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Abstract

Modelling transfers in fractured media remains alleimging task due to the complexity of the
system geometry, high contrasts and large uncégsion flow and transport properties. In the
literature, fractures are classically modelled yiealent properties or are explicitly represented.
The new Fracture Continuum Voxel Approach (FCVA)aicontinuum approach partly able to
represent fracture as discrete objects; the gegméteach fracture is represented on a regular
meshing associated with a heterogeneous field aofivalgnt flow properties. The mesh-
identification approach is presented for a reguad. The derivation of equivalent voxel
parameters is developed for flow simulated with &edéd Hybrid Finite Element (MHFE)
scheme. The FCVA is finally validated and qualifeeghinst some reference cases. The resulting
method investigates multi-scaled fracture netwowrkssmall scale homogenized by classical

methods and large discrete objects as that hanulbe present work.

Highlights

* An accurate mapping of discrete fracture networks @ regular mesh is obtained
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* A full hydraulic conductivity tensor in each masmeeded to model fracture fluxes
» hydraulic properties preserve continuity of fluxetween neighbouring meshes

» Various hydraulic behaviour at fracture intersewsican be modelled

Keywords

Fractured media, Up-scaling, Equivalent hydraulomductivity tensors, Mixed hybrid finite

elements.

1 Introduction

Within the research community involved in the sésdof transfers in fractured media, special
emphasis is regularly put on experimentation antukition of flow and transport in fractured
media for various reasons, e.g., prediction opailduction (Bourbiaux, 2010), improvement of
storage capacity for gas (Iding and Ringrose 2@B0Agrose et al., 2011), safety assessment of
nuclear waste repositories (Geotrap, 20002; Chapara McCombie, 2003) etc. Several
constraints make this modelling work a challengiagk: the geometrical complexity of the
system, the scarcity of available data, and thengtrcontrasts in parameter values between

mobile and immobile zones (Bear et al., 1993; Nayr2805).

Transfers in fractured media have already beerestdy to intense modelling work (e.g., Bear et
al., 1993; Koudina et al., 1998; Berkowitz, 2002gdanov et al., 2003; Karimi-Fard et al., 2004;
Adler et al., 2005). A large diversity of modelsisg, with differences on both the fracture
medium conceptualization and the way to represégsipally and numerically the flow and
transport mechanisms. These differences make c@oparof the approaches a complex task
(Selroos et al., 2001). For spatially distributaddels relying on Eulerian approaches to flow
and transport, the meshed representation of thetufe medium is the first difficulty to
overcome. The fracture network geometry can bei@ipl accounted for or replaced by
equivalent properties mapped onto a regular oguleg (geological) grid mesh. It is then referred
to the so-called discrete and continuous approaceggectively.

For discrete approaches, fractures are often mexiély means of planar objects (e.g., Cacas et
al., 1990; Dershowitz et al., 1991; Cvetkovic ef 2004; Adler et al., 2005; Pichot et al., 2010;
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de Dreuzy et al., 2012; Noetinger and Jarrige, 2€@dr2Discrete Fracture Network approaches)
or linear objects with the consequence of limitflayv to channels within fracture planes and at
fracture intersections (channel models or pipe ngtwnodels, Dverstorp et al., 1992; Moreno
and Neretnieks, 1993; Tsang and Neretnieks, 1988yt0si et al., 2007). Nevertheless, specific
meshing efforts are required which become cumbegsehen a large number of fractures has to
be represented, for instance with small scale drast Some attempts however based on corner-
point grids and finite-volume approaches mixing{shmensional and one-dimensional elements
for fracture planes and fracture intersectiongyeesvely are able to partly homogenize complex
fracture fields (Karimi-Fard et al., 2006).

On the other hand, the so-called continuous appesa@re commonly used in petroleum
engineering and hydrology for simulating reservespecially when the latter are of sedimentary
type. As suggested by their name, the classicglesicontinuum approaches consider a single
equation to cope with flow in both fractures andtnwa However, fractured rocks are often
depicted by two (or more) media with contrastedpprties, for example, to separate the fracture
network from the matrix medium. The subsequent-doatinuum approaches (Barrenblatt et al.
1960; Warren and Root, 1963; Delay et al., 2003) deth one equation of flow in each medium
and an additional term of transfer between the tmexdia for closing the problem (see the
extended review of existing approaches in Berkqwi@02). According to the degree of
complexity introduced in the system, the resolutdbflow can either be performed numerically
in both media, or the incidence of matrix on flawfractures is handled by means of analytical
solutions (Grenier and Benet, 2002). Continuousragighes rely upon the definition of a
Representative Elementary Volume (REV), definedif@tance as the minimal block size for
which the mean hydraulic conductivity value stat@$ when increasing the size of the block
(Long et al., 1982). At the REV scale, it becomesgible to calculate equivalent hydraulic
properties that take into account the presencerawtures. Unfortunately, the REV does not
always exist, as with the cases of poorly connettacture networks (e.g., fracture network at
the percolation threshold) or networks of largdtiawith characteristic lengths of the same order
as the size of the investigated domain. The egemtglroperties (e.g., hydraulic permeability for
flow resolution) may be obtained analytically (Od®85, 1986; Lee et al., 1995; Pan et al.,
2010) or numerically (Bourbiaux et al., 1998; Kauwaliet al., 1998; Delorme et al., 2008) and
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allow an accurate modelling of the flow in the frae medium even if the fracture network

geometry is simplified.

The line of research conducive to the Fracture i@ootn Voxel Approach (FCVA) is a kind of
combination between continuous and discrete appesacBasically, it is grounded in the
mapping of a fracture network onto a regular god dolving flow and transport with classical
numerical approaches. One might consider that mapfiactures results into unrealistic
representations of the medium and the topic coalddbated for a long time. It is obvious that
mapping fractures onto regular grids belongs to dgenization techniques that discard pinpoint
accuracy and focus on the macroscopic behavioarsystem. The first advantage is the relative
ease with which the model can be manipulated inptexnproblems such as inversion of field
data. But as a matter of trade-off, one may alse kbme elementary mechanisms while ignoring
whether or not they have some importance at lacgeesOn the other hand, some exhaustive
representations of fracture networks do not logseelementary mechanisms but are cumbersome
in terms of computation costs. This feature makesthard to invert and unsuited to operational
tasks as for instance evaluating uncertainty. Ugudhe complete fracture field of an
underground reservoir is unknown and, even with fepresentations of fracture fields; the latter
can be unrealistic, or at least very uncertain.li&atang uncertainty can rely upon Monte-Carlo
simulations duplicating numerous networks but uguaccurate representations of fracture
networks do not lend themselves to this exercisealme the meshing procedure is time

consuming.

When mapping fractures onto regular grids, it igiobs that the network representation is less
accurate. But duplicating networks for evaluatingcertainty does not result in cumbersome
calculations. Iterative inversion procedures cardomched with reasonable computation costs.
Incidentally within this inversion framework, oneagnraise that field (experimental) data are
often uncertain and inaccurate in terms of spatmal temporal resolutions. These resolutions are
sufficient for the rough mapping of fractures wlaraghey do not yield good conditioning of
models based on the exhaustive representationaofured media. In the end, our aim is to

provide a versatile tool able to treat various $ypé fracture networks whilst avoiding intense
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meshing effort, and able to integrate explicit funes as well as a single or dual porosity

background.

The fracture medium is investigated first to idBnthe main features that will be explicitly
represented (main fluid conductors at the scatbettudied block) whereas minor fractures, i.e.,
fractures whose lengths are smaller than the dizbeomesh elements, are homogenized and
associated with the matrix zones. Though a smeaitdire can be highly conductive, it will yield a
very permeable matrix mesh which is handled as eoyso continuum. When mapping
(homogenizing) fractures onto a regular grid, oneuses actually on the capability of the
fractures to connect very distant points. A densivark of short fractures will in comparison
behave as a local patch of high conductivity. Etleugh the numerical model used below can
handle matrix with various properties, the mataxhere overlooked for the sake of simplicity.
The non-homogenised fractures are mapped onto waregrid by applying direct equivalent
properties to meshes cross-cut by the fracture ar&tand the final outcome is a heterogeneous
hydraulic conductivity field. Several published m&ds handle such systems with a regular grid
where heterogeneous specific hydrodynamic propejtistify the difference between fractures
and matrix blocks. For instance, the fields of mmbies can be obtained from realizations of
stochastic processes derived from sites data (Teaal, 1996; Gomez-Hernandez et al., 2000)
or from analytical calculations based on geomdtdoasiderations between the fractures and the
regular mesh (Tanaka et al., 1996; Svensson 2@0D4.b; Langevin, 2003; Reeves et al., 2008;
Hirano et al., 2010). A major drawback associateith whese approaches is that fractures are
represented in a smeared way, meaning that fraapegures are in practice spread over several
juxtaposed grid cells, thus yielding numerical siof fractures much wider than they should be.
In addition, the equivalent properties implemenged expressed as scalar values instead of
tensors (e.g., Oda, 1985, 1986), leading to impi@as in the simulated fluxes within fracture

objects.

The present work develops a new way to obtain ffirdulic properties of a fracture network
mapped onto a regular mesh. The originality of #pproach is grounded in a direct control of
fluxes and the use of equivalent hydraulic conditgtiiensors. To underline the importance of

this point, a special focus will be put on the ftwit a full tensor is needed to upscale fracture
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properties. Nevertheless, for computational timgnaigation, the proposed equivalent hydraulic
conductivity tensors are diagonal, which will appeathe sequel as a good assumption for sub-

vertical or sub-horizontal fault networks.

Thanks to the use of tensors and an improved fraatepresentation, the mesh smearing is
limited and the precision of results increases. fitm@erical scheme considered (a Mixed Hybrid
Finite Element (MHFE) scheme) is well known for eriisg flux conservation between edges (or
facets) of neighbouring elements (Younes et alLO20Equivalent properties are calculated for
this specific MHFE scheme whilst preserving itsgeies of flux conservation. As shown later,
the precision in the results is mainly related he tonsidered mesh size and can be easily
controlled. This feature allows us to perform eithe"reference" calculation by using a very
refined grid or duplicate similar calculations omacser grids. Simulations can serve as well to
simplify the fracture network by removing fracturesakly impacting the system (as was

proposed by Grenier et al., 2009).

The FCVA is here presented for the reductioniseaasflow limited to fractures in a three-
dimensional network. The fractures discussed insdopiel are planar objects but could also be
warped ones. Provided that warped fractures caappeoximated by pieces of planar objects
juxtaposed by common vertices, the mapping proeedusimilar to that presented for planar
fractures. The numerical code was implemented asted in Cast3M (2009), a simulation
platform developed in mixed hybrid finite elemertg the CEA (Commissariat a I'Energie
Atomique). In the sequel, the grid element idecaifion procedure for a single 3D fracture is
described in Section 2. The equivalent permeabiétsor is derived in Section 3. Finally, the

approach is validated and qualified against sonselzases in Section 4.

2 Voxel fracture meshing and associated flow conniaty

The basic meshing of the fractured medium is aethiiemensional regular grid. The mapping of
fractures onto the grid makes the fractures to ldakstairs. Figure 1 depicts a fracture network
mapped onto a regular cubic gridding (see as waligevin, 2003; Hirano et al., 2010). The aim
is to represent each fracture with a minimum ofscgiven that two neighbouring cells should

have a common facet. For instance, the apertueadt fracture should be limited to one cell and

6
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fracture intersections limited to one irregular rofnconnecting cells. This requires an algorithm
where the contacts between each step of the stgirssenting a fracture must be designed taking

into account that two adjacent steps should keepacbby only two lines of cells.

Fig. 1. An example of voxel grid for a network d&par fractures

The geometrical procedure to identify the fracttells can be summarized as follows:
» Calculate the distance between the corners of oélthe regular grid and the fracture
plane.
» Mark the grid elements that have corners at bqtbsitive and a negative distance from
the fracture plane as elements crossed by thaifeptane.
» Suppress elements as indicated below to obtaircdhect connectivity of the adjacent
steps.
We note that the three points evoked above alsty appieces of planar objects approximating

the shape of a warped fracture. The key point ppsessing some cells is illustrated in Figure 2.
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Fig. 2. Examples of step-shaped sets of mesheetinng a fracture. a: steps that do not respect
the optimal contact between stairs; b: steps wtinmal contact (only two rows of cells in
contact) between stairs.

The portion of fracture in Figure 2a is compriggdwo steps and the connection between these
steps is assured by four lines of cubic elemertis. Jreen cubes of the top step are located at the
top of cubes which are not the border cubes obtittom step. These green cubes of the top step
have to be suppressed while the white ones of dktter step are preserved. Finally, the correct
fracture representation is given in Figure 2b dndduplicating this elimination procedure over
all steps, the fracture is represented with theimmum number of elements connected by their
facets. The procedure is applied for each fraatfitee network and the fracture intersections are

simply obtained as the resulting intersectionsefftacture geometries.

In addition, within each fracture meshing, groupsells have to be identified in view of the
equivalent approach presented below: the cellstitotisg the fractures are separated in two
distinct subsets. The first set, not&lset for "simple set", is that enclosing cells wdos
neighbouring cells are all in the same plane. Téwoisd set, note@ (C stands for complex),
regroups two lines dX cells (denoted\ andB in Figure 3). The property of@ set is to connect
two groups ofS sets (i.e.C is the vertical part of a stair connecting twoibontal steps). For
both setsS andC, there are no fluxes through the top and bottorettaof cells. Two angled]
andp, are used to define the fracture plane orientatbfnespectivelyf) is the angle between
8
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the horizontal plangy and the fracture intersection (trace) on the galplanex-z (respectively,
y-2). It must be noted that the configuration preseéimeFigure 3 occurs fod5°> £>6=>0°. In
the sequel, this configuration will be studied be example of reference and the procedure

dealing with other orientations will be then dedve

AN
{ /<~ fracture

Z -~
»SJ;Y ol deL: 0
2 <--line A
‘ > = !
/=0 7 s column L
fracture—-—=>="| B | g =0
0
column F

a b

Fig. 3. Distinguishing betweedandC set of cells according to the fracture locatiothia cells.
a: Simple § set encloses neighbouring cells all in the saarzdntal plane; b: ComplexC) set
regrouping two lines of cells connecting t8gets.

3 Equivalent hydraulic conductivity computation

The approach for the computation of equivalent aytic conductivities is provided for the case
of a single fracture. Section 3.1 presents thecbdsa supporting the method as well as basic
equations. The properties of the MHFE scheme dstdot the approach are presented in

Section 3.2. In Section 3.3, the equivalent properare derived fod5°> >6=>C® and

extended to all geometries.

3-1 Introduction - asingle fracture

As stated previously, the meshing of a fracturewodt is built using a regular grid. The
geometry associated with a single fracture appesaesstair-shaped set of parallelepiped elements
(see Figure 1 and Langevin, 2003; Hirano et alL020

When modelling flow, the main concern is to evadu#ite fluid flux occurring within the

geometrical representation of the fracture and @mpt with a "reference”, the latter being
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analytical or stemming from a calculation over aywefined grid. For the problem of up-scaling
hydraulic conductivity in a discretized fracturewerk as that discussed above, the question of
fluid flux has to be handled at the scale of eadt gell. In the literature, a scalar value of
hydraulic conductivity per grid cell is often us@@vensson, 2001a; Hirano et al. 2010). This
choice may guarantee the flux conservation in 2aBes (Fourno et al., 2007). Concerning 3-D
problems, this section will show why the use ofcalar value can be a flawed assumption and
how to upscale fracture hydraulic conductivity mrrectly model the flux of a single fracture

intersecting a single rectangular cuboid (see Egurwith L, , L,, L, [L] the edge lengths of

the cuboid).

-

,/%é?/ 4¢7<% 0 //éé%/ Aé///

< / < fracture

X/|'__y <jf%3
a b ”

Fig. 4. A cell enclosing a portion of fracture (4aid the equivalent hydraulic conductivity tensor
associated with that cell (4b).

The fracture is modelled as a porous medium withydraulic conductivityk [LT™] and an

aperturea [L]. The fracture orientation is characterizedthg anglesd and S. The fracture is
not supposed to cross the top and bottom facets.efations governing steady-state flow are
classically the Darcy's equation (Eq. 1) and thesrmlance equation (Eq. 2):

g =-k.0h 1)

0g=s 2)

in which g [LT™] is the Darcy velocityh [L] the heads a source term [{].

Considering the fracture position and orientatiigre 4a), the boundary conditions of the
rectangular cuboid intercepted by the fracturechrso flow type at the top and the bottom facets.

Using a tensor notation, the classical analytigpression for the fluid flux, Q, is written as:

10
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ﬂLY singsingdL, O

cospf
ka| . . cospf =
=—|sinB.siné.L — L 0|Ch 3
Q= |snAsindlLy oLy @)
0 0 0

1
with ¢, = (L-sin® Bsin® §)2.

For no flow boundary conditions at the top and dnottfacets of the intersected parallelepiped

element, the equivalent hydraulic conductivity @mK , can be calculated as:

coso singsingd 0
cosf
R=£ sinf sind cosp 0 (4)
c,L, 0 c%sé?

Equation 4 demonstrates that the equivalent hywraohductivity has to be a tensor to correctly
model the fracture flux magnitude and directiontdiddy, when the opposite grid cell facets are
not identical (as for unstructured meshing usirg ¢brner point grid technique) the hydraulic

conductivity tensor is not symmetric.

In this paper, we propose to model fractures (ampdektension fracture networks) using
simplified diagonal hydraulic conductivity tenso@onsidering that the off-diagonal elements of

the tensor (Equation 4) depend on the prodin{5 sind, the simplification into a diagonal
tensor will be valid for values off and/or & close to zero. This geometrical configuration

corresponds to sub-horizontal and sub-verticalt faetworks. Equation 4 is obtained for specific
flow boundary conditions of no-flow at the top abdttom facets; which contradicts the above
statement of inferring diagonal tensors for sulitear fractures. Expressions similar to (4) can
be obtained by permutations between directiong, andz so that to deal with sub-vertical
fractures and flowing boundary conditions on the @aod bottom facets (see Table 1 at the end of
Section 3). At this stage of the paper, we focesahalysis on fractures honouring the condition

45° > > 6= 0°and decomposed int8 or C subsets of cells (see Section 2). The equivalent

11
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permeability tensor is computed analytically thattkMHFE properties (Section 3.2) f8randC

groups of cells (Section 3.3).

3-2 Flow governing equation and MHFE scheme

The purpose of the present section is to provider¢lader with some basic knowledge about the
MHFE scheme. In particular, through the introductiof additional unknowns termed head
traces, the water mass conservation principle eafoibmally established at the scale of a single
cell or of a group of cells. This property is funtiental for the FCVA presented here and leads to
the equivalent properties derived in the next $ectAs previously introduced, our approach is
based on diagonal hydraulic conductivity tensote $teady-state flow equations (1) and (2) are

rewritten in the form:

set _,
g=-K [Oh (5)
0§=s (6)

—set
with K the diagonal hydraulic conductivity tensor [t]T In the following, the index™" will

be replaced by or © according to th& or C set of cells considered.

. . . e o st ot
The goal is to relate equivalent hydraulic conduttitensor componentsk(;™, K =, K *) to the

fracture hydraulic conductivityk. The numerical scheme used relies on mixed figiggnents

that preserve by construction the fluid fluxes nalrto the interfaces between adjacent elements.
To this end, specific variables are manipulateduliog the mean heati® over an elemenE

and the mean heads (also called tradés)over the facet of the element. In the end, the
elementary scheme involves 13 unknowns for a celeiment, i.e., 6 fluxe®, , 6 head tracesh

and the mean hedud® . Flow is calculated by handling the head tracegrasipal variables with
the following form for fluxes and mean head (Mosale 1994; Dabbene et al., 1998; Bernard-
Michel et al., 2004):

QF =he P (M™)F -2 (M™)J.(T™)F with =16 @)

12
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> afTh

2.af

he (8)

with af =Y (M™)F MF :I(W)t(?ﬂ)*(\fvj)dE ,M *the inverse matrix ofM and W
j E

defined as J'F_v*vi.ﬁdFj =9, . Considering cubic elementsA{) and diagonal hydraulic

—set
conductivity tensorsK , the hybrid mass matriki & writes:

2 -1
k= k= 0% 00
-1 2
K= K= ° 00
0 0 2 0 — o0
K K
ME_l y y 9
6 2 1 ©)
-1 2
0 %= 0= O
y y
-1 2
R

Equation (7) can be easily written as

Q=B«Tn (10)

in which EK depends on values of fracture hydraulic condugtivi

Thanks to Equation (10), it is possible to asseciatmerical fluxes for a cubic discretization to
an analytical flux whatever the head gradient. Thisans we are able to propose equivalent

hydraulic conductivity tensors fd8 and C set of cells to obtain the exact flow occurringan

fracture.

13
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3-3 Expression of fluxeswith MHFE and derivation of equivalent hydraulic conductivities

By accounting for both the geometry of the modelfeactures and the MHFE numerical
formalism, an analytical expression of the fluxesach cell as a function of head gradients is
obtained. Mass balance, head, head gradient andityedre estimated within the element on the
basis of the traces of heads along the facetseoélgment. Given the geometrical considerations
reported in Figure 2, each element of the gridahited connectivity with its neighbours. This
point is used to obtain the analytical expressibthe MHFE fluxes. As mentioned earlier, the
equivalent properties are computed for two typesetifgroups for which no flow occurs through

their top and bottom facets.

3-3-1 The Sset of cells

In the case of cells from tieset (see Figures 3a and 4b), equations of MHFEEedare easy to

obtain. With reference to facet notations repoitedrigure 5, it can be noted that along the

direction, the unknown iQ° = Q = -Q; . By using Equation (10), it comes:

QS =-KSAAh, with Ah =Th, -Th, (11)
Along they direction, Q7 = Q2 = -Q; can be written as:

QS =-KSAAh, with Ah =Th,~Th, (12)

=S
For the sef of cells, the following equivalent hydraulic comtivity tensor (K ) is obtained by

flux conservation (see relations 3, 11 and 12):

KS 0 0 ks =2 0
=s X _ * Ac,cosB
K = 0 K; 0] with " (13)
a co
s K3== k
0 0 K Y Ac,cosb

Notably, K ®is not defined and can be set up at any valuen&sance that oKys

3-3-2 The C set of cells
The case of cells from th@ set is trickier (Figures 3b and 5b). We denoté&tandB the top and

bottom lines of cells, respectively; the elem@ntrespectivelyB) is the I element of lineA
(respectively, lindB) andQ,-Ai is the flux through the facebf the cellA (see Figure 5a for facet

numbering).

14



349

Facet 2 < Column L
e !
: Facet ¢ y
, Facet 3 Fadeta |Facets < Column F ‘ \ e
| 6
y \"
X Facet 1 di=0
Gr=0 A NE Facet 4 of the L columi
,,,,, Fracture
\ 0 A
\ l«——— Facet 6 of the F column
a b
Jd,=0
z
’ ’ <——line A
X y B
d,=0
C

350 Fig. 5. a: facets numbering of a cubic mesh fax Balculations; b: fracture location in a set of
351 2N cells belonging to a comple) set of cells; ¢c: two cells of@set of cells (see Fig. 5b) with
352 their local boundary conditions.

353

354 The following properties characterize the elementhe seC:

355 * Boundary conditions :
=Q, =0 i=0..N
356 le QZBO (14)
Q" =Q,° =0
357 » Continuity conditions:
5 =Qg
358 8 _ (15)
6 4
359 » Geometrical conditions
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N, the number of cells in a line ofGset, may be evaluated as a functiordoénd S from the

fracture position inside th€ set (Figure 5b). We consider the intersectionacés) of the
fracture with facet 4 of the first column of cedlad facet 6 of the lash{") column of cells. We
also assume that the two traces of fracture tduetmorizontal plane separating the two line€ of
cells, at the edge between facet 4 — facet 5 foffitet column and the edge between facet 6 —
facet 3 for the last column (see Figure 5). By dieigadz the variation of elevation of the traces

on facets 4 and 6 mentioned above we note

_|tanB|
- |tand)

It is obvious that the evaluation Nfis an approximation because all the triplﬁsﬁ,A) do not

tangi=% | [targ=2 = N (16)

allow an exact positioning of the fracture trace@ssumed above. Usually, one may miss or add
one cell compared with the real number of cellsai€ set. Another observation is helpful.
Considering the facet 6 of the first column (colufm Figure 5b) and the facet 4 of the last one

(columnL in Figure 5b), one can notice that the lerigitandL4 are equal yielding

QM =-Q ; QM =-QF (17)

The final relation deduced from geometrical obseove is that describing how the flux crosses
the last column (and by symmetry the first coluron)t Considering the facet 4 of the last

column and the lind, the height variation of the fracture trace equids Atanéd. On this facet

(facet 4, lineA) the length of the fracture trace equaI;S:_d—Z while the total length on the

sing
- - - — A - AN — C A -
facet 4 (lineA plus lineB) is L _@. Knowing thatQ,™ =Q, L4/L , We obtain
tan®
M= QF 18

A scalar valuaJ = tang
tans

is introduced to simplify the previous relatiQf™ =U.Q¢ .
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With the above conditions, we try now to express tlux in C set cells along th& andy

directions Q¢ , Q§ as functions ofA, 6 and 8. Two directions of head gradients are applied

onto the former systems to derive the associatedalong the same directions.

MHFE flux along the x direction

Knowing that the hydraulic conductivity tensor odich element is diagonal, the following
conditions can be expressed:
Q' =Q; =0 i=0.N
N =QY =0 i=0..N (29)
== =Qf
with Q° the flux of C set along thex direction. Using the boundary, flow and geometrica

conditions and Equation (10), the flo®{ can be finally expressed as:

2AK K S

Q==
(N +1—2Uj K¢ A KE
3 3

Ah, (20)

Using theN andU values previously determined the final expressarbtained:

Q== 20K, K, ah, (21)
i tan® 4 128
tanp| ‘- tanp KC 4 tarB| Ke
tand| 3 ‘ 3 -

- MHFE flux along the y direction

In the whole seC of cells, all the columns play the same role whadlows simplifying the
identification of fluxes along theg direction to the flux along a single column (Figusc). We
note (55 the flux of aC set column along the y direction

The flow boundary conditions are:

Q'=Q=0; Q=Q¢=0; Q:=-Q5=Q] (22)

CSYC is easily obtained by solving the following eqoas:
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Q¢ -Qr =20

B_NOA = 5 KCKC
404 QZB QlA 0 N Q§=—§A% h, (23)
Q3 _QS :0 2 Ky +Kz
Q/-Q¢=0

405 For N columns of cells withN :|tanB/ tar9|, the total flux ch along they direction writes

406 obviously:

tangs| <

407 ¢ =|—=Q° 24
Q =l anal @ (24)
408 - Derivation of equivalent hydraulic conductivities

409 Considering the relations, 3, 21, 23 and 24, thevadent hydraulic conductivity tensor 6f set
410 cells can be written as:

5 KEKE _a coso
. =
. K00 (1+ N —ZUJKZC +dyKe AN cosp
411 K =/ 0 Ky 0| with 3 (25)
0 0 K¢ 3. KiKY _a co3
=N c = =— k
2 K;+K; Ac,cosf
412  With the assumptiorK 7 = K¢, the following expressions are obtained:
tane)| 2( tarBJ2
1+ —
413 *  Ac, cosB 5 sin*@ (26)
sin®B
ke -4a_cod
Y 3Ac,codh
414 Itis interesting to note that:
415 » the hydraulic conductivity tensor is established46° > 8 > 6 > 0° (Figures 5a, 5b),
416 » for the casef=6=0 , there are obviously only cells & type and the classical
417 correction2 is obtained,
418 > for f=6,bysymmetryK? =KS and K =K .
419 >
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420 The equivalent tensors can also be obtained fagrditacture orientations by means of geometricainpgation
421 between the;, y andz directions so that the former results are exterideall configurations. Considering the vector
422 normal to the fracture plane, it is possible totsiwithe values of the equivalent tensor (by alsanging the basis

423  vector) and determine the values @fand S with 45°> 3> 6 > 0°. The results are summed up in Table 1 in

—set
424  terms of equivalent tensdf

Configuration resulting tensor configuration case
1 3] _K)fa O 0 nmax = nz & nmin = ny
=set
K =0 K ;a 0 B= arctan{:]—x)
|3 set = z
L 0 0 K z 0= arctan(:—y)
2 B e _Kja 0 0 nmax = nz & nmln - nx
0 K =] 0 K;a 0 B= arctan{:—y)
set = :
L 0 0 K z 6= arctan{:]—x)
3 = _K)fa O 0 ] nmax = ny & nmin = r]z
=sat
K = K zset 0 f = arctan{)
0 0 K#||= v
= y o 6= arctan&)
ny
4 _}<Set 0 0 ] Niax = Ny & ng, =n,
> =set Y
K =] 0 Kzsa 0 e arctan%)
set = y
L 0 KX _ 6= arctan&)
ny
5 9 KZSEI O O nmax = nx & r‘lmin = nz
=set
— set
>/|3 K= 0 K, 0 £= arctanney)
0 K = i
6= arctang—z)
6 A‘;" Kjet O O Niax = Ny & Nein = ny
=sat
K = 0 K ;et 0 B = arctan{r:—z)
0 K = n
X 6= arctanney)

425 Table 1. How to correctly orientate the equival@mtsor according to the fracture orientatié{respectively) is
426 the angle between the horizontal plarmgand the fracture intersection (trace) on the weltplanex-z (respectively,

427  y-2)
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4 Evaluation of equivalent properties
The FCVA is now tested against analytical resultsfifov: 1- in a single fracture with various

dips and strikes, and 2- in regular fracture neks/oAs already mentioned, the equivalent (full)
tensor is diagonal. The approximation is stricéyid for sub-vertical or sub-horizontal fractures.

The non-diagonal components increase as a funofiasinSsing. For all configurations, the

hydraulic conductivity of the fracture(s) is 88° m.s* (= 4 darcys), the fracture aperture is
2.10%° m. In Section 4.2, the case of fracture netwosksonsidered with emphasis on the specific
issue of fracture intersections.

4-1 Sensitivity to the orientation for flow in a single fracture
The fracture crosses the regular grid from one gdée opposite side. Different dip and strike

configurations are tested. For each mesh directiony, y, z the breakthrough fluxQ',is

i
ana

calculated using the MHFE voxel approach. An amed{texpression of this fluxQ. . is also

obtained considering Equation (3) and for whigh L,, L, are now the medium lengths. For
each fracture orientation, both analytical and micaeup-scaled hydraulic conductivity tensors
are derived from fluxes. The diagonalized "numétitensor K **™™" resulting from the FCVA

is compared with the analytical onk ™** and a relative error is defined as the ratio

ups,num __ ¢ ups,ana
K n K n

o with the indexn referring to the minimal, intermediate and maxiwalue of
n

the tensor components. Table 2 summarizes theisdeukhe different fracture orientations.
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454
455
456
457
458

459
460

461

462
463
464
465
466
467
468

min 6 (0)
Error on Kie |(%)
kmax
/3 ) 0. 15. 30 45,
0 0 0. ] [ 0. ] C 0. ]
0 0.6 28 138
0 0. | | 0. | 0. |
10. | T o. 0. ] (0. C 0. ]
02 11 51 152
0 87| | 44] | 37|
20. 170, " 0. [ 0.] C 0. ]
16 19 85 242
0. | 11 192] 139 |
30. 1707 0. [ 0. [ 0. ]
10 7.2 126 224
0. | |59 | 203 119

Table 2. Errors on equivalent tensor of hydrauboductivity between FCVA and analytical
values for the cases of a single fracture withedéht orientationsd (respectivelyp) is the angle
between the horizontal planey and the fracture intersection (trace) on the waktplanex-z
(respectivelyy-2)

Four points can be extracted from Table 2.

1. For =0 and =0, the local hydraulic conductivity of the fractusesimply corrected
by the ratio% and exact fluxes are obtained by construction fual error in Table 2).

2. Equation 4 shows that for the value8 {0 and f#0) or (¢#0 and S=0) the

analytical hydraulic conductivity tensor is diagbaa is also the case for the numerical
tensors of th& andC cell sets of the FCVA. The consequence is thatémfigurations

in which one of the angle8 or £ is null, the flux directions are perfectly modelland

errors are of only a few percent.

3. For other fracture orientations, precision depeasdshe value okinBsiné (see Eq (3)).

When considering diagonal hydraulic conductivitgder in the voxel approach, the non-
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diagonal flux values (Eq (2)) are supposed to bgdigible. This is not always the case

and the larger the value ein 5sind, the larger the errors become.

This test case confirms that the equivalent progedre exact for fractures aligned with a main
grid direction. The error increases when fractuientations deviate from such conditions. The
maximum error is less than 30%. For a real casgystuhen feasible, a main axis as close as

possible to the fracture plane orientations shbeldhosen.

4-2 Hydraulic conductivity of regular fracture networks

The second case study is that of a regular fragtateork in a block of 106L00x8 nt. The
system is not strictly three-dimensional becausetires are vertical and main hydraulic
gradients in the block concealing the fracture oekware horizontal. These settings, however,
allow a better assessment of the influence of dgracintersections. We first show that some
constraints in terms of grid size exist to actuadigresent the connectivity of the fracture network
on a regular grid. The smaller the grid size, tluser the representation is to the geometrical
reality. The contact surface between two intersgctiactures obviously depends on the size of
the mesh, so that head gradients as well as flwhamged across the intersection should
intuitively depend upon the grid size. The convangeof the flux in the network toward a

constant value with grid size is reached for cell@hsions tending to the fracture aperture.

The fracture network (Figure 6) is made of four fas of vertical fractures with directions of
10°, 34.5° 100°, and 124.5° (Figure 7). The nekwisr mapped onto five regular grids with
meshes varying from 0.1 m on a side up to 4 m (egéa, 6¢). For the purpose of comparison,
the network is also explicitly meshed (without miagp. No special effort to optimize the
number of cells was done for this explicit meshigd both fracture planes and fracture
intersections are discretized at a mean cell dif22om (Figure 6b). With the network topology
and the explicit meshing, the modelling exerciseeis/ similar to that depicted in Karimi-Fard et
al. (2006). This exercise will also serve as refeeefor evaluating accuracy of fluxes draw from
the FCVA approach. The properties associated vhiéhftactures of all families are constant:

hydraulic conductivity (3.810° m.s") and aperture (2.19m). Figure 6 shows the same fracture
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500
501
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504

505

506
507

508
509
510

network mapped onto two regular grids, the firsthva fine space step (0.2 m, Figure 6a), the
second with a coarse step (4 m, Figure 6c¢). Irsdt®nd case, the connectivity of the system is
not represented. The contact surface at the faatiersections is better modelled for the finest
grid. The validation of the FCVA is addressed bwsidering numerical fluxes from FCVA,
analytical fluxes from (3) and numerical fluxesrfréhe explicit meshing of the fracture network.

We noteQ,; the flux through the facgt(or equivalently along directioj) considering a head

gradient along the directianThe specific Iable‘fp' denotes fluxes from the explicit meshing of

the network. Using Equation 3, analytical fluxéshe whole networkQ ™ are calculated as the

sum of analytical fluxes associated with the indil fractures.

Fig. 6. Discretization of a regular fracture netwby using a fine grid size of 0.2 m on a side (a)
and a coarse grid size of 4 m (c). In b a portibthe explicit meshing of the fracture network for
the purpose of comparison with the mapping procadur

B Num, grad(h)=x
O Ana, grad(h)=x
B Num, grad(h)=y
O Ana, grad(h)=y
B Num, grad(h)=z

O Ana, grad(h)=z

—
S

First family set
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516
517
518
519
520
521

Second family set

y S

Third family set

Fourth family set

Fig. 7. Calculations of fluxes in a block enclostfifferent families of parallel fracture®,, Q,,
andQ;, refer to the fluxes in the whole block along g andz directions, respectively. Labels
"Ana" and 'Num’ refer to analytical solutions and numerical orse fluxesQ,, Q, andQ; are
calculated for three main head gradients alongth@ndz directions.

In a first stage, we study the fluxes in each ef fibur fracture families of the fracture network

independently (Figure 7). This is done in orderctonpare FCVA numerical flux values with
analytical ones. The error should be stronger foathe single fracture test case because there is
a side effect for the fractures which cross theténaed block from a vertical facet to a vertical
adjacent one. Indeed, for these fractures, thdaw+bhoundary condition is not respected for the
S and C sets of cells that touch the sides of the blodke Tluxes through each facet of the

fractured block are reported in Figure 7 considgthree head gradient directions. As expected,
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the flow is correctly modelled for each fracturé Jde order of magnitude of the different fluxes

is well captured, with relative errors between giedl and numerical fluxes less than 10%.

In a second stage, we model flow into the wholevodt including the four fracture families.
This exercise is performed by assigning the fractumtersection with the highest hydraulic
conductivity value of the fractures present at ihiersection. The analytical fluxes are still
obtained as the sum of fluxes in each fracturewdr&rom Equation 3). The above settings
correspond to the classical approach of Oda (1886gh, in terms of fracture intersections, is
equivalent to assume independent flow betweenurest If the same strategy is applied to
numerical fluxes (i.e., by summing the numericakéls of each fracture family), it is obvious
that the total numerical fluxes will be similardoalytical ones simply because FCVA is accurate
for poorly connected fracture networks. On the othand, calculating flux over the whole
network, including interactions between fractureshair intersections, will cause the numerical
fluxes to diverge from analytical ones. First, we#enthat the numerical fluxes calculated from a
network explicitly meshed at small mesh size (de®v@) are similar to that from the analytical
ones. This is the consequence of the explicit amdige meshing of fracture intersections to
which the highest local hydraulic conductivitieg assigned. In addition there is no dead-ends in
the fracture network. No forces (except the loaahductivity) are opposed to flow in each
fracture with the consequence that the total fluthe block is the mere addition of each fracture
contribution. In the end, the differences betwe@&@WVA and analytical (or explicit meshing)
approaches must be associated with the FCVA gemaletepresentation of the fracture network
and depend on the discretization. Figures 8 anep®rt on analytical fluxes, numerical fluxes
from an explicit meshing of the network and FCVAx&s values of the fractured block for
different mesh size values (from 0.1 to 4 m).
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—— Qxx (x 1.e-8) - - - - Qxx_ana= Qxx_expl (x 1.e-8)

——Qyy (x 1.e-8) - - - - Qyy_ana=Qyy_expl (x 1.e-8)
—o—Qxy (x 1.e-8) - ---Qxy_ana = Qyx_ana ~Qxy expl= Qyx_expl (x 1.e-8)
Qyx (x 1.e-8) - -=--Qzz_ana=Qzz_expl (x 1.e-7)

547 —4&—Qzz (x 1.e-7)
548 Fig. 8. Evolution of calculated fluxes in a fraedrblock (network in Fig. 6) with elementary
549 mesh sizes evolving from 0.1 to 4 m on a side. fid@tionQ; (i, ] = X, Y, 2) refers to fluxes
550 along the direction for a main head gradient along ttdérection. The analytical value&\ia"
551 are that from the Oda's assumption stating indegpgnflow between fractures. The values
552 labelled "Expl" stem from calculation over a fraetumetwork explicitly (completely) meshed for
553 Dboth fracture planes and fracture intersections.

554
140
120
100
80 1
g’
60 -
40 4
0 h' = : : : : ; !
0 0,5 1 1,5 2 2,5 3 35 4
‘—o—%Qxx —a—%Qyy —— %Qzz % Qxy %ny‘ A
555

556 Fig. 9. Fluxes through a fractured block (netwarlEig. 6). Evolution of the relative errd@{um
557  — Qana)/Qana With elementary mesh sizes in the range 0.1 —-@infi, ] = X, Y, 2) refers to fluxes
558 along thg direction for a main head gradient along itligection.
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The main observation is a convergence of FCVA nigakfluxes values toward analytical ones
when decreasing the mesh size. For finer gridstireeze values of 0.1 — 1 m), the relative error
on fluxes is close to 10 %, which is generally vergsonable in view of the weak precision on
hydraulic property measurements in natural mediaeMincreasing the mesh size, the evolution
of relative errors on fluxes is not monotonic (Fig®), especially for marginal fluxeg;, i.e.,
fluxes along directiom when applying a main head gradient along diregtipfi. Relative errors
may reach 50-100% o@j j#i but theses fluxes are also ten times less thaeglQ®; making
therefore a relative error of 50% @, something small compared to the total flux convelygd
the fractures. The non-monotonic behaviour of sr@ymes from the competition between: 1-
the calculation of the numbarof cells in a "ComplexC set (cells connecting by their horizontal
facets two portions of planes of different eleva}ja2- some cells at the limits of the fractured
block may show non-null fluxes through their topdamottom facets, which contradicts the
assumption used to calculate hydraulic conductivégsors (see Section 3). As expected
however, for coarse discretizations with rough espntations of fracture intersections, the
general trend is that of errors on equivalent cetiditly tensors increasing quickly with the
discretization size. The first criterion for prowid accurate results is to respect the connectivity
of the fracture network; as a rule of thumb, thekast matrix block between fractures should be
represented by a few cells. However, by considetivg order of magnitude of errors with
reference to computation efforts, simulations basedcoarse discretizations may be very
attractive for preliminary results. These compuiadi efforts are summed up in Table 3 for
different FCVA discretizations.

A (m) Number of cells Meshing CPU time¢ Flow (3directions)
(s) CPU time (s)
4 884 3 1
2 4108 7 6
1 18240 24 34
0.4 121440 193 370
0.2 495120 864 23257

Table 3. Computation times for meshing and caloudafluxes over a fracture network (network

in Fig. 6) at different cell sizes.
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In a final exercise, flow simulations are performied different assumptions regarding the
behaviour of fracture intersections. The goal is toopropose a third validation exercise of the
FCVA Dbut to illustrate how an additional freedomgoe=e can be added in modelling flow by
introducing different hydraulic behaviours at fiaet intersections. Ideally, the choice of
intersection modelling should be dictated by geiglaigconsiderations. In practice, the values of
hydraulic conductivity at fracture intersectionsultb have some statistical dependence on the
values of intercepting fractures, or be in a ranfj@alues supposed to mimic a set of objects
between clogged and widely opened intersectionst idersection models are considered in the
following sensitivity study. A first choice is tossign, at the intersection cells, the highest
hydraulic conductivity of intersecting fractures darcorrect it to obtain the equivalent
permeability tensor (Model 11, already used in pinevious simulations). Another option (model
12) is to sum each fracture contribution and torectr the obtained value. These choices do not
significantly change the order of magnitude of laydic conductivity values applied to the
intersection cells. Thus, to model extreme casedaaged or opened intersections, we apply a

correction to the highest hydraulic conductivityueaof fractures present at the intersection (i.e.,
corrections to I1), respectivek(! = %10‘6 for a clogged intersection (model 13a) g =10%

for an opened intersection (model 13b).

The influence of these models I1 to 13b is studiedthe network of four fracture families

discussed above and discretized at the constashtsgre of 0.4 m. The incidences in terms of

breakthrough fluxes through the facets of the tnaaxt block are illustrated in Figure 10.
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Fig. 10. Sensitivity of fluxes through a fractutgdck (network in Fig. 6) to the various choices
of hydraulic conductivity tensors at fracture isgtions Q,is the flux along the directiopn

considering a head gradient along the directjofiAna" corresponds to analytical solution. I1:

intersections with the highest conductivity of nscting fractures; 12: intersections summing
each fracture contribution; 13a: "clogged" intets&t, 13b: "opened"” intersection.

The analytical expressions corresponding to Odalsdiions are used as a reference for

comparison purposes. As stated before, this refereansiders no interactions between fractures

leading to a full hydraulic conductivity tensor. |[Reve discrepancies on fluxe®,,,Q,,,Q,

(Q; stands for flux through facgtfor a head gradient alonybetween the analytical Oda's case
and the numerical results are computed. The relamimrs(Q"“m —Q"’""i)/Qa"a are on average of

(0.2%, 11%, 4%), (11%, 15%, 1%), (26%, 33%, 16%6) @2%, 69%, 148%) for models I1, 12,

I3a and I3b, respectively. Models 11 and 12 (witpdraulic conductivity tensors assigned to
intersections of the same order of magnitude asah&actures) lead to comparable results in
terms of fluxes. This is not the case for modets d&d 13b, in which the order of magnitude of
hydraulic conductivity tensors of fracture intettsaas significantly differs from the fracture

hydraulic conductivity. Notably, it could be expedtfrom the 13a case, corresponding to very
low permeability at intersections, that it rendérs largest differences between analytical and

numerical fluxes. Actually, this is not the caseehbecause of the type of boundary conditions
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used (linear variation of heads along the contofithe block), allowing preferential flow along
the sides of the block when it is hard to passuginothe block because of clogged fracture
intersections. In the end and at least for theetihnedels of intersections 11, 12 and 13a, it seems
that the behaviour of fracture intersections does significantly modify the macroscopic

hydraulic conductivity of the whole fractured block

5 Conclusions

This paper proposes a new voxel continuum apprdachractured media (FCVA, Fracture
Continuum Voxel Approach) as part of a general riodestrategy which consists in mapping
main fractures onto a regular three-dimensional giile minor fractures and matrix blocks are
represented by an equivalent porous medium (ofesimgdual porosity). FCVA put emphasis on
calculating equivalent hydraulic conductivity terssoas opposed to scalar values, for regular

cells discretizing the fracture network.

The voxel continuum approach is developed for plafnactures. The method requires a
preliminary step of choosing the right cell size foapping the fracture network. The cell size
should keep the fracture network connectivity vatininimum amount of cells. The second step
provides equivalent conductivity values of thes#sce the general framework of a Mixed
Hybrid Finite Element (MHFE) scheme for solving Bian flow and preserving fluid fluxes at
the interfaces between elements. This approactemseshe advantages of providing a much
localized fracture geometry and equivalent properin terms of tensors instead of scalar values
(e.g., compared with smeared fracture approachsyever and for the sake of simplicity and
computational efficiency: 1- the tensors are calmd for groups of cells with the same
geometric configuration and hydraulic behaviourthe fracture plane, and 2- the tensors are

limited to their diagonal terms.

Applicability of FCVA for steady-state Darcian flowas evaluated on test cases handling both
single fractures and fracture networks. For sirigdetures, the error in terms of flux values is
limited to 25% for the worst case of fracture azimand dip close to 45°. For fracture networks,

alignment of fracture planes with the main directicof the discrete grid allows to minimize
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errors on fluxes (and hydraulic conductivity ters3oifhe optimal case is obtained for networks
composed of sub-vertical and sub-horizontal familierror of a few per cents). Such levels of
errors are reasonable as compared to classicattamties obtained when measuring hydraulic
properties of natural fractures. Still, for fracuretworks, a minimal network dependent grid size
is required to accurately represent the geometdy aomnectivity of the system. As a rule of

thumb, the minimal size of matrix blocks betweesctures should be discretized by a few grid
cells (2-4). For smaller grid sizes, the accuratthe flow simulation increases. Depending on

the given application, the user may then balancaracy versus computational effort.

Another issue is the treatment of fracture intdreas in fracture networks. The approach by Oda
(1986), though precise (full tensor), makes str@asgumptions on the equivalent hydraulic
behaviour of a fractured block in adding the cdmitions of all fractures (equivalent to state the
independence of flow between all intercepting fnees). The FCVA voxel continuum approach
allows various assumptions for assigning hydraadinductivity of fracture intersections. In all
cases it is important to note that a user can ingthe effective hydraulic conductivity of the

whole fractured block by changing conductivitiesndérsections.

Perspectives in the near future will address tlblpm of heterogeneous properties within each
fracture plane. Because cells in a fracture plaaeegrouped into so-call&landC subsets, it is
envisioned that further versions of FCVA will haadiniform properties of cells within a given
group, but varying between differeBtand C groups of the same discretized fracture plane.
Notably, the extension of FCVA to other objectsntipdanar fractures is also under study. Some
of them, such as bounded rectangles or squardéspdalipsoid shaped planes, could be handled
directly by starting with an infinite fracture planntersecting the whole domain and then
removing the grid cells that do not belong to thespribed geometry. Other types of objects, like
wells, tunnels etc., require more algorithmic éfokVe also raise that modelling flow at fracture
intersections should be improved in terms of temepresentation and flux distribution. The
theory and parameters that define a flow dimensmuid be investigated and used to quantify
flow magnitudes distributions consistent with fraet connectivity (Barker 1991; Geier et al.,
1996; Andra 2001). This might become an importasti¢ especially if FCVA is envisioned as a

possible tool for solute transport modelling.
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Finally, we note that the development of meshing/stdbased on corner-point grids and non-
structured finite-volume approaches to discretipg fequations are also very appealing. They
allow meshing objects of complex geometry (inclgdiwarped fracture planes and their
relationship with the host matrix) with a reasomabumber of cells. The finite-volume (control
volume) approach is a priori incompatible with elFE technique because mass conservation
in finite-volumes is associated with (harmonic) r@ging of conduction properties between
adjacent elements. MHFE do not rely on averagiaghédinite element keeping its own hydraulic
properties. Mass conservation is fulfilled in buniiglthe discrete system of equations by equating
inlet-outlet fluxes at the interfaces between asla@lements. Except for this technical point, the
FCVA and its calculation of anisotropic tensors a@ banned from applications to non-
structured meshing. We foresee some possibilibiesap fractures onto corner-point grids. These
possibilities assume: 1- to build an algorithm atderemove useless cells at intersections
juxtaposing pieces of planar objects representiggyftactures (see Section 3), 2- to calculate
MHFE fluxes over contorted elements. This is fdasispecially with a variation of MHFE
handling a single unknown per element (Younes.eR@ll0). With this variation, MHFE adopt a
philosophy very similar to control-volumes while céding calculations of inter-block
parameters. The latter feature would facilitate #waluation of full anisotropic tensors of
hydraulic conductivity. Nevertheless, adapting thapping presented in this paper to corner-

point gridding needs for important algorithmic effothat are postponed to further investigations.
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