 is less than 2%. C12
hom

 and C66
hom

 are respectively overestimated by 11% and 22%. For a 

Poisson’s ratio 
hom

=0.22, a typical value for highly porous materials (Sanahuja et al., 2010), the 

Young’s modulus minimizing the difference – at least square sense – between the homogenized tensor 

and an isotropic tensor is E
hom

=2.74 GPa, in good agreement with the experimental value E
exp

=2.5 

GPa. The difference might be attributed to the omission of pores smaller than 0.9µm in the image 

processing. 

 

4.2 Ductile behavior under compressive loads (Σ̇<0) 

 

4.2.1 Focus on the ductile behavior under uniaxial compression 

Figure 5 presents the macroscopic behavior of the macroporous material under uniaxial compression. 

Simulation results are compared with experimental quasi-brittle behavior observed in (Staub et al., 

2016). The simulation slightly over-estimates the elastic stiffness. The second graphic of Figure 5 

focuses on the plastic behavior, the elastic part of strain is removed on each curve. The progressive 

loss of tangent stiffness due to ductile damage is satisfactorily reproduced by the plastic model. The 

brittle instability, corresponding to a macro crack propagation in the sample, is obviously not obtained 

by the simulation since no brittle damage model is implemented in the matrix behavior. The 

simulation only reproduces a ductile damage mechanism that produces hardening before global 

fracture. The plastic dissipation starts for an axial compressive stress of 10 MPa.  

As illustrated in Figure 6, plasticity activates in stress concentration zones at tips of pores branches, 

then extends along bands linking neighboring pores. In Figure 7, the equivalent plastic strain field is 

superimposed on the microstructure picture used to obtain the RVE mesh. The plasticity is localized in 

areas that can be compared to grains interfaces, which is consistent with the inter-granular fracture 

revealed by SEM fractography in Figure 8.  
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Figure 5 : Comparison of experimental and numerical macroporous material behavior under 

uniaxial compression, elastic-plastic strain (left) and plastic strain (right). 

 

 
Figure 6 : Equivalent plastic strain field under uniaxial compression for 11 = -20 MPa (left)  

and at end of simulation for11 = -24 MPa (right) 

 

a) 

 

b) 

 
 

Figure 7 : a) SEM picture of the microstructure (200µm x 200µm)  b) Equivalent plastic strain 

field for 11 = -20 MPa superimposed on the microstructure 
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Figure 8 : SEM observation of macroporous material fracture surface (3-points bending test) : 

evidence of inter-granular fracture 

 

4.2.2 Estimation of the ductile damage criterion under compressive loads 

Figure 9 presents the plastic behavior of the macroporous material under compressive loads for several 

triaxiality ratios. The ductile behavior is emphasized by removing the elastic strains and plotting 

m(Evol
pl
) and eq(Eeq

pl
). Whereas the matrix behavior is perfectly plastic, the macroporous material 

behavior is characterized by a significant strain hardening. Nevertheless, the plastic stiffness of the 

RVE at the final state is not zero. Otherwise, like under uniaxial compression, the mechanical state at 

onset of plastic damage is driven few elements at the extremities of pores branches. In order to 

estimate a ductile damage criterion, the critical mechanical state in each load case was conveniently 

stated to correspond to a common plastic dissipation energy EPD of 15 µJ/mm
3
. This reference value 

has been identified experimentally under uniaxial compression as the approximate dissipation before 

brittle fracture.  

The mechanical states corresponding to this reference plastic dissipation are reported in the ( m , eq ) 

plane, Figure 10. The locus thus defined forms an estimation of the ductile damage criterion that can 

be compared with the experimental results. The mesoporous material ductile damage criterion, i.e. the 

matrix criterion, is also recalled in Figure 10. Under negative mean stress, the criterion forms a closed 

surface, characterized by a cohesion around 17 MPa and an hydrostatic yield pressure of 25 MPa. The 

experimental and numerical ductile damage criteria display a slightly different shape, but the 

amplitudes are very close. The uniaxial compression strength and hydrostatic yield pressure are in 

good agreement with the experimental values. 
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Figure 9 : Simulated macroscopic behavior of the macroporous material for different triaxiality 

ratio under compression : equivalent von Mises stress as a function of equivalent plastic strain 

and absolute mean stress as a function of volumic plastic strain, points indicate the mechanical 

state for a plastic dissipation energy of EPD = 15 µJ/mm
3
  

 

 
Figure 10 : Comparison of the locus of iso-plastic dissipation at 15µJ/mm

3
 obtained by the 

numerical model with experimental ductile damage criteria of the macroporous material. 

Mesoporous material ductile damage criterion determined experimentally and used in the 

simulation is also reported. Experimental results from (Staub et al., 2016) 

 

4.3 Ductile behavior under tensile loads (Σ̇>0)  

The simulation did not intend to be representative of the experimental behavior under tensile stresses, 

as brittle-like mechanisms which were not included are rather favored in this domain by comparison 

with plastic mechanisms under compression. At that time, early divergence occurred because of 

localizations of plastic strain. Because of these limitations, the estimation of the ductile damage 

criterion was not extended under tensile loads. However, it is interesting to analyze the impact of the 

ductile damage mechanism in a wider range of stress triaxiality than it is available in the experimental 

database. A arbitrary plastic dissipation of 2µJ/mm
3
, close to the maximum dissipation available in 

tension loading cases, is chosen to plot the locus of the mechanical states, Figure 11. These 
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mechanical states are characterized by a tensile stress 11 close to 6 MPa, whatever the transverse 

stress 22. It also corresponds to an affine relation between the equivalent stress and the mean stress.  

Local plastic strain field confirms that plasticity activates under uniaxial tension in the same stress 

concentration zones as under uniaxial compression, drawing the same pattern of inter-granular 

damage. But plastic strains localization is higher : as shown in Figure 12, the local equivalent plastic 

strains exceeds 0.1% for a macroscopic tensile stress of only 6 MPa.  

 

 
Figure 11 : Comparison of the locus of iso-plastic dissipation at 2µJ/mm

3
 obtained by the 

numerical model with experimental bending strength of the macroporous material 

 

 
Figure 12 : Equivalent plastic strain field under uniaxial tension at end of simulation for 

11 = 6 MPa 

 

5 Discussion 

 

Influence of the microstructure geometry  

The interest of the digital image based approach is that the complexity of pore shapes is easily taken 

into account. Nevertheless, the pore contours extracted from digital image needed smoothing. This 

treatment was justified by higher resolution observations of pores shapes. It aimed at improving the 

relevance of the geometry before meshing. Stress concentration and plastic strain localization would 

be over-estimated if unrealistic sharp angles were retained. However, the influence the smoothing 

method on the results can be questioned, particularly under tensile loads where the early divergence 

occurred because of excessive localizations of plastic strain.  

The use of a morphological model of the microstructure is an alternative approach that can 

advantageously be extended to 3D models. Granular porous medium could be represented by multi-

scale Boolean stacking of spheres with exponential size distribution (Jeulin, 2012). This model 

requires a fine adjustment of parameters on 2D images properties. With non-convex and branched 

porosities, the influence of the adjustment quality on the simulation results can remain an issue . 
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Influence of the plastic criterion on the RVE failure process stability 

Experimental evidence of irreversible and stable deformations in macro-porous alumina have been 

given by (Staub et al., 2016) under compressive loads. Progressive pores closure have been observed 

under indentation tests and under pure hydrostatic pressure tests without macroscopic cracking in the 

mesoporous matrix. Micro-cracking and frictional sliding between polycrystals agglomerates were 

suspected. A progressive stiffness decrease has also been observed under uniaxial compression before 

unstable macro crack propagation. At the macroscopic point of view, a behavior transition is thus 

observed : ductility appears under compression and increases with stress triaxiality. This transition can 

be due to the competition between two damage mechanisms, a ductile mechanism under compression 

and a brittle mechanism under tension. Or, the transition can be due to the same local damage 

mechanism that generates ductility under compression and unstable crack growth under tension. In the 

present study, a unique ductile damage criterion was considered to represent the local damage of the 

matrix, whatever the local triaxiality ratio. Plasticity concept was used to represent irreversible 

phenomenon like micro-cracking and by frictional sliding of the micro-crack surfaces. As a 

consequence, a stable growth of damaged zones was observed in the macroporous material, as seen in 

Figure 6. In case of robust convergence of the simulation, a complete failure of the RVE would be 

expected from the formation of a plastic path through the entire domain and coalescence of pores.  

In the future, a brittle damage criterion would be worth being introduced in the model in order to 

reproduce the behavior transition and to investigate the influence of stress triaxiality on ductility. For 

instance, cohesive zones (Perales et al., 2008) could be used to simulate a brittle mechanism. A better 

understanding and characterization of the brittle damage mechanisms of the mesoporous matrix is 

necessary to formulate such a criterion. Experimental works are currently undertaken to address this 

issue. 

 

Choice of a critical mechanical state to estimate the ductile damage criterion 

The damage criterion estimated from simulations depends on the choice of a critical mechanical state. 

The plastic dissipation has been used in the definition of internal damage variables in early continuum 

damage models, e.g. (Lubliner et al., 1989). In homogeneous materials, the onset of plastic dissipation 

attests that the yield surface has been reached. In the case of a porous material, the mechanical state at 

onset of plastic damage corresponds to local plasticity at extremities of pores branches that is not 

representative of the RVE failure. Otherwise, the mechanical state at the end of the simulations over-

estimates the critical state of the RVE at failure because of the stability obtained with the local plastic 

criterion. The reference plastic dissipation energy chosen in the present study to estimate a ductile 

criterion corresponds to an intermediate state of the RVE. Nevertheless, the selected value has low 

influence on the shape of the criterion. As already obtained on a hollow sphere by analytical approach 

(Thoré et al., 2009) or by limit analysis in FEM (Pastor et al., 2013), we observe that the yield surface 

of a porous Drucker-Prager matrix with branched and non-convex pores is closed by a cap. The overall 

yield surface is qualitatively the same cap-form as those obtained in literature for isotropic porous 

media containing spherical voids (e;g; Shen et al., 2015), which seems to show that the pore shape 

does not strongly affect this cap-form since the overall isotropy is respected. 

 

Influence of a continuous representation of the matrix 

The porous granular material was simulated as a porous medium without representation of grains and 

their interfaces. Thus, the porous medium damage criterion does not distinguish grains strength from 

the interface strength. The simulation results showed that damage naturally initiates at pores 

extremities in stress concentration zones. The plastic damage propagates from pore to pore and thus 

follows paths close to grains interfaces, although interfaces were not explicitly represented in the 

simulation. The good accordance of this numerical analysis with experimental observations confirms 

such an inter-granular damage mechanism. The interface strength seems to be close to the grains 

strength, since no distinction was required to estimate the macroscopic strength of the granular 

medium.  
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6 Conclusions 

 

A numerical analysis of the ductile damage behavior of a macroporous -alumina was successfully 

carried out thanks to a full-field homogenization approach based on a FE model whose microstructure 

geometry was extracted from SEM images. The branched and non-convex shapes of pores were 

closely transcribed. A generalized plain strains formulation allowed to control the out-of-plane macro-

stress. The matrix behavior was considered elastic-plastic and followed a Drucker-Prager yield surface 

identified experimentally in a previous work on a mesoporous alumina. The mechanical properties of 

the macroporous material are numerically investigated in a wider range of stress triaxiality than it was 

available in the experimental database. 

 

The model satisfactorily reproduces the progressive loss of stiffness observed experimentally under 

compression. Final rupture by macro-crack initiation and propagation in the RVE is not simulated. A 

reference plastic energy dissipation adjusted on uniaxial compression tests is used to estimate a 

damage criterion. Under compressive loads, the criterion obtained numerically is close to the closed-

form observed experimentally. The overall yield surface is qualitatively the same cap-form as those 

obtained in literature for isotropic porous media containing spherical voids, which seems to show that 

the pore shape does not strongly affect this cap-form since the overall isotropy is respected. 

 

Under uniaxial traction or compression, the analysis of plastic strain fields showed localizations in 

areas that can be compared to grains interfaces, which is consistent with the inter-granular fracture 

revealed experimentally. Damage naturally localized in grains interfaces because of the morphology of 

the porosity. The morphology of the macropores is thus the root cause of degradation of the 

mechanical properties of the granular medium. This result leads to new opportunities in material 

design, for instance by controlling porosity shape thanks to pore forming agent. Mechanical properties 

of future materials might be anticipated by FE simulations based on optimized porosity morphology.  
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