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Inactive and mostly elongated pockmarks of 100-200 m in dimension were recently discovered on the South Aquitaine Margin continental slope. They are distributed at water depths greater than 350 m in both interfluve and sediment wave areas, and are strongly controlled by the sedimentary morphology and architecture. Water column and seafloor backscatter and sub-bottom profiler data do not exhibit present-day or past gas evidence, e. g. massive and continuous gas releases at the seabed and fossil methane-derived authigenic carbonates. It is thus proposed that the pockmarks originated from a shallow source and result from relatively recent and short-duration gas or water expulsion events. Former near-bottom currents may have contributed to the elongation of these WNW-ESE oriented pockmarks

Introduction

Pockmarks were first described by [START_REF] King | Pockmarks on the Scotian Shelf[END_REF] as seafloor morphological depressions, formed by fluid escapes. Pockmarks are commonly encountered and, are worldwide, related to fluid migrating upward [START_REF] Judd | Seabed fluid flow: the impact on geology, biology and the marine environment[END_REF] and triggeringsediment resuspension during leakage and sediment collapse. These depressions are observed from shallow environments [START_REF] Rise | Pockmarks in the southwestern Barents Sea and -Finnmark fjords[END_REF] to deep bathyal environments [START_REF] Gay | Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[END_REF]. Pockmark morphologies can be associated with various types of fluids and processes, e. g. small scale pockmarks can be related to a unique local gas source [START_REF] Gay | Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin[END_REF], to dewatering of the sediments upon compaction [START_REF] Harrington | Formation of pockmarks by pore-water escape[END_REF] and to freshwater seeps [START_REF] Whiticar | Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay[END_REF] while pluri-kilometre-scale pockmarks may indicate hydrate dissolution [START_REF] Sultan | Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[END_REF]. Pockmarks may occur as clusters [START_REF] Hovland | Unit-pockmarks and their potential significance for predicting fluid flow[END_REF] or as strings of pockmarks [START_REF] Pilcher | Mega-pockmarks and linear pockmark trains on the West African continental margin[END_REF]. Strings of pockmarks are commonly related to geological features focusing fluid flows, e. g. fractures and faults [START_REF] Gay | Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin[END_REF] and buried valleys [START_REF] Baltzer | Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders[END_REF].

The modification of original pockmark morphologies will depend on internal factors such as successive fluid expulsion events [START_REF] Judd | Seabed fluid flow: the impact on geology, biology and the marine environment[END_REF], the presence of methanederived authigenic carbonates [START_REF] Gay | Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[END_REF] and external factors such as bottom currents [START_REF] Bøe | Elongate depressions on the southern slope of the Norwegian Trench (Skagerrak): Morphology and evolution[END_REF][START_REF] Josenhans | A side-scan sonar mosaic of pockmarks on the Scotian Shelf[END_REF][START_REF] Schattner | Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil[END_REF], slumping and sedimentary destabilization along the slope direction [START_REF] Brothers | Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[END_REF], presence of benthic fauna and
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debris accumulation [START_REF] Webb | Pockmarks in the inner Oslofjord, Norway[END_REF], e. g. coarser sediments [START_REF] Pau | Sediment mapping and long-term monitoring of currents and sediment fluxes in pockmarks in the Oslofjord, Norway[END_REF].

Bottom currents may contribute to elongate pockmarks along the direction of the currents by eroding sediments and preventing sedimentation over the pockmarks [START_REF] Andresen | Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea-implications for bottom current activity and fluid migration[END_REF][START_REF] Dandapath | Morphology of pockmarks along the western continental margin of India: Employing multibeam bathymetry and backscatter data[END_REF]. Bottom currents may induce upwelling within the pockmarks that would limit the sedimentation of fine-grained sediments, therefore maintaining pockmark morphology [START_REF] Brothers | More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity[END_REF][START_REF] Hammer | Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway[END_REF][START_REF] Pau | Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry[END_REF]. Moreover, coalescent pockmarks (merging depressions) [START_REF] Gay | Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[END_REF]) may be a result of successive fluid escapes or external processes as cited above, eventually forming elongated pockmarks.

Pockmark morphological characteristics, accessible through their acoustic signature, may be used to determine potential activity [START_REF] Dupré | Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery[END_REF][START_REF] Hovland | Unit-pockmarks and their potential significance for predicting fluid flow[END_REF], and the nature of fluids involved [START_REF] Gay | Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[END_REF][START_REF] Judd | Seabed fluid flow: the impact on geology, biology and the marine environment[END_REF] and also to address the relative timing of pockmark formation with regards to surrounding sedimentation [START_REF] Bayon | Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan[END_REF].

The present study mainly focuses on the geophysical characterization of a wide pockmark field discovered on the continental slope of the Aquitaine Margin (offshore France) in 2013 during the GAZCOGNE1 oceanographic expedition. Pockmark activity and the nature of fluids involved in pockmark formation are discussed. Particular attention is paid to the pockmark reshaping related to external factors such as bottom currents.

The setting

Related to the opening of the North Atlantic Ocean, the Bay of Biscay initially corresponded to a V-shaped rift, initiated during the Late Jurassic and aborted in the mid-Upper Cretaceous [START_REF] Roca | The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey[END_REF]. Its extensional phase was stopped during the Santonian age by the opening of the South Atlantic Ocean. The subsequent northward drift of the Iberian plate and the related compression phase led to Pyrenean orogeny [START_REF] Roca | The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey[END_REF]. The Bay of Biscay is surrounded by different shelves, the large Armorican Shelf, the Aquitaine Shelf,
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the Basque Shelf and the Iberian Shelf (Fig. 1) with a major morphological high, the Landes Plateau. The hydrocarbon Parentis Basin, created during the Pyrenean Orogeny, extends from the onshore to the offshore domain, in the south part of the Aquitaine Shelf [START_REF] Biteau | The Aquitaine Basin[END_REF] (Fig. 1).

FIG 1

The study area is located in the French EEZ (Exclusive Economic Zone) on the continental slope of the Aquitaine Shelf, from 200 m to 1600 m water depths, with a mean smooth slope of ~3° (Figs 1 and2). This area is 60-80 km westward of the coastline, between the Cap Ferret Canyon (44°40' N) and the Capbreton Canyon (43°30' N). The study area can be divided into two main morphological domains. The northern part, from 44°35'50''N to 44°11'44''N latitude, is deeply incised by E-W oriented canyons with heads rooted at the shelf break edge. There, the inter-canyon areas are kilometre wide along the N-S axis (Fig. 2a) and are affected by slope instabilities within a context of silt dominated sedimentation [START_REF] Schmidt | Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay[END_REF]. The southern part, from 44°11'44''N to 43°52'37''N latitude, does not show any canyons, only some landslide scarps located at 230 m water depth and a wide sediment wave field located between 250 and 1000 m water depth (Fig. 2), with a surficial sandy silt sedimentation, extending from the shelf break to the foot slope [START_REF] Faugères | Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[END_REF][START_REF] Gonthier | Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay)[END_REF]. Sediment wave morphologies, with wave lengths between 800 m and 1600 m and heights from 20 m to 70 m show crests slightly oriented at an oblique angle of the main slope, between 010°N and 035°N. The influence of bottom currents in the formation processes of sedimentary waves along the Aquitaine slope has been indicated [START_REF] Faugères | Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[END_REF][START_REF] Gonthier | Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay)[END_REF]. The sedimentary waves are covered by a thin homogenous layer corresponding to the U4 unit described by [START_REF] Faugères | Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[END_REF], which is 12-15 metres thick [START_REF] Gonthier | Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay)[END_REF] and pinches out on the upper slope between 400 and 300 m water depth. The surficial sedimentary cover of the Aquitaine Shelf is mainly
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composed of sand and silty sand [START_REF] Cirac | Processus de mise en place et d'évolution de la couverture sédimentaire superficielle de la plate-forme nord-aquitaine[END_REF]. Inactive pockforms and pockmarks have been described on the Landes Plateau [START_REF] Baudon | Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France[END_REF][START_REF] Iglesias | Pockforms: An evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay[END_REF] and on the Basque Shelf [START_REF] Gillet | Pockmarks on the southern margin of the Capbreton Canyon (south-eastern Bay of Biscay)[END_REF], respectively. Recently, Dupré et al. (2014) described an active cold seep system at the edge of the Aquitaine shelf without any pockmarks.

The hydrography regime of the study area appears to be complex due to the semienclosed morphology of the Bay of Biscay and the interaction between different currents of different time scales, meso-tidal currents [START_REF] Batifoulier | Poleward coastal jets induced by westerlies in the Bay of Biscay[END_REF][START_REF] Charria | Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay[END_REF][START_REF] Boyer | Circulation on the shelf and the upper slope of the Bay of Biscay[END_REF], contour currents [START_REF] Van Aken | The hydrography of the mid-latitude Northeast Atlantic Ocean II: The intermediate water masses[END_REF] and some temporary currents related to wind-forced events (Kersalé et al., 2016).

Data and methods

Geophysical data acquisition and processing

High-resolution marine geophysical data were acquired during the BOBGEO2 expedition in 2010 and more significantly during the GAZCOGNE1 survey in 2013 covering 3200 km² of the seafloor at water depths ranging from 130 m to 1600 m (Fig. 2). During the GAZCOGNE1 survey, multibeam bathymetry, water column and seafloor backscatter and seismic reflection (sub-bottom profiler) data were acquired simultaneously. Multibeam data were collected onboard the R/V Le Suroît with a Kongsberg EM302 ship-borne multibeam echosounder operated at a frequency of 30 kHz with the celerity profile calibrated with ©Sippican shots. Seafloor multibeam data were processed through CARAIBES software (©IFREMER) with application of bathymetric filters and correction of position, pitch, roll and tide effects for raw bathymetric data and with the generation of a compensation curve to harmonize values along the survey lines for seafloor backscatter data. Both bathymetry and seafloor backscatter processed data were mainly exported to mosaic grids of 15x15 m (with some backscatter maps at 10x10 m cells). Water column backscatter data only recorded
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during the GAZCOGNE1 marine expedition were processed in SonarScope software (©IFREMER) and then interpreted in GLOBE/3DViewer (©IFREMER) [START_REF] Dupré | Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging[END_REF].

The sub-bottom profiles were recorded with the ship-borne sub-bottom profiler ECHOES 3500 ©T7iXblue emitting a linear frequency modulated signal, ranging from 1.8 to 5.3 kHz, with a vertical resolution of 10 cm and a maximum vertical penetration of 100 m. A 2D sub-bottom profiler insonifies a surface at the seafloor defined by the Fresnel equation and may record lateral reflexions from close-by 3D features, as well as artefacts. These artefacts may be displayed as diffraction hyperbola (Dupré et al., 2014b) and triplication points, socalled "bow ties" [START_REF] Moss | Evidence for fluid migration following pockmark formation: Examples from the Nile Deep Sea Fan[END_REF]. Raw data were processed with QC-SUBOP software (©IFREMER) before being exported in SEG-Y and then interpreted in ©Kingdom software (Fig. 3). The water current data were acquired during the ASPEX2010A mooring survey (Le [START_REF] Boyer | Circulation on the shelf and the upper slope of the Bay of Biscay[END_REF] with an Acoustic Doppler Current Profiler (ADCP) operated at a frequency of 75 kHz and recording every 2 minutes. The data discussed in this paper come from mooring 10 located at 44°00.069'N -02°08.644'W at 450 m water depth in the sediment wave field (Figs. 2a andc). Water current data were recorded over more than 6 months (18 th July 2009 -30 th January 2010). Current velocities were integrated between 17 m and 33 m above the seafloor and averaged every 20 minutes. Classic harmonic tide analyses were conducted on ASPEX current data to extract tide-related signals from the raw signal [START_REF] Lazure | Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology[END_REF].

Pockmark morphometry

All pockmarks were manually delimitated, identified by their rim on the slope grid (processed at 15 m and calculated with Slope function in Spatial Analyst toolbox from Arcmap 10.2, ©ESRI). It is worth noting that below the bathymetry resolution (15 m), detection cannot be performed effectively. In other words, small pockmarks of diameter <30 m, if present, could not have been mapped.
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Eleven morphological attributes were extracted from GIS for each pockmark: its area, perimeter, area/perimeter ratio, internal depth (from the rim down to the apex of the pockmark), minor and major axis lengths, major axis direction, elongation (major/minor axis length ratio), bathymetry, slope within the pockmark and morphological domain. The morphological attributes of the Aquitaine slope pockmarks are available online as a SEANOE public database with information on pockmark location and seafloor backscatter data [START_REF] Michel | Pockmark morphological attributes at the Aquitaine slope[END_REF].

FIG 2 4. Results

Pockmark spatial distribution

606 pockmarks were discovered, exclusively located on the continental slope, from 350 m water depth in the upper slope down to 1150 m water depth, covering 800 km² (Fig. 2).

The oceanward extension of the pockmarks is limited by the survey acquisition (Fig. 2). The mapped pockmarks are relatively large, with regards to known pockmarks [START_REF] Judd | Seabed fluid flow: the impact on geology, biology and the marine environment[END_REF][START_REF] Pilcher | Mega-pockmarks and linear pockmark trains on the West African continental margin[END_REF], with a rough diameter from 52 to 330 m and an internal depth up to 42 m for the largest pockmarks (Fig. 4a). The majority of the pockmarks (80%) have a rough diameter between 100 and 200 m for an average internal depth of 15 m (Appendix B). 72% (434 units) of the pockmarks occur in the inter-canyon areas (574 km²) and 25% (153 units) in the sediment wave field (374 km²) (Figs. 2 and5). Pockmark density in the inter-canyon domain is twice as high as in the sediment wave field. The 3% (19 units) remaining pockmarks are located deeper at the foot slope (Fig. 2). In the northern part of the studied area, the pockmarks are completely absent from the canyons. Confined within the inter-canyons, the pockmarks spread along an E-W direction. The pockmarks are distributed
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both at the summits of the antiforms (see e. g. the second northern inter-canyon in Fig. 2) and at the borders of the canyons (see e. g. the southern border of the inter-canyon at 44°17'N in Fig. 2). The majority of the pockmarks do not form alignments or so called pockmark trains.

Their distribution is more diffuse within each inter-canyon area unless the inter-canyons are narrow (see e. g. the inter-canyon at 44°13'N in Fig. 2). A few pockmark clusters are also observed (Fig. 2) with densities up to 12 pockmarks per km². Locally, a few coalescent pockmarks appear to form elongated pockmarks (Fig. 2b). In the sediment wave field, pockmarks are located both on the wave crests (36%) and between the crests (48%), as noticed by [START_REF] Baudon | Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France[END_REF] for similar pockmarks located on the upper slope of the Aquitaine slope south of the studied area. The 16% remaining pockmarks are located on relatively flat areas without any spatial organisation. Therefore, the main regional pockmark repartition in the sediment wave domain follows the sediment wave's crests and inter-crests direction between N010 and N035 (Figs 2a,c) rather than an E-W direction. Locally, a few pockmark strings (maximum 8 depressions along 2 km), only concerning less than 13% of the 153 pockmarks mapped in the sediment wave field, are observed related to sediment wave orientation (Figs 2a andc). From the northern part of the sediment wave field to the southern part, the pockmark density increases and pockmarks are also located deeper in the slope.

Pockmarks are however absent from two main corridors crossing the sediment wave field with a convergence and narrowing of the pockmark field downslope (see uppermost part of Fig. 2c).

Pockmark characterization

Acoustic signature of water column and surficial sediments

The EM302 water column backscatter data from the GAZCOGNE1 marine expedition do not exhibit any amplitude anomaly in the water column related to gas bubble escapes, and
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this throughout the pockmark field and over the 6 days of the acoustic survey (28 th July to 2 nd August 2013).

The average seafloor backscatter amplitude within the pockmarks (excluding 57 pockmarks located at the vertical of the ship track where the data are worthless) ranges from -34.5 to -21.8 dB in the inter-canyons with a mean value of -27.2 dB (Fig. 4b). The seafloor backscatter amplitude values vary from -31.6 to -22.6 dB with a mean value of -27.1 dB in the sediment wave field (Fig. 4b). The seafloor backscatter of surrounding sediment, calculated within a 100 m buffer around the pockmark rim, vary from -34 dB to -23 dB with a mean value of -27 dB. The EM302 seafloor backscatter values in the majority of the pockmarks are similar to the ones of surficial sediments around wherever pockmarks are located in intercanyon or sediment wave field domains. Only a small percentage of the pockmarks exhibits, within part of the depression, high or low seafloor backscatter amplitudes that contrast with the surrounding seafloor.

Seismic investigation at the seabed and inside the sediment pile

The acquired sub-bottom profiler lines only cross 38 pockmarks. The profiles do not exhibit any high seafloor amplitude anomalies, e. g. enhanced reflectors, or high amplitude anomalies within the uppermost 100 m of sediment (Fig. 3). Only triplication points due to geometry artefacts below pockmarks are observed. The sedimentary records below and besides the pockmarks are not disturbed. Moreover, no distinct draped sediment layers are observed within the depressions with regards to the ten centimetres resolution from the subbottom profiler.

FIG 3 4.2.3. Pockmark morphometry
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The pockmark surface ranges from 0.29x10 4 m² to 7.49x10 4 m² at the inter-canyon area and from 0.25x10 4 m² to 6x10 4 m² in the sediment wave field area. The mean value of pockmark surface is 1.8x10 4 m² in the inter-canyon and 1.7x10 4 m² in the sediment wave field (Fig. 4a). The variations in pockmark size are similar in both morphological domains. A general increase in pockmark surface is observed at shallower water depths but no linear trend is observed (regression line, R²= 0.1259 in the inter-canyon area and R²=0.1895 in the sediment wave field) (Appendix B).

FIG 4

The pockmark internal depth ranges from 4 to 42 m with a mean value of 15 m (Appendix B). The deepest internal depth values correspond to the largest pockmarks (>200 m in diameter) with a mean value of 22 m.

The pockmark elongation ranges from 1 to 5.7 with a mean value of 1.4 on the intercanyon area and from 1 to 2.7 with a mean value of 1.4 in the sediment wave field (Fig. 4c).

Most of the pockmarks (88%) are elongated with an elongation superior to 1.1 while only 12% are sub-circular (elongation between 1 and 1.1) (Fig. 2). Elongation values <1.1 are considered as sub-circular shapes in order to take into account potential mapping biases and calculation approximation. Among the elongated pockmarks, a majority have an elongation between 1.1 and 1.5 (66%) while 19% have an elongation between 1.5 and 2.2. The most elongated pockmarks with an elongation >2.2 are less common (3%) and mainly correspond to coalescent pockmarks (Fig. 2b, most south-eastern pockmarks).

The major axis direction of the pockmarks with elongation values >1.5 (134 units) has been compared to the surrounding slope value (Fig. 5). These pockmarks correspond to 92 depressions in the inter-canyon domain and 42 in the sediment wave field. In the inter-canyon domain, local slope orientation around the pockmarks is mostly E-W while the pockmark major axis is mostly NW-SE, with 40% of them oriented N150-330 and 35% others oriented Current direction and amplitude distributions are displayed in current roses (Fig. 5) with E-W and N-S current components (Appendix C). Current velocities derived from the raw signal are mostly lower than 10 cm/s (90% of the records for the E-W component and 81% for the N-S component) (Fig. 5c) with the maximum amplitude reaching 34 cm/s during two events, 10 days apart, over the 6 months of the acquisition. Currents vary on different time scales, associated with different forcing factors. A large-amplitude semi-diurnal tidal signal (current vector period close to 12 hours, current amplitude period close to 6 hours) coexists with weaker signals that have longer periods (approximately one week). The tidal signal is mostly oriented E-W, and exhibits a significant cross-slope component. The longer-period component (red curves in Appendix C) is oriented along-slope due to the geostrophic constraint, as evidenced by the red dots in Fig. 5. Its cross-slope component is always smaller than 5 cm/s. The along-slope component is almost always weaker than the tidal current (for 81 % of the records), but can reach high instantaneous values during specific events (higher than 15 cm/s, 6% of occurrence).

Discussion

Pockmark inactivity and nature of the fluids involved

Free gas leakage produces clear water column backscatter anomalies commonly used to attest seepage activity [START_REF] Dupré | Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging[END_REF]. During the GAZCOGNE1 survey, no water
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column acoustic anomalies corresponding to gas bubbles were detected in the whole slope area. Although the temporal variability of seepage activity may be invoked, the 6 days of the acoustic survey are sufficient to cover the time window for the tidal cycle which could be a possible triggering mechanism [START_REF] Baltzer | Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders[END_REF]. Thus, pockmarks along the Aquitaine slope are interpreted as currently inactive in terms of free gas seepage.

Considering the sediment cover, methane-derived authigenic carbonates are considered as confident indicators of long-term gas circulation [START_REF] Bayon | Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan[END_REF]. Outcrops and sub-outcrops of carbonate structures are easily detected on seafloor backscatter data as occurrence of high amplitude anomaly patches [START_REF] Dupré | Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery[END_REF]. The lack of high seafloor backscatter values within the pockmarks and the similarity of seafloor acoustic signature between the pockmarks and the surrounding sediments clearly provide evidence for the absence of methane-derived authigenic carbonates along the Aquitaine slope.

Within the uppermost 100 m of the sediment, sub-bottom profiles across pockmarks do not exhibit any enhanced reflectors and diffracting points at the seabed pile that carbonates would seismically produce if present [START_REF] Dupré | Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery[END_REF]. No acoustic blanking, blank chimneys or any other seismic evidence of gas accumulations within the vertical resolution limit of twenty centimetres are observed. At the present day, the absence of acoustic anomalies within sedimentary records excludes the occurrence of 1) layers charged with free gas, 2) buried pockmarks and 3) carbonates underlying or disconnected from the present-day seafloor pockmarks.

Based on these observations and interpretations, the pockmarks along the Aquitaine slope may have been formed by dewatering [START_REF] Harrington | Formation of pockmarks by pore-water escape[END_REF], freshwater expulsion [START_REF] Whiticar | Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay[END_REF] or short-duration gas escapes, associated with a relatively shallow source level (the pockmarks being rooted a few metres to maximum a few tens of metres below the seafloor) [START_REF] Judd | Poleward along-shore current pulses on the inner shelf of the Bay of Biscay[END_REF]. Indeed, gas releases over a long period of time (order of
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kyears) would have led to authigenic carbonate precipitation [START_REF] Andresen | Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea-implications for bottom current activity and fluid migration[END_REF].

Although the pockmarks along the Aquitaine slope are located away from the hydrate stability zone, it is unlikely with regards to the absence of fluid evidence that they were formed by gas hydrate dissociation as suspected along the U.S. Atlantic continental margin [START_REF] Brothers | Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[END_REF]. Moreover, the morphology and acoustic signature of the studied pockmarks do not fit those of hydrate-bearing pockmarks [START_REF] Sultan | Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[END_REF]. The latter are generally kilometrelarge depressions with internal filling of disturbed sediments caused by hydrate destabilization. A few smaller pockmarks may be associated with these mega structures but exhibit disturbed sediments underneath [START_REF] Davy | Gas escape features off New A c c e p t e d v e r s i o n C R G Zealand: Evidence of massive release of methane from hydrates[END_REF].

Based on sub-bottom profiler data displayed in [START_REF] Gonthier | Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay)[END_REF] and in accordance with the seismic signature of pockmarks from our dataset, we suspected the occurrence of pockmarks within the recent sedimentary cover, which corresponds in the sediment wave field mainly to the so-called U4 unit [START_REF] Faugères | Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[END_REF]. This view is strengthened by the fact that above the pinch out of this unit U4 on the upper slope, roughly at water depth of 350 m, pockmarks are absent. This reinforces the shallow character (a few tens of metres maximum) of the Aquitaine slope pockmarks. The formation of the pockmarks appears therefore to postdate the sediment wave formation (U3 unit). Based on the age of the base of the 12-15 m thick U4 unit, which depends on the sediment rates, 10 cm/ky [START_REF] Winnock | Expose succinct de l'evolution paleogeologique de l'Aquitaine[END_REF] or 100 cm/ky [START_REF] Schmidt | Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay[END_REF][START_REF] Schmidt | Particle fluxes and recent sediment accumulation on the Aquitanian margin of Bay of Biscay[END_REF], the pockmarks along the Aquitaine slope may have been initiated after 120-150 ky BP or 12-15 ky BP, respectively. Within this context, sea level falls may have triggered fluid escapes and initiation of pockmarks in the Aquitaine Basin as evidenced e. g. in the Gulf of Lions [START_REF] Riboulot | Control of Quaternary sealevel changes on gas seeps[END_REF] and offshore West Africa [START_REF] Plaza-Faverola | Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles[END_REF]. But without any detailed seismic data and dating of long cores through the Aquitaine slope, it is impossible to conclude.
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With regards to the available data and the inactivity, morphology and repartition of the studied Aquitaine pockmarks, there is no similarities with the other known, but not much documented, fluid systems of the Bay of Biscay: 1) the Capbreton Canyon area where sizedifferentiated pockmarks are related to different migration pathways [START_REF] Baudon | Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France[END_REF][START_REF] Gillet | Pockmarks on the southern margin of the Capbreton Canyon (south-eastern Bay of Biscay)[END_REF], 2) deeper offshore mega-pockforms on the Landes Plateau [START_REF] Baudon | Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France[END_REF][START_REF] Iglesias | Pockforms: An evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay[END_REF] and 3) gas emissions at the Aquitaine Shelf (Dupré et al., 2014a).

Origin of pockmark elongation: slope, coalescence, currents?

As it is assumed that pockmarks initially have a sub-circular shape [START_REF] Judd | Seabed fluid flow: the impact on geology, biology and the marine environment[END_REF], why are the majority of the pockmarks (88%) located along the Aquitaine slope (deeper than 350 m water depth) elongated ? With regards to inactivity and the absence of present and past fluid evidence, it is unlikely that successive fluid releases have occurred, and even less unlikely that this was able to reshape the pockmarks. The slope along which pockmarks may become elongated and open downslope [START_REF] Brothers | Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[END_REF]) may be another explanation for pockmark elongation. This may apply to some pockmarks in the sediment wave field area but cannot account for all the depressions, as the directions of the slope and of the elongated pockmarks are not compatible. Coalescence of several pockmarks may in places explain some of the most elongated pockmarks observed along the Aquitaine slope, especially in the northern part.

The influence of the bottom currents on pockmark morphology, namely their elongation, has been evidenced across other continental shelves [START_REF] Schattner | Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil[END_REF] and slopes [START_REF] Tallobre | Description of a contourite depositional system on the Demerara Plateau: Results from geophysical data and sediment cores[END_REF], and is questioned here for the pockmarks along the Aquitaine slope. Current-induced processes that can produce strong shear stress on the seafloor, such as high density flow on the slope [START_REF] Kuhnt | Flux dynamics of planktic foraminiferal tests in the south-eastern Bay of Biscay (northeast Atlantic margin)[END_REF] and internal tide impacting the seabed [START_REF] Pingree | Propagation of internal tides from the upper slopes of the Bay of Biscay[END_REF], may influence seafloor morphology. Along the Aquitaine slope, indirect evidence of benthic material resuspension has been observed (Durrieu De Madron et al.,
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1999; [START_REF] Kuhnt | Flux dynamics of planktic foraminiferal tests in the south-eastern Bay of Biscay (northeast Atlantic margin)[END_REF]. The hypothesis put forward by Durrieu de [START_REF] De Madron | Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay[END_REF] regarding the resuspension mechanism is an intensification of internal tidal current shear close to the seabed, which happens to be tangent to the internal tide rays [START_REF] Pingree | Propagation of internal tides from the upper slopes of the Bay of Biscay[END_REF] over extensive areas of this region [START_REF] Kuhnt | Flux dynamics of planktic foraminiferal tests in the south-eastern Bay of Biscay (northeast Atlantic margin)[END_REF]. Direct observations of this process are still lacking however, and it is thus hard to ascertain if this process is really dominant and if its intensity is sufficient to have an impact on seafloor morphology along the Aquitaine slope.

The present-day bottom current direction does not correspond to the elongation direction of the pockmarks along the Aquitaine slope. Two main current regimes are evidenced, one driven by the semi-diurnal tide and mostly oriented east-west, and a second long-period (period of a week) current mostly oriented north-south. In contrast, the pockmark elongation varies in direction from NW-SE to WNW-ESE for the inter-canyon area and sediment wave domain, respectively. Moreover, the 12% pockmarks which are sub-circular occurring randomly amidst elongated ones are not coherent with the influence of a regional bottom current. Independently from the current direction, the velocities of the bottom currents, mainly lower than 10 cm/s are not compatible with erosion. Current velocities of 10 cm/s are indeed sufficient to limit sedimentation for silt and mud [START_REF] Migniot | Action des courants, de la houle et du vent sur les sédiments[END_REF] therefore preventing pockmark filling. On the other hand, in order to remobilize consolidated silt, velocities higher than 30 cm/s are necessary [START_REF] Migniot | Action des courants, de la houle et du vent sur les sédiments[END_REF]. Thus, most of the present-day tide velocity and N-S current velocity are not strong enough to remobilize sediment along the Aquitaine slope.

However, some stronger current events associated with higher velocities, such as the ones observed reaching up to 34 cm/s in the along-slope S/N direction along the Aquitaine slope, may contribute over short timescales to remobilize sediments within the pockmarks. Yet the direction of these stronger bottom currents is not compatible with the direction of the elongated pockmarks. Along the Aquitaine slope, these stronger events are clearly associated
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with westerly-wind pulses occurring along the Cantabrian Slope [START_REF] Batifoulier | Poleward coastal jets induced by westerlies in the Bay of Biscay[END_REF].

And the range of velocities recorded along the Aquitaine slope may induce regularly upwelling within the depressions preventing fine sediments from being deposited [START_REF] Brothers | More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity[END_REF][START_REF] Hammer | Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway[END_REF]. This would not exclude the accumulation of coarser sediments within the pockmark as inferred from the high seafloor backscatter of some of the pockmarks.

Considering that circular pockmarks along the Aquitaine slope were formed at the same time, the post-formation processes that have reshaped and elongated the pockmarks along the WNW-ESE axis may be related to a former current regime that differs from the present-day one. At present-day, upwelling induced by near-bottom currents within the pockmarks may contribute to maintaining the depressions, preventing sedimentation by winnowing out the fine grained sediments [START_REF] Brothers | More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity[END_REF][START_REF] Hammer | Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway[END_REF][START_REF] Pau | Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry[END_REF]. Relatively weak near-bottom currents along the U.S. Atlantic continental margin (< 20 cm/s), as with those along the Aquitaine slope, appear sufficient to induce such upwelling [START_REF] Brothers | More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity[END_REF]. The few slightly elongated pockmarks (12%) corresponding to subcircular pockmarks may be explained by subsequent filling-in possibly caused by collapse within these former elongated pockmarks. It can be also considered that these subcircular pockmarks may have been formed after the formation and subsequent elongation by bottom currents of the initial majority of pockmarks.

Conclusion

The geophysical survey conducted on the Aquitaine slope revealed numerous pockmarks (606) over 800 km² occurring on canyon interfluves and in the southern sediment wave field from water depths of 350 m within the upper slope to greater depths westwards.

These pockmarks are relatively large, with the majority having a rough diameter between 100
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and 200 m and an average internal depth of 15 m. Pockmarks along the Aquitaine slope are divided into sub-circular (12%) and mostly elongated (88%) pockmarks including some coalescent. The slope and the coalescence of pockmarks, as the primary controlling factor, only constrains the elongation of part of the pockmarks. But the majority of elongated pockmarks are not aligned along the present-day prevailing current direction as it is the case across other continental shelves and slopes [START_REF] Bøe | Elongate depressions on the southern slope of the Norwegian Trench (Skagerrak): Morphology and evolution[END_REF][START_REF] Schattner | Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil[END_REF][START_REF] Tallobre | Description of a contourite depositional system on the Demerara Plateau: Results from geophysical data and sediment cores[END_REF]. Pockmarks along the Aquitaine slope are not randomly distributed with regards to the water depth and surrounding morphology. Slope-indenting submarine canyons are pockmark free zones as observed along e. g. shelf-indenting canyons [START_REF] Brothers | Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[END_REF].

In the north of the studied area, pockmarks are constrained by the E-W oriented inter-canyon morphology while in the southern area, they are generally oriented NNE-SSW along the direction of the crests and inter-crests from the sediment wave system. There is no positive correlation between the dimension of the pockmark and water depths as has been observed elsewhere [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF][START_REF] Schattner | Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil[END_REF]. Instead, pockmark size appears more often influenced by the nature and thickness of sediments [START_REF] Baltzer | Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders[END_REF][START_REF] King | Pockmarks on the Scotian Shelf[END_REF][START_REF] Rise | Pockmarks in the southwestern Barents Sea and -Finnmark fjords[END_REF] than the water depth. Along the Aquitaine continental slope, the thickness of the upper most sedimentary layer, the unit U4 as defined by [START_REF] Faugères | Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[END_REF] and [START_REF] Gonthier | Instabilities and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay)[END_REF], appears indeed to drive the occurrence of pockmarks.

Thus, the pockmark distribution is sedimentologically controlled by 1) the presence and the thickness of the uppermost sedimentary cover, which is a few metres to a few tens of metres thick, with 2) a secondary influence of inherited sedimentary structures such as the sediment waves.

The history of the Aquitaine slope pockmarks is recent with regards to the Aquitaine margin history and can be described as three main stages. Fluid migration from a shallow source level, a few metres to a few tens of metres below the present-day seafloor, and fluid
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expulsion at the seabed have led to the formation of circular pockmarks. These pockmarks were initiated not before the Holocene times, and possibly within the last 10 kyears. These pockmarks were most likely formed by past short-duration fluid-release events associated with microbial gas (methane) or possibly water without major associated diagenesis, as methane-derived authigenic carbonate precipitation. Then, near-bottom currents, different in orientation and velocity than present-day ones, have modified the pockmarks from circular to elongated ones in the WNW-ESE direction. This was possibly followed by a second but minor formation of pockmarks unless the 12% of subcircular pockmarks are former elongated ones that were modified later on by sediment infilling or collapse. At present-day, the Aquitaine slope is dominated by weaker near-bottom currents which may induce upwelling within the inactive pockmarks, contributing to the maintenance of their shape as proposed, observed and modelled for other studied cases [START_REF] Brothers | More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity[END_REF][START_REF] Hammer | Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway[END_REF][START_REF] Pau | Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry[END_REF].
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Figure captions

Fig. 1: Synthetic map of the Bay of Biscay with indication of the main current regimes (see references therein) and main isobaths [START_REF] Sibuet | Carte bathymétrique de l'Atlantique nord-est et du golfe de Gascogne : implications cinématiques[END_REF]. The study area (red rectangle) covers the western extension of the Parentis Basin [START_REF] Biteau | The Aquitaine Basin[END_REF] and the eastern Landes Plateau. 
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  Figure including scatter plots of pockmark surface versus bathymetry with internal depth as point
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  Figure exhibiting bottom current velocity, a) east-west (UE) and b) north-south (UN) components,
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Supplementary Material

Appendix A. Morphometric methods Three methods to map pockmarks were tested, two semi-automated and one manual to check the validity of the two previous. The Fill method [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF] involves pockmark extraction based on a succession of Geographical Information System (GIS) operations focused on the numerical filling of depressions and then the subtraction of filled bathymetry.

The second method called the BPI (Bathymetric Position Index, Wright et al., 2012) is based on the calculation of differential bathymetry cells side by side and seafloor roughness analysis. Both semi-automated methods map a large number of depressions which are not pockmarks. Around 500 times more features than manually mapped pockmarks were detected with the Fill method and 300 times more with the BPI method. For both semi-automated methods, the detected features were filtered with correction based on the pockmark surface and the surface/perimeter ratio. Features with small ratio are more likely to be an artefact [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF]. The number of remaining features is 10 and 20 times higher than the number of manually mapped pockmarks, with Fill and BPI methods respectively and most likely corresponds to spurious pockmarks and artefacts which have not been filtered. Therefore, in order to minimize the biases observed with semi-automatic methods, all pockmarks were manually delimitated.

Pockmark internal depths were calculated in two ways, using the Fill method developed in [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF] and by calculating the difference between the maximum and minimum bathymetric values over the delimitated pockmark surface. The calculation of pockmark internal depth based on the method by [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF] the method based on the difference between maximum and minimum bathymetry provides realistic values. It is clear from our results that the Fill method is not able to calculate the effective infilling of the studied pockmarks, most likely because of their irregular morphology (e. g. collapsed flank) and regional slope of 3°. Thus, this method suits uniform areas with well-shaped pockmarks [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF]Geldof et al., 2014) but does not fit with complex morphologies with slopes. In the latter case, it is more appropriate to calculate the internal depth by subtracting the maximum bathymetry over the entire pockmark from the minimum one.

Both semi-automatic methods and manual picking show advantages and drawbacks.

Semi-automatic methods are based on a succession of quick numerical calculations, but most of these latter have to be manually checked to limit the number of artefacts. 5433 features were detected as depressions with the "Fill" method [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF] and 10437 with the BPI method (Wright et al., 2012) whereas the manual picking only gives 606 pockmarks. The elimination of a large amount of artefacts is time-consuming, hence defeating one of the main advantages of semi-automatic methods. Although manual picking is considered timeconsuming, it is much more appropriate in the case of complex seafloor morphologies due to the human capability to focus on features of interest. Indeed, along the Aquitaine slope, there is the superimposition of different scale morphologies such as slope, canyons and sediment waves that prevent the semi-automated detection process from being accurate. Thus, semiautomatic methods should be used in relatively flat bathymetry areas to obtain successful results, e. g. at continental shelves [START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF]), bays (Andrews et al., 2010) and in basins (Geldof et al., 2014). For large extents and huge densities but of similar features, the automatic methods are clearly efficient (Andrew et al., 2010;[START_REF] Gafeira | Semi-automated characterisation of seabed pockmarks in the central North Sea[END_REF]Geldof et al., 2014). Semi-automatic methods to map pockmarks are not appropriate in the study area