N
N

N

HAL

open science

A new estimation of equivalent matrix block sizes in
fractured media with two-phase flow applications in dual

porosity models
Chahir Jerbi, André Fourno, Benoit Noetinger, Frédérick Delay

» To cite this version:

Chabhir Jerbi, André Fourno, Benoit Noetinger, Frédérick Delay. A new estimation of equivalent matrix
block sizes in fractured media with two-phase flow applications in dual porosity models. Journal of

Hydrology, 2017, 548, pp.508-523. 10.1016/].jhydrol.2017.03.028 . hal-01738345

HAL Id: hal-01738345
https://ifp.hal.science/hal-01738345
Submitted on 20 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://ifp.hal.science/hal-01738345
https://hal.archives-ouvertes.fr

g b

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A new estimation of equivalent matrix block sizesin fractured media with two-phase

flow applicationsin dual porosity models

Chahir Jertdi André Fournd Benoit Noetinger Frederick Delay/’

1 IFP Energies Nouvelles, 1&4 Avenue du Bois Pré2s09 Rueil-Malmaison, France.
2 Laboratoire d’Hydrologie et de Géochimie de Steash, Univ. Strasbourg/EOST, CNRS

UMR 7517, 1 rue Blessig, 67000 Strasbourg, France

* Corresponding author: Phone +33 3 68 85 04 18;#38 3 68 85 04 02; mail fdelay@unistra.fr

Abstract

Single and multiphase flows in fractured porous imedt the scale of natural
reservoirs are often handled by resorting to homizgel models that avoid the heavy
computations associated with a complete discrédizaif both fractures and matrix blocks.
For example, the two overlapping continua (fractumed matrix) of a dual porosity system
are coupled by way of fluid flux exchanges thatpdgeondition flow at the large scale. This
characteristic is a key to realistic flow simulaisp especially for multiphase flow as capillary
forces and contrasts of fluid mobility compete le extraction of a fluid from a capacitive
matrix then conveyed through the fractures. Théharge rate between fractures and matrix
is conditioned by the so-called mean matrix bloiae svhich can be viewed as the size of a
single matrix block neighboring a single fracturghim a mesh of a dual porosity model.

We propose a new evaluation of this matrix blockesbased on the analysis of
discrete fracture networks. The fundaments relynugstablishing at the scale of a fractured
block the equivalence between the actual fractetevark and a Warren and Root network
only made of three regularly spaced fracture fasilparallel to the facets of the fractured

block. The resulting matrix block sizes are thempared via geometrical considerations and
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two-phase flow simulations to the few other avddamethods. It is shown that the new
method is stable in the sense it provides accugiats irrespective of the type of fracture
network investigated. The method also results in-plwvase flow simulations from dual
porosity models very close to that from referencasulated in finely discretized networks.
Finally, calculations of matrix block sizes by tmesw technique reveal very rapid, which
opens the way to cumbersome applications sucheg®pditioning a dual porosity approach

applied to regional fractured reservoirs.
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Fractured porous media; Matrix block sizes; Duabpdy models; Multiphase flow.
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1. Introduction

Conventional oil reservoirs are often housed inctfreed rocks, especially in
carbonates environments, and one can estimatentbrat than 30 % of world oil reserves are
concealed in densely fractured systems, oil beiminiy trapped in the host rock matrix.
Paradoxically, these geological structures maygétigcontrasted effects on large-scale two-
phase flow patterns by increasing oil recovery wueigh local permeability values, or on the
opposite, by decreasing oil extraction rates bexafi®arly water invasion, viscous fingering
etc. The same type of behavior is also encounteréde context of water decontamination
and can become even more complex if oil (and/oeryas swept by injections of miscible
gas.

Modeling two-phase flow in fractured reservoirs new often employed for the
purpose of various applications, for instance t&eas the relevance of different oil recovery
strategies or to investigate on the feasibility ilofsitu water decontamination processes
(Bourbiaux, 2010). This fact makes that modelinggk phase or multiphase flow in
fractured media is still a fertile research domawen though pioneering works on the topic
started in the early sixties (e.g., in Lemonniealgt2010a, b).

In this context, flow simulations relying upon fipgridded discrete fracture networks
and their associated (discretized) matrix bloclsk@coming increasingly popular because of
the availability of high performance computers, f{®gress in algorithms for meshing
complex geometries, and the availability of sopteded numerical techniques for solving
partial differential equations (Landereau et aDDP, Noetinger et al.,, 2001; Adler et al.,
2005; Matthai and Nick, 2009; Fourno et al., 20I3)is exhaustive approach is critical to
bring us reference solutions and various benchmaitts which simpler approaches can be
compared. Nevertheless, gridded discrete fractaterarks may be poorly documented and

include flawed information in the case of real-wdodpplications. In addition, finely gridded
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systems remain hardly usable for current practggilications to large-scale systems that
result in cumbersome model parameterizations amdyheomputations. This downside is
emphasized in the domain of petroleum engineerisigally dealing with both non-linear

multiphase flow and dense fracture networks reggihuge discretization efforts (Landereau
et al.,, 2001; Adler et al., 2005; Fourno et al.120 Applicability is also hindered by

duplicated calculations if the study encompasssts tef various model designs, various
model parameterization and various flow scenarios.

Fortunately, dense fracture networks are also gmodlidates to homogenization at
the scale of reasonable elementary mesh sizesh@mwrtder of 5-100 m) by resorting for
example to the dual porosity approach to fractumedlia initially developed by Barenblatt et
al. (1960). The dual porosity formulation concepigs a fractured system as two
overlapping continua merging a fracture medium anchatrix medium with contrasts of
hydraulic properties between the two continua. Flethen described by a set of equations in
each continuum (this set depends on the type @f #ad the fluid phases present in the

system) associated with an exchange term ruling flilne fluxes percolating between

continua.
This exchange term is all the more important thageneral fractures are conveying
flow as the matrix stores fluid volumes. In tramsi@roblems as for example forced flow

between injecting and extracting wells, the way rflationship establishes between storage
capacity and conduction property conditions theralVeesponse of the reservoir (e.g., Acuna
and Yortsos, 1995). In the specific cases of twasghflow (water and oil), the absence or the
weak incidence of capillary forces in open fractureakes that flow is locally mainly of

single-phase type conveying either oil or wateritvBharp saturation fronts in between) at
different locations in the fracture network. F& gart, the way the matrix blocks are soaked

(water invades the matrix and pushes oil away)raindd (oil pushes water) strongly depends
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on matrix block sizes and on the petro-physics @rigs of the matrix, making that extraction
from the matrix of a fluid by the other is mainlyiveen by capillary forces or by capillary
forces plus viscous forces (single-phase Darcian tb make it simple).

When a discrete fracture network is connectexigh and handled at an elementary
scale larger than a representative elementary \@ltine exchange term in the dual porosity
models is proportional to an equivalent matrix kl@tze. Intuitively, a REV for a fracture
network is a volume within which mean propertiesttté network such as fracture density,
fracture aperture, fracture hydraulic conductiigve some statistical meaning (Long et al.,
1982; Neuman, 1988). In a dual porosity model, REV is also associated with the
capability to represent the actual fracture netwaska synthetic network made (in three-
dimensional problems) of three regularly spacedtinr@ families, each family developing
fracture planes normal to one of the three maircations of flow. The so-called DFN
homogenized as a "sugar-cube" model (Warren and, R663) is at the origin of the notion
of the equivalent matrix block size in relation vihe dimensions of the elementary "sugar
piece" separating neighbor fractures in the homizgenDFN (Kazemi et al., 1976).

There exist two types of methods to evaluate tleenehtary matrix block size. The
first type relies upon exercises matching actual vest drawdown curves with analytical
solutions that inherit from rigorous mathematicahtogenization or large-scale averaging
techniques (Arbogast 1990; Quintard and Whitak@931 Noetinger et al., 2001; Unsal et al.,
2010; Noetinger and Jarrige, 2012). The downsidehese techniques is that sometimes
actual well testing in fractured rock do not exastl when these tests exist, the damaged zone
in the close vicinity of a well may not fully reie flow conditions in the natural fracture
network. The second type of methods is based omeggizal considerations regarding the
fracture network. These considerations led to thgeemetrical approaches that are the

geometrical imbibition method (GI, Bourbiaux et dl997), the enhanced general imbibition
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method (EGI, Bourbiaux et al., 2006), and the mgaacing method (MS, Narr, 1996). It is
obvious that these approaches can only be apgli@dninimum prior knowledge about the
fracture network geometry is available.

In this contribution we propose a new geometricathud that can to some extent
overlook the actual geometry of the fracture nekwbecause the method relies upon the
identification of a sugar-cube DFN equivalent te #@ictual network (see details hereafter).
The method also allows us to calculate matrix blsizks along directions parallel to the main
flow directions that are conditioned by the geomefrthe fracture network (or its equivalent
as a sugar-cube model). Section 2 (and Appendis Ajcused on the theoretical framework
we rely upon to build the so-called oriented bls@e (OBS) method that we propose. For the
sake of clarity, a few features about dual-porositdels are also reminded. The matrix block
sizes stemming from the OBS technique are then aoczdpto that from the other geometrical
techniques (GI, EGI, and MS, see above). The cosgars performed by way of a suite of
calculations applied to synthetic random fractuedwaorks for which we explicitly control
both the geometric and hydraulic properties of hleéworks and the mean size of matrix
blocks between fractures. As told earlier, onlyskeand well-connected fracture networks are
considered because sparse networks cannot be hoimedevia a dual porosity model at the
scale of a complete underground reservoir. Secti@valuates the OBS technique and also
the other geometrical approaches within the framkved a dual-porosity model compared
with exhaustive calculations discretizing the fumetnetwork and the matrix blocks. The two-
phase flow scenarios are either dominated by eapifbrces or viscous forces in an exercise
which consists in draining oil from matrix blocky linjecting water in fractures. These
complex flow scenarios are performed over synthedgt cases in which we control the

reference calculations (in a fully discretized sys). This procedure enable us to clearly
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emphasizes the main theoretical findings regardiagyix block size in dual porosity models

before envisioning further concrete field-scaleleagpions.

2. Theoretical background

In various approaches to fractured systems, thitylad fracture networks embedded
in a host rock matrix is often represented as twerlapping continua merging a fracture
medium and a matrix medium. In a so-called duabgity — single permeability model, the
fractures are usually highly conductive and poothpacitive as the matrix is highly
capacitive but with negligible flow triggered bwidl pressure gradients (weak permeability).
As an example, single-phase Darcian flow in a dw@itinuum approach results in the

resolution of two equations in the form

o(po' f
(S:p LD.(—p%.D(Pf +pgz)J—Em*f =0 (1)
a(gfn)+ Eg“f =0 : E’T”f = pO’%(Pm—Pf) )

For the sake of simplicity, references to spaceamd time (t) for parameters and state

variables have been dropped. The indexes f andfen te fracture and matrix continua,

respectively. P [ML-3] is the mass density of the fluidt! [ML-1T-1] is the dynamic

viscosity of the fluid, k? [L2] is the permeability of the continuurh ()\ - f,m), ¢ []is

the porosity of the continuur, P [ML-1T-2] is the fluid pressure in the continuutn, g

[LT-2] is the scalar value of the gravity acceleratg, and z [L] is the local elevation taken

m- f

from an arbitrary reference and counted positivesard. a [MLT?] is the exchange
rate (a mass fluid flux per unit volume of mediubgtween the fracture and the matrix

continua.
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In (2), the exchange rate is of pseudo steady-sgpte meaning that the relationship
between matrix and fractures depends on pressyn® lggtween the continua and not on a
convolution product of their derivatives with resp& time. In (2), the matrix permeability
k™ is assumed small enough to neglect Darcian flix¢lse matrix (compared to that in the
fractures) but large enough to enable fluid fluxcp&ation between the matrix and the

fractures. Therefore, the matrix permeability isamry of the exchange rate via the term

ok™,o [L? being a shape factor tensor that quantifies teamsize of the matrix blocks
associated with the fractures included in an eléargnvolume (for example, the volume
corresponding to the elementary meshing employeenwdolving numerically Egs (1) and
(2)). By construction, the pseudo steady-staterapsan in (2) ignores the early transient
flow regime between matrix and fractures which magult in erroneous evaluations of
exchanged fluid fluxes, especially in the case ebkly permeable matrix media requiring
long times for equilibrating their fluid pressuielfls with that of fractures (e.g., as in shale
gas and shale oil extraction problems). Transigah@&nge rates between fractures and matrix
are the natural outcome of Multiple INteracting Goma (MINC approaches) initially
developed in the late eighties (e.g., Pruess anddiahan, 1985; Pruess et al., 1990) and
more recently reassessed and improved (e.g., K&@amd et al., 2006; Tatomir et al., 2011,
de Dreuzy et al., 2013). The MINC models are nobimpatible with the notion of mean
matrix block size in homogenized fractured systemseach matrix block is viewed as an
entity of prescribed size enclosing a nested hgeareity.

Various formulations of the shape factor have bpeyposed for many modeling
applications (Kazemi et al., 1976; Thomas et &83t Coats 1989; Ueda et al., 1989; Lim et
al. 1995; Quintard and Whitaker, 1996; Noetinged &stebenet., 2000) amongst which the
formulation proposed by Kazemi et al. (1976) is time used in this study. This choice is

motivated by a quite simple formulation which alk¥or dealing with diagonal tensors, and
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also introduces the mean matrix block size as atgyaveighting the influence of the matrix

permeability tensor to control the fluid fluxes Baoges between matrix and fractures. For

diagonal permeability and shape factor tensorsptbductok ™is developed as

k'/s: 0 0
ok™=| 0 kI'/ss 0 ©)
0 0 K/

with s [L] (i=X, y, 2 the mean matrix block size along the main flowediioni. As the

exchange rate between the fractures and the msataxey feature to the behavior of a dual
continuum and some other homogenized approachesof@er et al.,, 2010a, b), it makes
sense to revisit the item especially regarding rttean matrix block size (which rules the
fluxes, provided the fluid pressure fields are eotly calculated).

The Oriented Block Size (OBS) technique that weettg below infers the mean
matrix blocks sizess (=X, y, 2 from a fractured system by assuming that a rdokkb
enclosing an actual fracture network with variobaracteristics (e.g., Fig 1) can be turned

into a simplified block with an equivalent fractunetwork composed of three families of

planar fractures.

NE
W

dir i: main flow direction 1, i=1,2,3
Fig. 1. A fractured rock block at the scale of semwoir grid cell with references to main flow

directions and facets of block normal to flow dtrens.



200 Each family is defined by a uniform spacing betwé&antures and a fracture plane normal to
201 one direction of flow (or including the two otherettions). This equivalent fracture network
202 (e.g., Fig. 2) which draws the so-called "sugareutonfiguration as proposed by Warren
203 and Root (1963) and referred to as the WR modelditar, is conceptually compatible with
204 the notion of mean matrix block size. The three i@ of WR fractures delimit a
205 parallelepiped elementary block separating neighitamtures that should coincide with the
206 shape factor as defined in Eq (3). If the whole W&ck is wide enough, the three fracture
207 families can be aggregated as a single fracturmeuility tensor (or value) and a single
208 fracture porosity for the whole block or its facelbese parameters depend on the size of the
209 elementary matrix block separating the WR fractuig comparing, or more exactly by
210 identifying permeability and porosity properties af WR block with that of an actual
211 fractured block, one is able to define the equinalmean matrix block size of the actual

212 fractured block.

: [ I I [ | 5 dir 3
Lt ' o,
- L ga
- > ~
dirl

214  Fig. 2. A regular fracture network of three fraetdiamilies (a Warren and Root (WR) model)

213

215 at the scale of a reservoir grid cell with refeeet main flow directions, facets of block
216 normal to flow directions, and spacing betweenttrees.
217

10
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Let us take a parallelepiped block housing anadracture network as depicted in

Fig. 1. The first way to identify a single macrogitopermeability tensok ' for the block is
to employ upscaling approaches, multiple contifeoty (Karimi-Fard et al., 2006; Tatomir
et al., 2011; Jourdain et al., 2014), analyticdtsons (Oda, 1985) or simply to conjecture the
entries of the tensor as could be done, for exgmplearameterizing a dual porosity approach
after having postulated that the approach was coemefor the problem under investigation.
A second way is to extract the (diagonal) tensomfithe structural properties of the fracture
network and its relationships with the homogenaatrolume (the block) concealing it.

The actual fractured block as depicted in Fig bngnted with its main directions

along the main directions of flow indexed iy1,2,3 (here completely equivalentite x, y, z

for locations in space denoted=(x,y,z) but easier to manipulate when incrementing the

index). The block size in direction i is denoté'd and the sides delimiting the block are also

indexed by i but for limits normal to the main ditien i. In addition, block sides are labelled

i— ori+ according to their respective location upstreardawnstream along direction i.
Assuming that the fractured block is well connectbd mean permeability of the block along
a direction i can be calculated as the average twersidesi— and i+ of the local

permeability of fractures intercepting the sidesisTyields

s 1 Nf,_ N,
ki _Z(AH:LAHZ)(;knln%-F;knlnenJ (4)

In the above equation,s a cycling index such that, e.g+1 = 3 when = 2 andi+1 returns
to 1 wheni=3. k™ [L? is the macroscopic fracture permeability of thactured block
along directioni, A A, [L? is the total surface area of sidés and i+ these being

intercepted by a number of fracturddf,_ and Nf,. k [L?] is the local permeability of a

11
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fracture seen as intercepting the side of the bbnvek an apparent lengtrand with apparent
fracture aperture[L].

By re-using the same notations for directions addssin a rock block modeled as a

WR
WR network (Fig. 2), one can also calculate therimltI<i of the diagonal fracture
permeability tensor of the WR block along direcianThe three fracture families of the WR
network are also indexed by i with the same notatie for the block sides, i.e., a fracture

family i corresponds to fracture planes normaliteation i. A family i is of uniform spacing
S [L] (S Is measured along direction i, see Fig. 2), coth’s fractures with a uniform

scalar permeabilityki and a uniform fracture apertur%. With these settings and the
assumption that flow only occurs in the fractutd® total flow rate entering or exiting the

WR fractured block through a sid@ormal to the directioncan be expressed as

K)o, pK"
Q=-0P ZijejAk;kvti,k#jH =_DiPTAi+1Ai+2 )

=
For the sake of simplicity, the gravity componeoitflow have not been accounted for in (5).
Nf,€A,...i«z; rEPresents the total surface of flow developedhigyfamily fracturg through
the sidei of the block, A,,A,, is the total surface area of the sigeand k'™ is the
macroscopic fracture permeability of the WR blod&ng directioni. The equality in (5)

comes down to a direct identification of the thteens of the macroscopic permeabilky®

as

k'™ 0 YA, ¥A,|| Nfek,
KR =|yA, 0  YA,||Nfek, (6)
k™| (YA, YA, 0 J[Nfek,

In the context of scaling the valu&$® so they become equivalent to calculated values in

rock block encapsulating an actual fracture netwdrk numberNf, of WR fractures, their

12



262 apertureg and their permeabilitk. become the unknowns of the problem. Therefore, it

263 makes sense to invert the linear system of equéipwhich yields

264 Nfek =%i(—1)6"j k"™ (7)

j=1

265 with §, ; the Kronecker delta functio, ; =1 if i = j andd, ; =0 if i # .

266 By considering the structure of a WR fracture nekyone can write
267 Nf(g+s)=h = 8- 8 (8)
A e+5

268 Note in the above expression that countiNfy fractures assumes the presenceNdf-1

269 fractures inside the block and that the two side$ the block are each bounded by half a

270 fracture of familyi with half the aperturez counted in the block. Introducing (8) in (7)

271 resultsin

272 Kk :%[1%}2(—1)% Ko ()

273 The expression (9) will be used later for the psgof identification between an actual

274  fractured block and a WR block.
275 Let us look at the porosity properties of the WBdll The fracture porositg'™® [-] of
276 the whole WR block and the fracture densii{f* > [-] at a sidei defined as the porosity of

277 fracture network at a side of the block (the ratiadghe surface area of open fractures at a side

278 to the total surface of the side) can also be ddras

3 3
279 @R= Z NfieA A, :Z Nf.e (10)
i=1 A1A2A3 i=1 Ai
280 @"S= % (11)
|

I#i

13
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Notably, the expressions in (10) and (11) are rasimaple but are approximations since the
intersections of fractures are counted twice in pozosity values. This was found of

negligible influence for classical block sizes dratture apertures. Subtracting (11) from (10)

returns the ternNf.e /A, which also appears in Eq (8). Therefore, anothey tw express the
relationship between the local WR fracture permiéggbk, and the macroscopic permeability
k"™ in (9) is

1 3 S i LWR
= -1k 12
k| Z(qj/vR_(qNR—s);( ) j (12)

Both expressions (9) and (12) are employed to deghe matrix block sizg (in 9).

If the WR network is equivalent regarding its hydi@a properties to the actual

. - _S VVR . . .
fracture network, it is expected thaf®, cﬁNR , and k" are similar to the equivalent
properties in the actual block of fracture netwasspectively denoted ag”, ¢, and

k™™ (see (4) for the latter term). It is also expedieat the WR network, while being still

equivalent to the actual fractured block, can iitheome properties (parameters) of a
homogenized model such as the mean matrix blods 9t the medium and the permeability
tensor at the macroscopic scale of a fracturedkblBg imposing these properties in (9) and
(12), and after a few algebraic manipulations &ppendix A for details), an expression of

the mean matrix block sizes in a homogenized fradtblock can be written as

23: (_1)5|,j kFN—S
j=1 ]

((pFN* _ (pIFN—S* )ZS: (_1)6i,j kjf
j=1

§ = (13)

k™™°(i =1,2,3) are the permeability values at the sidesf the actual fractured block,
k' (i =1,2,3)are the entries of the diagonal permeability terefoan homogenized medium

equivalent to the fractured block (e.g., that ofdaal porosity model), andg™ |,

14
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@ (i =1,2,3) are rescaled block and side porosities of theahdtactured block. These

rescaled porosities of dimension™JL(a porosity per unit fracture aperture) are ciaimd
over the skeleton of the actual fracture networkwvtich each fracture is assigned a unit
fracture aperture.

In addition to postulating the equivalence betwa&iR block and the actual fractured
block, the assumptions allowing us to derive (18) awofold. First, the actual fracture
network is a good candidate for homogenization witie meaning that there exist
macroscopic properties as mean matrix block sizd dragonal permeability tensor
characterizing the hydraulic behavior of the netwat the large scale (at least, the scale of a

mesh of a homogenized model). Second, a WR netexigks (as that investigated by way of

equations 5 to 12) but with uniform fracture apete, over its three fracture families and

still equivalent to the actual fracture networkggppendix A for details). There is no clear
criterion (except dealing with a dense and wellremnted network) allowing us to state
beforehand whether or not a given fracture netwasdkild follow the above assumptions.
Eventual criteria would also depend on the flowcesses and mechanisms targeted for
further applications at the large scale.

It is worth to note that Eq. (13) depends on bobih facet permeability values of the

actual fractured bIockkiF N“S and the structural properties of the actual fractnetwork

skeleton in the form of porositieg™ and ™5, These features make that applicability of

(13) is conditioned by a good knowledge of the akftacture network geometry and, as a
downside, renders the method hardly applicableotwrlg-known natural systems. In the end,
Eg. (13) should be mainly used in problems dealinitn homogenization of systems with

well-known geometry and discretization of synthdtacture networks (as done for instance

in reservoir engineering when passing from a geoédgnodel to a tractable flow model).

15
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This notwithstanding, the OBS technique can aldoveleanother form of the mean

matrix block size. By manipulating the expressiémhe side block permeability of the actual
fractured block in (4), scaling the subsequent esgion with the side block porositigs" ~°

and making use of (13) (details are provided in &qix A), another form of the mean matrix

block size comes up as

2e.k

- _ (14)
> (DK

S

This form introduces the existence of a mean sifrgieture aperture, [L] (which is also the

uniform aperture mentioned above for the WR netywoakd a mean single-fracture

permeabilityk [L?] at the scale of the whole actual fractured bldkikese two quantities are
additional assumptions to that discussed regardi@pfor the applicability of (14).
Even though these assumptions may appear veryctegty they give the possibility

to infer mean matrix block sizes from poorly knoamd hardly accessible fracture networks

as often encountered in field case applicationg é"thtrieskjf of the permeability tensor of

the whole fractured block can be evaluated by wiayydraulic tests; preferably interference
testing between distant wells that avoid bias stemgnfrom an environment close to the

tested well that would not be representative offtheture network at a larger scale. Values of

uniform single-fracture aperture, and uniform single-fracture permeabiliky are harder to
infer because data obtained for instance from aptaging of boreholes (foe, ) and flow or

production logs (fork ) may reveal not representative of the whole netwtirremains that
the matrix block size calculation in (14) is fedsitvithout resorting to any knowledge on the
structure of the actual fracture network. It is i that the subsequent inferred value of
mean matrix block size should be taken as an @fderagnitude (then refined for instance by
model inversion) instead of a robust pinpoint value
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In the following comparing: 1- the OBS techniquehnother geometrical techniques,

and 2- the dual porosity approach (handling maltfock sizess) with finely discretized

networks, we address the relevance of the simgléepression in (14) under the assumption
that the skeleton of the fracture network is knof@s is the case with other geometrical

methods). We prescribe to each fracture a unifoqpertare and a uniform fracture

permeability. The skeleton is then discretized 1;1m1:lentrieskif of the permeability tensor are

calculated by performing numerical "permeameteiegiences (i.e., calculating fluid fluxes
between opposite facets of the fractured block updescribed Dirichlet boundary conditions

while the other facets of the block are of no-fltype).

3. Comparison with structural-geometrical approaches

As shown from a theoretical standpoint, the OB&hnegue defines a mean matrix
block size as a measure drawn from geometricakmdtural properties of a discrete fracture
network and its equivalent representation via aill@g'sugar cube" network. In theory, no
reference to any calculation of flow at the largals is evoked in obtaining the OBS matrix
block size, which renders the technique comparabits spirit to other previous approaches
also based on geometrical-structural charactesistithe discrete fracture network.

In the following, the OBS evaluation of matrix bkosizes is compared with three
other types of geometrical calculations, namelg ¢eometrical imbibition (Gl) technique
(Bourbiaux, 1997), the extended geometrical immhit(EGI) technique (Bourbiaux et al.,
2006), and the mean spacing (MS) technique (N883)L The main backgrounds of Gl, EGI,
and MS are summarized (sometimes slightly enhanasdfor EGI) and presented with
notations consistent with that of the present wiarRppendix B. Gl and EGI techniques are
only applicable (in their original version) to tvamensional fracture networks and model the

distance between any location in the matrix and ribarest fracture of the DFN. MS is
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available for two- and three-dimensional systemd iafers the mean lag distance between
two neighbor fractures along the main directionsflofv in a fractured block. All the
geometrical methods need the detailed geometrye@ftFN, although OBS could be used
without it (See Section 2). But for a fair compariswe assume for all methods that the
skeleton of the fracture network is known.

The comparison of OBS, GI, EGI, and MS is conduicter the two horizontal
directions of a three-dimensional fractured blot®Q m on a side) consisting of two families
of near-vertical fracture planes. In the first tesfracture family denoted, is oriented with
an azimuth of 100° counted positive anticlockwisenf the main directiow of the fractured
block. The second fracture family denotds oriented 10°.The spacing between fractures of
family B is kept constant at 7 m, as the spacing of familg varied between 2 and 8 m for

different realizations of the DFN (two examplesaggd in Fig. 3).

b
Fig. 3. Examples of random discrete fracture netw@DFN) with two near-vertical fracture

families at the scale of a reservoir grid cell. Bzémuths of familyA andB are 100° and 10°,
respectively. DFN a: familA (resp.B) with mean spacing of 2 m (resp. 7 m); DFN b:

families A andB with mean spacing of 7 m.
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If we denote ass, and's, the mean matrix block sizes along thandy horizontal directions
of the fractured block, in view of the orientatioofsfracture familiesA andB, s, should be
close to the mean spacingAfi.e., 2 — 8 m), and, close to the spacing & (i.e., 7 m). Fig.
4 reports on sought values gf and s, for different methods of calculation with specéily

the EGI technique rendering two sets of measuiss Appendix B) - small-EGI, large-EGI —
as the technique assumes the existence of two typesatrix block interacting with the

fracture network during flow.

16 25 —f— (185

5]

20 MS

small EGI

i | @rge EGI

[EEN
w

Block size sy (m)
w
oy
|
. |
|
|

(o]

0 5 10
Spacing Family A (m)

10
Spacing Family A (m)

b
Fig. 4. Mean matrix block sizes and s, as functions of the spacing of fracture famiy

(fracture networks in Fig. 4) for different methoaolscalculation. OBS = oriented block size
method, Gl = general imbibition method, EGI = endeth general imbibition method (with

"small" and "large" sizes of matrix blocks), and M$1ean spacing method.

In general, the OBS calculations retrieve the etquk values ofs, =2—-7m as a
function of the spacing of fracture family(Fig. 4a) The sizes, which should be constant at
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7 m, actually evolves with the spacing of fam#lyand is overestimated of 10% to 50% (Fig.
4b). This overestimation cannot be the consequehem actual fracture network that would
be far from a regular WR representation since ttteah network is simple and made of two
perpendicular fracture families with directions abnhparallel to thex andy directions of the
fractured block. Nevertheless, we noted that irgirgpathe spacing of the fracture famiy
also diminished the connectivity of the DFN withfew subdomains almost free of any
fracture and poorly connected to the facets of ftaetured block. It is noteworthy that
estimates of effective properties of the DFN, el porosities (or their influence on
macroscopic permeabilities in Eq. (15)), both a thcets and inside the block are key
features to the OBS calculations (see Sectioni@geSess connected networks return weaker
porosity values, the equivalent WR network assigwét those porosities will contain less
fractures and result in increased matrix block sieetracted from the equivalence between
the WR network and the DFN.

Compared with the expected values, matrix bkizkss, and s, extracted from the
Gl technique tend to be overestimated. This remilforeseeable because GI usually
experiences some difficulties when dealing with DEhcompassing both small and large
matrix blocks. These difficulties are the conse@eenf the oversimplified fitting with a
second degree polynomial of the so-called invaai@a curve calculated by the method as the

surface area in the matrix domain located at argdistance from the closest fracture of the
system (see Appendi®). Regarding EGI, the "small block" estimatgsare in the correct
range 2-8 m when the sizg is always overestimated. For their part, the #algock”
estimates in EGI are always more than twice theeetgal values. Finally, the MS method

infers correct values o, ands, whichever the investigated DFN and the spacinigaafture

families A and B. Notably, the MS method is weakly influenced by thacture network

connectivity which might become a drawback wheridgavith sparse and poorly connected
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fracture networks. In that case MS will still messithe mean lag distance separating two
neighbor fractures, as a poorly connected netwerkig to conceal a few cluster of large
matrix blocks in the system. In that case mean imdtlock sizes from MS would be
underestimated.

In the OBS technique, whose specificity is seekirgequivalence between the actual
DFN and a regular WR network, this equivalence seamuitively easier to achieve for
DFNs with fracture families whose principal orietiwas are close to the main directions of
the whole block. Therefore, it makes sense to asdifee capabilities of the method under less
favorable conditions where actual fractures dolimet up with the main block directions. We
re-handled the comparison of matrix block sizesvdrérom fracture networks still made of
two almost vertical fracture families, but this @nwith a constant spacing of 3 m for family
A, 5 m for familyB, and varying the orientation of the families witsspect to the main
directionsx andy of the block. The fracture familx is still oriented 100° (counted positive
anticlockwise) with respect to thxadirection and the orientation of famiByis varied between

0 and 70° with respect t (Fig. 5). In view of the geometrical settings betDFNs, the

matrix block sizes, should be close to 3 m argj close to 5 m when the fracture famiyis
almost orthogonal to family (azimuth ofB = 0-10°). Block sizess, should then slightly
decrease ass should increase when the direction of fracture fanB departs from
orthogonality withA.

The Gl method systematically overestimates bgttand s, in each configuration of
the fracture network. The EGI technique still tetaloverestimates, and s, with its "large

block"™ measure while correct or slightly underestied values are found with the "small

block" measure. In any case, both Gl and EGI araklyesensitive to the fracture family

orientations with almost constant valugsand s, irrespective of the azimuth prescribed to
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fracture familyB in the DFN (Fig. 6). This result is consistent lwithe fact that both
techniques model the surface occupied by matrixadosnin the fractured block as a function
of the distance to the nearest fracture (AppendixXTBis measure reveals far less sensitive to

fracture orientations than to fracture spacing.

a b

Fig. 5. Examples of random discrete fracture nelee@DFN) with two near-vertical fracture familiesthe scale
of a reservoir grid cell. The mean spacing of fneetfamiliesA and B are prescribed at 3 m and 5 m,
respectively, while the azimuth of family is kept at 100° and the azimuth of famByis varied between 0°

(DFN a) and 70 ° (DFN b).

15 e OFS
\M 13 ./\ -
’g 11 WS
& 9 ) o i i S 21 EGI
NN o ° A
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A — E 5 e -
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0 20 40 60 80 1o 20 40 60 80
Azimuth family B Azimuth family B
b

Fig. 6. Mean matrix block sizes, and S, as functions of the azimuth of fracture famfily(fracture networks

in Fig. 5) for different methods of calculation. ©B= oriented block size method, GI = general intlwhi
method, EGI = enhanced general imbibition methaith(lfemall' and "large" sizes of matrix blocks),daMs =

mean spacing method.
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The MS and OBS techniques infer very similar nxalliock size values, these being

sometimes slightly underestimated by MS and shgbtlerestimated by OBS. For azimuths
of the fracture familyB between 0 and 45°, the estimatgadwith both MS and OBS are close

to the expected value of 3 m and stay almost cahsthichever the orientation of famiB.

Concernings, , the expected value of 5 m is retrieved by OBS anderestimated at 3-4 m

by MS. For azimuths of the fracture famiybetween 45 and 70°, both methods return, as

expected,s, values that slightly decrease, gsvalues increase from approximately 5 m up

to 8 m. OBS mainly captures the projection of fifaeture planes onto the facets delimiting
the fractured block (see Section 2 and Appendixw#jich is obviously sensitive to fracture
orientations. In the same vein, MS evaluates thamuistance between fractures along the
main directions of the fractured block with the @ws consequence of increasing the
apparent distance when fracture planes are not alotm the direction of measure.
Nevertheless, both methods provide valuable resoiltdense fracture networks or fractured
blocks wide enough to enclose a large number atdras allowing for significant statistical
measures of fracture spacing (MS) or block-sideiandr-block hydraulic properties (OBS).
Notwithstanding other considerations such as cdatjun times (see hereafter), OBS
and MS techniques seem to outperform Gl and EGiximacting mean matrix block sizes
from fractured system. We noted however that OBissitive to the loss of connectivity in a
fracture network with the consequence of increashng inferred matrix block size. This
artificial increase might result in biased evaloas of fluid flux exchanges between fracture
and matrix media. Numerical exercises comparingrdis fracture network outputs and their
dual porosity representation with OBS-sized matiigcks are conducted to answer this
guestion. The other geometrical techniques GI, B@tl MS are also tested. We remind that
these three numerical techniques are in essengeapnplicable when a prior knowledge of the

fracture network geometry is available, while thBSOtechnique might by applied either on
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known or unknown geometries (see Section 2). Fdaia comparison of all techniques

hereafter, we consider that the fracture netwodaggry is known.

4. Two-dimensional numerical test cases

As already mentioned, dual continua representatadrdiscrete fracture networks are
conducive to drastic reductions in computation £dsit require carefully designed settings to
adequately represent both conductive and capagtimgerties of a fractured porous medium
subject to Darcian flow. We address here two plise in both DFN and dual porosity
models. The setup of calculations is dimensioredepresent large laboratory analogs of
flow in fractured media as conducted for instance"lele-Shaw" cells (e.g., Park and
Homsy, 1984; Folch et al., 1999). We remind thataneinterested in the assessment of mean
matrix block size from different geometrical-stu@l techniques that always manipulate
relative quantities as the spacing of fractures gam@d to the block size, or fracture traces
intercepted by block facets. Therefore, our fingdifiggm numerical experiments at the scale
of a lab device should not be hampered by loss esfernlity. In addition, we perform
calculations, especially in the context of DFN diization, over synthetic fracture networks
with regular fracture orientations. This choice uees discretization efforts but is mainly
employed herein because it ensures accuracy aferefe calculations in a DFN compared
with that from a dual porosity model. Even thougiplssticated meshing techniques and
advanced numerical methods exist, it was found timat fracture elements in unstructured
meshing tend to smear the calculation of theirestariables over the large matrix blocks.
This feature is not suited to compare (local) DR 8large scale) dual porosity calculations
of diffusive flow.

Numerical simulations are performed over two-disienal horizontal fractured

systems (of unit thickness) that only neglect gsadriven flow. Notably, the various
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techniques employed in this study to calculate mmaitrix block sizes are not sensitive to
gravity-driven flow and only manipulate geometricainsiderations on the fracture network
or equivalences in permeability-porosity betweeraatual fractured block and a sugar-cube
model. Two-phase flow in a DFN is performed ovédraatured system of 3 m length and 1.5
m width finely discretized by 11590 square elemdatsan accurate representation of both
the fracture network and matrix. The system is atamhly discretized by only 920 square
elements of a dual-porosity, single-permeabilitydelovith matrix block sizes extracted from
the DFN via the EI, EGI, MS and OBS techniques (Seetion 3). Two-phase flow is
numerically solved by means of a finite volume tagbhe and uses an implicit-in-time
scheme for time integration of the pressure equoatibile an explicit-in-time scheme is used
for time integration of either the water or oil reasalance. To avoid unfair comparisons
between Gl, EGI, MS, and OBS, a simple fracturevogt is delineated with fractures only
parallel to the main flow directionsandy of the system. Dead ends of the fracture network
are also removed since in essence they are alwegesu@ied for in the fracture-matrix
relationship by Gl and EGI methods when MS and QB§ht not see these dead-ends
because they are not counted in MS or do not [jzatie to side-block properties in OBS.

The first fractured system investigated (Fig. ¥)initially saturated with oil and
percolated by water injected from the western bamwndaken as a Neumann condition
prescribing a constant-in-time water flux. The eastboundary of the system is of Dirichlet
type while North and South boundaries are of ne+fliype. Table 1 indicates the local
hydraulic properties of each medium (fractures,rixpin the DFEN, Table 2 reports on inner-

block and block-side properties used by the OBShotkto calculate matrix block sizes, and

Table 3 gathers the various matrix block sizgsnd s, obtained from the GI, EGI, MS and

OBS methods.
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545
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551

1,9m

3m
Fig. 7. Two-dimensional fracture network servingaasystem finely discretized or handled as a doebgity
model for the purpose of flow dynamics comparisbime size of matrix blocks in a dual porosity apgfoare
reported as colored frames, from left to right: Redriented block size method, Blue = general irtlaib
method, Orange = mean spacing imbibition metho@&e@rand Purple = small and large sizes from enkiance

general imbibition method.

Matrix medium Fractures
Porosity @[-] 0.1 1
Permeabilityk 1and 10 10000
[10-15 m2)
Relative Brooks CoreyX=2) "Cross"k,
permeability 0; | —Water
[ sos | \ —o
£ 04 -
0 - S 0 020406038 1
0O 02 04 06 08 1 Water saturation (-)
Water saturation (-)
Capillary Brooks Corey X=2) Null capillary pressure
pressurd®; [bar = 0.2
10" kgms?]
= 0.15 -
£ 01
% 0.05
0 : - . .
0 02 04 06 08 1
Water saturation (-)

Table 1. Set up of main flow parameters for calibofes of two-phase flow in fractured systems deggdh Fig.

7 and 10. The relative permeability and capillamgssure as functions of water saturation in theimabey the

Brooks and Corey model (1964) with (=2) the so-called pore-size distribution index.
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x direction | y direction
k, [10"° m?] 46.42 120
kFN—S [10—15 m2] 40 120
o™ [ 0.004 0.012
¢ [ 0.012

Table 2. Main macroscopic parameters of the frectuslock in Fig. 7 to infer via the oriented blosize
technique the mean matrix block size of a dual sityanodel. kf . (s respectively are the permeability and

FN

¢

FN-S
!k ’

porosity of the whole block -S respectively are the permeability and porosity leé fracture

network at the sides (normalxandy directions) of the block.

Block sizes OBS Gl ms | EGF | EGk
large small
s, [m] 0.360 0.6 0.35 0.696 0.257
s, [m] 0.306 0.3 0.345 0.494 0.257

Table 3. Mean matrix block sizes of a dual porosiydel as a surrogate to the discrete fracturear&tim Fig.

7.

Two different types of flow are simulated, thestione with low water injection rate of
0.1 m/day in the fractures and low matrix permeghif 10*° m? the second one with higher
injection rate of 1 m/day and higher matrix pernikgbof 10* m? . On the one hand, the
first scenario with small water fluxes in the fniarets and weakly permeable matrix enhances
capillary effects as the origin of pressure gratliebetween fracture and matrix and
subsequent exchange rates between both media Dcaptibary effects in the matrix and
absence of these in the fractures, the oil pressutee matrix is higher than that in the
fractures and oil is ejected from the matrix (otevanvades the matrix). On the other hand,
the second scenario with high injection velocitiagors "piston" flow in the fractures and
enhances fracture-matrix exchanges as the consesjuwdnthe excess of water pressure in

fractures compared with oil pressure in the matWWater invades the matrix and the process
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is enhanced by the contrast of mobility (the ratigp ) between oil and water phases which

triggers rapid water invasion along the fractuned @arly leaching of matrix blocks.

To reinforce these assertions about flow scenavitis contrast between capillary and
viscous forces to extract oil from matrix blockss wiso calculated a dimensionless capillary
number based on the evaluation of water fluxesdmgamatrix blocks versus expulsion of oil
from the matrix to fractures by capillary pressoomtrasts. With steady-state flow sweeping
oil from the system by forced water injection atoside of the fractured block, the mean

water pressure gradient in the system is evalusgted

\/injuw

||:|PW|: kif

(15)

P, [ML™TY is the water pressure in both the fractures dvedrhatrix,V,, [LT™] is the

injection velocity of water at the upstream sidetiod fractured blockp,, [ML T is the

f
dynamic viscosity of water, anﬁ [L? is the equivalent fracture permeability of theole
block along the direction i of water injection. Reding the capillary pressure gradient, we

assume a null capillary pressure in the fractuogert medium of unit porosity) and we take
in the matrix the maximal capillary pressuP8® given by relationships capillary pressure —

saturation (see, e.g., Table 1). The capillary sures gradient between matrix and fractures is

then approximated as

max
R

Smin/2

|OR|= (16)

with s, [L] the smallest dimension (in either directionsor,y or z) of the mean matrix
block size. A dimensionless capillary number balagcapillary gradient with water pressure
gradient can be expressed as

. |DF::| _ ZPCmaxkif
’ |DPW| Sminu'w\/inj

(17)
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This capillary number is larger than one for floanditions dominated by capillary forces as
it becomes close to one or less than one when wssfarces condition flow in the fractured

block.

S
II- lI e l . "“' ]

o ;WA
s

a
Fig. 8. Maps of water saturation in a Water-flocgjtwo phase flow scenario. Calculations are peréatraver a

fine grid discretizing both the fracture networldamatrix (system in Fig. 7). The system is iniiadhaturated in
oil and water is injected in the fractures at astant flow rate at the western boundary of theesgstOil
recovery is monitored at the eastern boundary Esge9). The fluid exchange between fractures amkrirmis

dominated by capillary forces in magas both capillary and viscous forces are activeapb.

In the DFN approach where matrix-fracture exchanges dominated by capillary

effects (0, = 4.1 with the settings of the simulations), water doe$ deeply invade the

matrix (Fig 8.a,) while for the same injected wgpere volume, high injection velocity and

piston flow (n, = 0.4) maintains higher water pressure gradients thigt toea deeper water

invasion of the matrix (Fig. 8.b). Calculations the DFN serve as reference to the
comparison of flow scenarios between dual porasidgels assigned with matrix block size
from the GI, EGI, MS and OBS methods (sizes of kdoare pictured in Fig. 7). The

comparison is here performed by way of a singlecetdr defined as the evolution in time
(precisely, the evolution with the water pore vo&urmjected in the system) of the oil
recovery ratio at the outlet of the fractured syst&his oil recovery corresponds to the ratio
of the cumulative volume of oil exiting the systemthe total initial volume of oil in the

system. This indicator is obviously macroscopicthwihe meaning that it monitors the
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behavior of the system at the large scale (at l#asthomogenization scale of the fracture
network). It would not make sense to compare al ligedure of the fracture network (e.g., the
pressure transients in a single fracture) with ayed behaviors obtained for the large blocks

(cells) of a dual porosity approach.

T09% T

50% 6086

0% 5004

0% 408

# Reference
— Digal medium -0BS
30
= Dyal medium - G|

209 = Dual medium - EGI Small block

— Dgal medium - EGl Great block

(Error on) Recovery Ratio (%)
(Error on) Recovery Ratio (%)

105 A Error OB5-Reference 10%
A A,y
o% 1 L e 0% GAMA N A AN A aA A A A A Ak
0,00 10,00 20,00 0,00 40,00 50,00 o 1 2 3 4 5
Injected Pore Volume Injected Pore Volume
a b

Fig. 9. Oil recovery ratio versus water injectedepeolumes at the eastern boundary of a fractueddark (in
Fig. 7). The so-called reference is calculated Bams of a finely discretized network as the otheves are
drawn from a dual porosity model with various meaatrix block sizes. Results from the mean spacing
technique for matrix block size evaluation are mqorted because they are merged with those frerorilented
block size technique. Capillary forces dominategkehange rate between fractures and matrix ingplas both

capillary and viscous forces are active in ot

Fig. 9 presents two plots of the oil recoveryagas a function of the injected pore
volume and stemming from flow scenarios with lowd dnigh injection velocities. The same
oil recovery ratio of approximately 60% is reacHedboth flow scenarios, but with only 5
pore volumes in the case of high injection veloagtympared with the 50 pore volumes
required by the case of low injection velocity. Moal porosity model with their different
matrix block size renders results that completagatt from the reference calculations in the

DFN. Since matrix block sizes calculated with O&#l MS techniques are quite similar (see
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Fig. 7 and Table 3), the results form dual porosiydel simulations do not differ
significantly and only outputs from the OBS techuecpre reported in Fig. 9.

The OBS technique tends to slightly underestimai matrix block size which
triggers a quicker oil extraction from the matrixdaproduces recovery curves slightly shifted
toward short injection times. The simulations harglithe Gl matrix blocks are also in very
good agreement with references, especially in #se of fracture-matrix exchanges enhanced
by high water injection rate. The matrix block sizaef EGI are still underestimated by the
"small block" measure and overestimated by theg#ablock™ measure giving rise to
respectively faster and slower evolutions of thlerecovery ratio with respect to time. As
such, the EGI technique is not the most accuratalmulate matrix block sizes and should be
employed as a convenient way to provide minimal amakimal bounds to these sizes.
Notably, the fractured system discussed above dogsignificantly distinguish between Gl
and OBS in terms of accuracy whichever the mechampeevailing in fluid flux exchanges
between fractures and matrix. Nevertheless, weram@nded that the reference fracture
network was built to mitigate Gl downsides. Fraetutead-ends were removed from the
network and the two fractures families were sefalalrto thex andy directions of the
fractured block, thus allowing the Gl method toeinf precise "invasion curveA(X) in
Appendix B). This is why GI shows good performandesthe present test cases as it
exhibited more discrepancies in the geometricaldases discussed in Section 3.

At this stage, it must be raised that the OBS teglenpartly relies upon evaluations of
block-side properties such as fracture porosity padneability, the latter being eventually
not representative of inner-block quantities whea portion of fractures intercepting the
block sides are not representative of the netwadngetry inside the block. To address the
eventual influence of this downside, we recalculétes two flow scenarios discussed above

for another fractured system (Fig. 10) which comgsia few long fractures located very close
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to the sides of the system. These fractures detirfetv very elongated matrix blocks close to
the boundaries of the system (those encircled gn 1) as the majority of matrix blocks
inside the system are rectangular with a ratiotleng width barely exceeding a factor 3. As
expected, the inner-block and block-side propetissd by the OBS method (Table 4) differ

from that of the fractured "regular” system prewiyudiscussed.
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Fig. 10. Two-dimensional fracture network servirsgaasystem finely discretized or handled as a doedsity
model. Fractures close to the boundaries delinmi marrow matrix blocks (encircled) that departfrthe shape
of blocks within the fracture network. The idergdi sizes of matrix blocks in a dual porosity apphoare
reported as colored frames, from left to right: Redriented block size method, Blue = general intlab

method, Orange = mean spacing imbibition metho@&e@rand Purple = small and large sizes from enldance

general imbibition methad

x direction | y direction
k, [10% m? 107.72 240
k™S [10™° nv] 106.66 240
o™ [1] 0.0106 0.024
o [-] 0.024

Table 4. Main macroscopic parameters of the frectuslock in Fig. 10 to infer via the oriented bloske

technique the mean matrix block size of a dual pityanodel. K, , @, respectively are the permeability and

porosity of the whole blockk ™3, (pFN_S respectively are the permeability and porosity leé fracture

network at the sides (normal to x and y directiafghe block.
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Comparing reference calculations performed overR&l (maps of water saturation
in the system reported in Fig. 11, capillary numbgrof 19 for Fig. 11a and of 1.9 for Fig
11b) and calculations in the dual porosity modelgeals that the oil recovery ratio is still of

approximately 60% after 4-5 injected pore volumasHigh injection velocity and 40 pore

volumes under low injection velocity conditions@Fi12).

(0]

a b

Fig. 11. Maps of water saturation in a water-flompiwo-phase flow scenario. Calculations are peréat over a
fine grid discretizing both the fracture networldamatrix (system in Fig. 10). The system is inijiaaturated in
oil and water is injected in the fractures at astant flow rate at the western boundary of theesystOil
recovery is monitored at the eastern boundary F&gel?2). The fluid exchange between fractures mattix is

dominated by capillary forces in map a as bothlzagiand viscous forces are active in map b.

g
7
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509

40% + Reference

= Dual medium - 0BS
3
0% —— Dual medium - Gl

20% = Dual medium - EGI Small block

= Dual medium - EGI Great block
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Fig. 12. Oil recovery ratio versus water injectesiegovolumes at the eastern boundary of a fractnedgork (in
Fig. 10). The reference curve is calculated by medma finely discretized network as the other egrare drawn
from a dual porosity model with various mean mabiieck sizes. Results from the mean spacing tectenagqe
not reported because they are merged with thosa ff®e oriented block size technique. Capillary ésrc
dominate the exchange rate between fractures atriknimaplot a, as both capillary and viscous forces are active

in plotbh.
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This result confirms that the macroscopic behaviofsboth the DFN and its
representation as a dual porosity system are cdamgeh by the few fractures that do not
obey the general geometric and structural settifigise whole fractured block. This feature is
also evidenced by the comparison between the miapater saturation in Fig. 8 and Fig. 11
that only differ by the locations of fractures urded by high water saturations. However,
discrepancies between the reference (taken askhE Bnd the dual porosity approximations
increase. As for the preceding example, OBS andi@&dBniques provide very similar matrix
block sizes (these sizes are pictured in Fig. 1@ mported in Table 5) and similar dual-

porosity behaviors making that MS results are matubssed in the following.

Block sizes OBS Gl ms | EG- | EGL
large small
s, [m] 0.185 0.44 0.24 0.47 0.147
s, [m] 0.149 0.21 0.19 0.325 0.139

Table 5. Mean matrix block sizes of a dual porositgydel as a surrogate to the discrete

fracture network in Fig. 7.

In the case of matrix-fracture exchanges dominbtedapillary forces (Figs 11a, 12a)
the OBS technique overestimates the leaching ofixnatock ( and oil production at the
outlet of the system) because the smallest matagkbsize (here along the direction) is
underestimated. Whichever the algebraic form chasegdBS to infer the matrix block size
(See Section 2), the method is in essence sensitifracture densities close to the boundaries
of the whole fractured block, either in regard @frgsities at the sides of the block or of
permeability values in a "permeameter” type systérie actual matrix block sizes close to
the boundaries of the block are smaller than iniigeblock, as is the case with the present

example, the smallest matrix block size (here algngee Table 5) is underestimated which
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favors rapid imbibition under capillary forces (ss@ve the capillary numbert,) . Notably,

the Gl technique is not sensitive to the few smalrix blocks of the DFN because it treats
the shell and inner parts of the block exactly shene way. For its part, the "small" EGI
technique underestimates the mean matrix block a&zé¢he "Large" EGI overestimates it
("small" EGI overestimates matrix imbibition anddlige" EGI underestimates imbibition, see
oil recovery in Fig. 12a compared with reference).

When matrix-fracture exchanges occur as a conjomaif viscous and capillary forces
(see the capillary number in (17) and subsequavijuated for DFN simulations), the OBS
technique renders results the closest to referéftoe key is that rapid water invasion of the
fractured block through permeable fractures (sep Fib) and subsequent viscous effects
between matrix and fractures are dominated by peioa through the large fractures and
their (large) neighbor matrix blocks. As the OBS&hieique identifies the correct largest
matrix block size (here along thedirection, see Table 5), flow simulations with aatl
porosity model are convincing. This time, the Gihieique underestimates oil recovery, as
"Large" EGI does too, because the overestimatedimialock size (especially along the
direction, see Table 5) is favorable to capillanbibition but hampers water invasion along
fractures and matrix block leaching at early in@ttimes.

Finally, regarding performances in terms of compatacosts, the different geometric
methods were applied to a large DFN representea sythetic dual porosity reservoir of
1.05 million grid cells. For OBS and MS methods,tmxablock size calculations were
performed for each elementary cell and duplicateer @ll cells of the reservoir with total
CPU times coming up as: 230 s for OBS and 1120 M. Notably, the time counted for Gl
and EGI is that of calculations over a limited nambf cells "strategically" sampled in the
whole grid of the dual porosity reservoir, yieldiagfair representation of the system after

1800 s of calculation. With approximately 4 s ofccéation per cell and Pcells, identifying
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a matrix block size for each cell with Gl and EGEetiods would render impracticable
evaluations exceeding 45 days. When applied to knDWNs, both OBS and MS require a
pre-evaluation of the diagonal permeability tensthe fractured block; by construction for
OBS (see Section 2) and to identify main flow dil@ts in MS for which random lines

counting the spacing of fractures (see Appendix @8¢ parallel to these directions.
Differences of computations times between methadsim the straightforward (and fast)

application of an analytical solution for OBS opeaddo the need for many random draws in

MS.

5. Conclusions

The Oriented Block Size (OBS) technique has beemldped as a new way to infer
the mean matrix block sizes in porous fractured imedth application to dual porosity
models of flow at the large scale. Matrix blockesiare calculated by seeking the equivalence
in terms of fracture permeability and fracture iy between a fractured block and a
Warren and Root discrete fracture network madehoée fracture families with regular
spacing and fracture planes normal to the main tloections.

Two expressions of the OBS are available accortbinghich type of fractured block
the method is applied. The first expression is vgeiited to infer matrix block sizes over
synthetic discrete fracture networks or well-knowctual networks since it requires
identifying fracture porosity of the network, fraoe porosity at the sides of the fractured
block, and the diagonal permeability tensor of teole block (which can be calculated
analytically or numerically). This first expressiols based on a rigorous algebraic
development which reveals precise and renders xratck sizes close to expectations drawn
from various synthetic discrete fracture networkise second expression is derived from the

first one via assumptions on the fracture porasitiethe block. It has the advantage of being
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applicable to hardly accessible fracture networkeasountered in the field. This second

expression is compatible with an inference frontdfimeasurements such as hydraulic tests
and observations in wells but should only rendefes of magnitude instead of pinpoint

values. Further works should address how matrigkoBizes are influenced by uncertainty on

available field data.

The OBS technique revealed much faster in termsoafiputation times compared
with other available geometrical techniques devetbiw infer matrix block sizes. This feature
is a promising avenue for tentative applicationshef method in up-scaling the representation
of huge fractured reservoirs as done for instancie oil industry when optimization of oil
recovery from various exploitation scenarios isnpked. In this context, OBS and its precise
evaluation of matrix block sizes is useful to tregmeterization of dual porosity models for
two phase flow either dominated by capillary foroessiscous forces. However, as the other
methods, the OBS technique may fail in retrievingin block sizes within poorly connected
fracture networks. It is worth to note however thabrly connected networks are not valuable
candidates to homogenization into a dual porositgeh

Finally, it must also be raised that OBS is asgediavith the identification of large
scale permeability tensors that are mostly semstovthe backbone of a fractured network and
do not see fracture dead-ends. In the case ofcapiplns relying upon data from hydraulic
well tests, the type of occurring flow should beetally considered. Two phase flow, mostly
witnessed by the propagation of an oil/water satmaront, will mainly record the effects of
the backbone, as single phase flow, mainly moritdrg the transient evolution of water
pressure heads, would also be sensitive to deasl-éindeserves some additional synthetic
test cases or confrontation to actual field datse® whether or not the OBS technique reveals

suited in these instances.
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Appendix A. Matrix block sizes extracted from the equivalence between an actual
fractured block and aWarren and Root (WR) block.

We remind that an actual and well connected fractuslock oriented with its main
directions along the main directions of flow inddxgyi=1,2,3, can be characterized by mean

FN-S

permeabilitiesk along the sides of the block as

1 Nf;_ Nf,,
k™ =—£ Kilo&h *+ 2_Kol&, j (A1)
286 & X

The block size in directionis denoted?, and the sides delimiting the block are also indexe
by i but for limits normal to the main directionin addition, block sides are labelleéd or

i + according to their respective location upstreardawnstream along directianin (A1),

i is a cycling index such that, e.gi+1 = 3 wheni = 2 andi+1 returns to 1 when=3. The
sidesi — andi + of the block are intercepted by a number of freetUNf._ and Nf., , andk

is the local permeability of a fracture intercepgtithe side of the block over an apparent
lengthl and with apparent fracture apertere
We also remind that a Warren and Root (WR) blockcealing a regular fracture

network of three fracture families can be charamter by two expressions associating: 1- the
diagonal tensor of permeability of the whole bld¢K (i =1,2,3), 2- the mean porosity of the
block @, and 3- the porosity of the block sideg™°(i =1,2,3), with the spacing

s (i =1,2,3), the apertureg (i =1,2,3), and the local permeability, (i =1,2,3) of the three

fracture families composing the WR block (for ditasee Section 2). These expressions are

1 s
e (h2)
M I (A3)
2((p\NR_(ﬁNR—S) = i
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where, ; is the Kronecker symbob, ; =1,i=j;5 =0, # j.

Following the idea that one can establish the eajaince between a WR network and
an actual fractured block regarding their hydraplioperties, it is assumed thet®, ¢~®,
and k'® are similar to the equivalent properties in theuakfractured block, respectively

denoted asp™, ¢"°, andk™° (see AL, for the latter). In the same vein, if & Wetwork

serves as reference for fixing model parameterfiahogenized approaches to fractured

media, the characteristics of a WR network can bbstituted by parameters of the

homogenized model. For example, the characteristics , and k‘j’vR in (A2) are respectively
substituted by a mean matrix block size (also tethg as defined in (3)), a mean fracture
aperturee, , and the entries of a diagonal tenizojfr of the homogenized model. With these

transformations, equating (A2) and (A3) results in

[ ]Z( 1)"kf-( FNS)i( Wk™S e,

| j=1

$ a e
S =& = 3 -1

((pFN _ (pIFN—S) z (_1)6i,,- kjf
j=1

For the sake of simplification (see hereafter), tdven —1 in the expression of can be

dropped by considering that the term (@)™ is much larger than one for usual fracture
porosity of a rock block barely exceeding a fewcpet. Stated differently, one might also

consider in (A4) that the matrix block sizeis much larger than the fracture apertefeind

results in

3
Z_l (_1)5i,j kjFN—S
S =& = 3 (A5)

((pFN _ (pIFN—S) z (_1)5i,j kjf
j=1
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834 The mean matrix block sizg in (A5) depends on both the mean fracture aperyre

835 and the fracture permeability of a homogenized r‘ndx(;!e It is noteworthy thag, is usually

836 not a parameter of a homogenized approach, andakesnsense to render (A5) (partly)

837 independent of any conjecture on the valueof To this end, it is reasonably assumed that a

838 WR network has its matrix block sizes separatingghm®or fractures independent of the

839 aperturese of the fractures. Stated differently, it is assdnteat a WR network with a
840 uniform aperturee, for its three fracture families can be found asieajent to a WR with its

841 three fracture families with apertures. With a uniform apertures, , a WR network would

WR _ WR-S

842 render a valu (0)

=& Nf, /A, with Nf; the number of fractures in the familyand

843 A, the size of the whole fractured block along ditt. If the valuesp™ —¢@™°

were not
844  replacing their equivalen'® —@"""® in Eq (A5), the latter would no longer depend &n

845 Hence, our proposal is to calculate porositieshefdctual fracture network by assigning the

846 whole skeleton of the network with a constant sAghcture apertures, . The fracture

847 network porosities for a constant aperteyavould write as

848 ((pFN _(pIFN—S)

=e, ((pFN* _ (pIFN—S* ) (A6)

e=e;
849 The terms@™", ™ [L™"] denote porosities of the actual fracture skelgtenunit fracture

850 aperture (that can be calculated by assigning toumifracture aperture of 1 to the whole
851 fracture network). Substituting (A6) in (A5) simipdis the formulation of the matrix block

852 sizeinto

i (_1)% kFN—S
j=1 ]

853 =

3 FN* FN-S - & iy, f

(0™ -¢™7 )2 (D™ k
j=1

(A7)
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The main characteristic of (A7) is that the meaairim block size depends: 1- on a

mean permeability tensdfjf of fractures at the scale of a (mesh of a) homiagenmodel of

the system (e.g., a conjecture of the fracture pahitity in a dual porosity model), 2- on the
facet permeability values of the actual fracturemvoek kjFN‘S, and 3- on structural properties
of the actual network resulting in fracture porgsialues of the whole fractured block and its
sides @™ and @™, respectively. These features make that the fornAi7) is hardly
applicable to poorly-known natural systems and khbe mainly used in problems dealing
with homogenization of systems with well-known gextng and discretization of synthetic
fracture networks and matrix blocks.

Nevertheless, another form of the mean matrix bls@e can be proposed. By
manipulating (Al), the permeability of the actuadture network at the facets of the whole
fractured block can be rewritten as

N, N, N, _ N,
(Zlneﬁ + Zln%j (anln% +> ke, J
FN-S _ =1 n=1 n=1 .

k™ =~ - X~ = e,

2(A-+1A-+2) (Nf_ Nf;., ]
i+17 In + ln
g 21

(meimﬂ
kiFN—S =(d:N_SEi with E —Anz i n=1

Nf._ Nf,,
(Zlnen +ZlnenJ
n=1

n=1

(A8)

The tensor componentg (i=1,2,3) in (A8) are an arithmetic mean of singleeture

permeability values weighted by open fracture swfareas at the sides of the whole
fractured block. If we assume that these mean sape equal, irrespective of the facet of the
fractured block (which also can go with fracturgdtems candidates to homogenization), it

also means that the eventual anisotropy of perrigali the fracture network is just the
consequence of fractures densities normal to thev ftlirections, i.e.,k™ > =¢" %k .

Notably, this strong assumption stating that one define a constant single-fracture
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permeability valuek also goes with the existence of an equivalentonmifsingle-fracture

aperturee, for the whole fracture network. Reintroducing Abj the expression (A8) with a

constant valuek and making use of rescaled porosities defined\B) @s ¢ =e ¢~

comes down to

e Ei(—l)a'-‘ g
((pFN* _ (RFN—S* )i(_l)ém kjf

§= (A9)

It can also be shown that a WR network with cams&perturee, for its three fracture

families has block and side porosities following tielation» @' = 2¢"® . If the rescaled

DFN is equivalent to the WR network, then one datesthatd ¢~ =2¢™" . Noting that

3 3
> (-1)*' ¢ can also be rewritten a3 @' -2¢™ and reintroducing the preceding
=1 =1

relationship between block and side porositiesA®) (esults in

2ek

S — (A10)
> (1)K

S

In the case of field applications with poorly knownd hardly accessible fracture

networks, (A10) returns the mean matrix block sirea fracture network based on the field
evaluations of the permeability tenskf of a whole fractured block, the average uniform

aperturee, and permeabilityk of a single fracture. Because the entries of (Ad®) not

straightforward to obtain and may also be assatiatéh important measurement errors, it is

expected that (A10) will only render orders of miagghe of mean matrix block sizes.
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Appendix B. Structural-geometrical evaluations of a mean matrix block size in a dual
continuum flow model
The geometrical imbibition (GI) method

The method has been developed for two-dimensiolwal imodels only. Three-
dimensional approaches are therefore handled alayet systems. For a two-dimensional
image of an actual or synthetic fracture netwohle, first task to handle consists in mapping

the image on a regular grid of square pixels. Haiglel is then assigned a valug that

represents the distance between the center ofitbegnd the closest fracture of the network.

One sums up the area of pixels whose distaticés less than a prescribed valdeand the

area is then normalized by the total surface afeheoimage to form the quanti(X). The

resulting measurA(X) (Fig. B1) is modeled as

2X  2X  4X?
= + -

A(X) a b ab

(B1)

with a andb the resulting mean size of the matrix block ofva-dimensional dual porosity

model.a andb are obtained by minimizing the sum of squaredrerb®tween the model in

(B1) and the actual measuresAfX) .

Invasion distance X ~Xmax

Fig. B1. General imbibition technique to mean nxabiock size identification. Normalized invaded
matrix areaA(X) as a function of the distancé between a location in the matrix and the closest

fracture.
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912 Theextended geometrical imbibition (EGI) method

913 This method improves the two-dimensional Gl techeifpy assuming that two mean
914 matrix block sizes characterize the relationshigsvieen fractures and matrix. For locations
915 in the matrix close to fractures, two types of nxablock interact with fractures, whereas

916 locations far from fractures are influenced byragk size of matrix block. This feature makes

917 that the quantityA(X) drawn from the mapping of the actual fracture meky(see above the

918 Gl technique) is modeled by a discontinuous cunvihiée form

2 2
A(X):al[2x+2b)l< _4Xb J+a2{2x+ ?—:; ] ; Xs%
919 % a“z 2 72 2 (B2)
A(X)=a, 2X , 2X _ 4X VY
a2 b2 a'2b2 2

920 with (a,,b), (a,,b,) the size of the small and large matrix blocks eetipely. a,,a, are the
921 proportions of small (type 1) blocks and large &y blocks witha, =1-a,. The distance

922 X =a/2 is the threshold beyond which a single type ofiéamatrix block is sufficient to
923 model interactions between fractures and matrix.

924 The inference of a single set of paramet@sa,,b,,a,,a,,b,) by minimizing errors
925 Dbetween the model in (B2) and actual measureA(O() is not straightforward because the
926 subsets of parametefs;,a,,b,) and(a,,a,,b,) are partly interchangeable to shape the same

927 function A(X). Itis better suited to analyze the derivati X )

A.(x)zd/;(xx)za{z+é_%j+az[a_2+b_2_a8;j xs2
928 dAx ai a11 2 2 2 (BB)
w(0)= B0 <o [ 2425 o8
dX a, b, ab, 2

929 This derivative appears as a decreasing piecefimsar function ofX which can be fitted by

930 hand or numerically on the plot of actual valufée's(x) (see Fig B2). The parametayis set
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so that the break point of the mode(X ) located ina,/2 matches with the change of slope

of actual data. The parametay is defined as the length (distance) for whiAl‘(az/Z) =0

(see Fig. B2).

84"

Kpns Xifax
Fig. B2. Enhanced general imbibition technique ®am matrix block size evaluation. First-order
derivative of the normalized invaded matrix aw@) as a function of the distance between a

location in the matrix and the closest fracturee Terivative with respect % is modelled as a piece-

wise linear function allowing to infer a small aadarge matrix block size.

The thresholdg, /2 separates the linear functiok(X) in two portions with slopes

" _dAI(X) —_ 801 m2 . al
A" = = -2 xS
dX ab, ah, 2 (B4)
A"Z:dA(X):—Sa2 ’X>i
dX a,b, 2

The difference of slopes on a plot (ﬂ'(x) can be identified with the expression of

A" - A",=-8a,/ap, which in turn fixes the ration,/b, since a has been previously
prescribed.

The height of the step between the two linear postiof A'(X) can be calculated as

oA'= A((a/2) ) - AY(a/2)") :a%[é'ﬁlj (B5)
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Identifying (B5) with the value of the plot and askting the result with the identified value
A" (X)-A",(X) renders two equations allowing for the calculatwboth a, and b,
values.
Finally, the expression oA'(X) in X =0 which writes as
A'(0) =al[£ +£]+(1—a1)(—2 +—2] (B6)
a b a, b,
is identified via the equivalent value observedtom plot of actual data (Fig. B2) and returns

the value of, .

The mean spacing (MS) technique

The principle of MS is sketched in Fig. B3.

Ly

Fig. B3. Mean spacing technique to mean matrixlokize evaluation. Distances between neighborudrastare
measured via the intersections between the fracteieork and random lines parallel to the mainaioms of

the fractured block.

For each main directionof a fractured block with length, random lines parallel to

directioni and crossing the whole block are drawn. For eawd, lone counts a# the

number of intersections between the line and aagtdire plane (or trace in a two-dimensional

problem) of the fracture network. For each randara In the direction, the mean distance

a7



965 between two successive intersections i¢n, +1) . The mean size of the matrix block in the

966 directioni is defined as

967 3=|i< 1 > (B7)

n +1
968 where averaginq > is conducted over the whole set of random lingkéndirection.

969
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