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Abstract 
Taking into account the characteristics of the reservoir and the fluid in place, the objective of this study is to find the 

optimal parameters to improve the total oil recovery in the Ainsa reservoir by setting up a production sequence 

based on improved water flood by the application of chemical processes. This study begins with a bibliographic 

revision to set up the constraints and the assumptions for the different chemical models. Numerical modeling is 

used to evaluate the efficiency of the applied injection processes. As most of the parameters are in general poorly 

known at reservoir scale, several hypotheses is tested in order to analyze their impacts over the final results. Finally, 

the most viable and profitable method in terms of final recovery is identified after evaluating different chemical 

systems as polymer, surfactant, alkaline-surfactant (AS), surfactant-polymer (SP) and alkaline-surfactant-polymer 

(ASP). A summary of the geology and the reservoir characteristics is introduced. The main part of this report deals 

with simulations of the different chemical treatments. Finally, by the comparison of the evaluated systems, the best 

enhanced oil recovery is obtained by an injection of a mobility control agent (Polymer), with a final recovery of 30% 

OOIP. 
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1 Introduction 

Enhanced oil recovery (EOR) is well-known method that helps increase the final oil recovery. Among 
all the procedures, chemical injection is applied in fields where water injection is no longer effective. 
The injection of polymer, surfactant and alkaline is an active research sector in the oil industry. 
Numerical modeling is used to appraise the efficiency of the applied scenarios even if there are large 
uncertainties on properties at reservoir scale. 
Specifically the purpose of an alkaline-surfactant-polymer technology (ASP) is to produce incremental 
oil by reducing the water flood residual oil saturation. This technology help to reduce interfacial 
tensions with alkaline and surfactant while a mobility control is obtained using polymers (Vargo et al, 
2000). Polymer makes the alkaline-polymer solution more viscous to improve sweep efficiency. Thus, 
polymer ‘‘brings’’ alkaline solution to the oil zone where the alkali cannot go without polymer. More 
oil can be displaced by lowered IFT owing to alkali-generated soap. In other words, alkali and 
polymer work together to improve both sweep efficiency and displacement efficiency.  

Most of the treatments are successfully applied in pilot and large-scale projects. China is a pioneer in 
terms of chemical treatment research. After the success of polymer flooding in Daqing, core flooding 
and numerical simulation show that more than 20% OOIP incremental recovery can be achieved by 
ASP (Demin et al., 1997). On the other hand, for Cambridge Minnelusa field, ASP flood is an 
economic and technical success with ultimate incremental oil of 1MMbbl at a cost of $2.42 per barrel. 
This success is due to an integrated approach of the application, including: reservoir engineering and 
geologic studies, laboratory chemical system design, numerical simulations, facilities design, and 
ongoing monitoring (Vargo et al, 2000). Considering these experiences, different treatments are 
applied to the Ainsa reservoir to determine the best scenario in terms of production.  

The Ainsa reservoir model is built from data of the outcrop situated in Ainsa Basin (Figure 1) which is 
located in Spain, in the Sobrarbe region (Southern Pyrenees). It has 42 m of thickness and 750 m of 
length (Garrido, E. 2012). 

 

Figure 1 : Geological map of the Pyrenees with Ainsa basin position and the outcrop zone 

Based on the characteristics of the reservoir and the fluid in place, the objective of this study is to find 
the optimal parameters to improve the total oil recovery by setting up a production sequence.  
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To achieve this objective, the following injection sequences are analyzed: 
- Polymer 

- Surfactant 

- Alkaline-surfactant (AS) 

- Surfactant-polymer (SP)  

- Alkaline-surfactant-polymer (ASP) 

All simulations are performed using the reservoir simulator Pumaflow 2015. Several cases are 
examined ranging from continuous injection with different periods of flooding, to cyclic injection with 
different intervals. In addition, appropriate chemical concentration is determined and the most 
profitable chemical combinations are analyzed.  
As simulations done on the reservoir take few hours, only the main part of the reservoir is firstly 
studied using a three spot model (one injector and two producer wells). However, the most profitable 
cases are evaluated and compared, in terms of final recovery, over the whole model. As a rule, during 
this work all the hypotheses done for the field development are tested and analyzed to evaluate their 
impacts over the final results. Furthermore, all the established constraints and the assumptions for the 
different parameters come from published field experiences and EOR studies. 
In this report we first describe the geology and the reservoir grid and the mains properties of the 
reservoir. In a second part, a detailed reservoir engineering study is presented using different chemical 
injection sequences. Finally, the results are discussed and the most profitable injection system, based 
on the comparison of future performance broadcast through different development plans is proposed. 
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1.  Reservoir characteristics  

1.1. Geology 
Between the time of Eocene and mid Eocene, there is an intense geologic activity in the Pyrenees area 
marked by an intense sedimentation linked with the evolution of basins. These activities joined with a 
eustatic changes in Sea level are the cause of the different siliciclastic and carbonate platforms. The 
platforms are later eroded and deposit processes also occur resulting from turbiditic systems, (Garrido, 
E. 2012 and Figure 2). 

 

Figure 2 : Depositional setting of Ainsa sandstones. 

Based on the field study carried out by Arbués et al. (2007), five facies are distinguished:  
• Gravelly mudstones: Soft-sediment deformed material with a mudstone-dominated 

composition.  

• Heterolithic packages and mudstone beds: Packages of layered mudstones and fine-grained 

sandstone beds up to 10 cm thick. 

• Thick-bedded sandstones: Sandstone beds thicker than 10 cm with grain size ranges from 

very fine to pebble (up to 75% of sandstones correspond to medium to coarse grain size).  

• Mudstone-clast conglomerates and conglomerates: Both facies are up to 1m thick. They 

correspond to conglomerates with a matrix of sand and limestone inclusions.  

In this study particular interests are put on the sandstone and the heterolithic facies. Most of the 
recoverable oil remains in the sandstone facies. On the other hand, the reservoir potential of the 
heterolithics is affected by mudstone layers which have influences on the reservoir permeability and 
thus on the flow profile. 
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1.2. Model’s characteristics 
The proposed model is a black oil model and the cells are decomposed as follows (Figure 3): 

• 64 cells in I (X length: 960 m) 

• 70 cells in J (Y length: 1050 m) 

• 145 cells in K (Z length: 50 m)  

 

 

Figure 3 : Ainsa reservoir model 

The distributions of the porosity and of the permeability are defined by facies. The reservoir facies 
porosity distribution goes within the range of 30% (Figure 4). In contrast, the no-reservoir facies 
porosity is classically lower and close to 0.5%.  
 
 

 

Figure 4 : Porosity distribution, no-reservoir facies (1); reservoir facies (2) 
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The table below summarizes the main properties of the reservoir and the fluids in place:  
 

OOIP (hm3) 2,09 

Pi (bar) 253,52 

Ti (°C) 83 

Pb (bar) 66,83 

Swi (%) 15 

Sorw (%) 24,5 

WOC (MSL m) 5000 

µo (cP) 13 

µw (cP) 0.5 

Table 1 : Reservoir characteristics summary 

The figures 5 to 8 show the relative permeability and capillary pressure curves of the two facies that 
control the flow profile. 
 

 

Figure 5 : Relative permeability curves 
Oil/Water for the sandstone facies 

 

Figure 6 : Capillary pressure curve for the 
sandstone facies 

 

Figure 7 : Relative permeability curves Oil/Water 
for the heterolithics facies 

 

Figure 8 : Capillary pressure curve for the 
heterolithics facies 
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Relative permeability models and capillary pressure models are typical of water wet rocks. For all 
facies, water saturation varies between 30% (SWI) and 68% (1-SORW) except for sandstone whose 
water saturation varies from 15% and 75.5%. Although, extreme relative permeability values and 
capillary pressure values are the same for all facies, the change of water saturation interval makes the 
sandstone facies the best oil reservoir facies in term of oil volume storage and facility to produce it. 
 

1.3. Sensibility studies of the field permeability distribution 
impacts 

 
An important point is that the geological organization of the reservoir field is obtained thanks to an 
outcrop located close to the Ainsa town in southern Pyrenees, Spain. In this section the permeability 
distributions are not fixed. We address the following question: what is the impact of permeability 
distribution on the oil recovery considering a polymer slug injection. This question makes sense 
because the outcrop may be an analogue of different types of reservoirs. Indeed the outcrop helps to 
characterize the facies distribution but has a different geological story compared to a subsurface 
reservoir. Three different reservoirs are thus considered to be associated to three permeability 
distributions illustrated by figures 9 to 11, respectively corresponding to a non-altered reservoir, a 
fractured reservoir and an unconsolidated reservoir. The second permeability model results from an 
upscaling step in order to take into account the presence of fractures. The large permeability values of 
the third permeability model are due to unconsolidated facies. Models are respectively called 
“permeable”, “fractured” and “unconsolidated”. 
 

 

Figure 9: permeability distribution of the 
permeable model 

 

Figure 10: permeability distribution of the 
fractured model 

 

Figure 11: permeability distribution of the unconsolidated model 
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For this study, the size of the reservoir is reduced to his main part. The OOIP is 1.48 hm3 which is 
considered as reference to analyze each oil recovery. The reference case is a water injection 
implemented for 14 years with a pressure constraint of 500 bar. For each simulation, after a year of 
water flood, polymer injection treatment is carried out at the concentration of 1000 ppm for one year 
and then the concentration is graded to 500 ppm for another year. Finally, a water post-flush is 
injected until the end of the simulation (Figure 12).  
 
 

 

Figure 12 : injection sequence used for reservoir permeability sensitivity studies 

 
The simulation results are indicated in the Table 3.  
 

 
Permeable reservoir Fractured reservoir Unconsolidated reservoir 

PRODUCED OIL/Water 
(hm3)  

Polymer case 

0.398/0.428 0.383/1.194 0.273/1.303 

CWI (hm3) 

Polymer case 
0.862 2.012 2.466 

PRODUCED OIL/Water 
(hm3)  

Water flood case 

0.365/0.835 0.235/1.335 0.223/1.349 

CWI (hm3) 

Water flood case 
1.332 2.244 2.495 

%EOR 9% 63% 22% 

 Table 2 : polymer simulation results 
 

I. First case : Permeable facies 

By injecting 0.862 hm3 of water, 0.398 hm3 of oil are produced. The production of water 
reaches 0.428 hm3. Considering the permeable model polymer does not strongly help to better 
produce the reservoir oil. Only 9% of additional oil is produced using polymer injection. Due 
to weak facies permeabilities the pressure reaches quickly the imposed limit. As a 
consequence, water injection rate decreases during the water flood and decreases stronger 
when polymer is added to the solution. Therefore polymer injection does not have the 
attempted effect i.e. an increase of the cumulated oil production. 
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II. Second case: Fractured reservoir 

After 4 years of production, 0.383 hm3 of oil and 1.194 hm3 of water are produced. The 
volume of water injected reaches 2.012 hm3. In this case, the oil recovery is improved by 
63%. The ratio produced water volume (P/WF) is reduced by ~11% as well as the injected 
volume of water. Polymer injection is very interesting considering this case since %EOR 
reach 63%.  
 

III. Third case: Unconsolidated sandstone 

0.273 hm3 of oil is produced after injecting 2.466 hm3 of water. The high permeability allows 
the injection of higher volumes of polymer solution. However, oil recovery volume is 
decreased in comparison to the fractured case. A stronger water cut and a higher produced 
water volume contributed to this bad performance.  
 

The curves below summarize the polymer performance for the three studied cases. Purple, red and 
yellow curves are respectively obtained using permeable, fractured and unconsolidated Ainsa models. 
Plain and dash curves stand for water flood or polymer injection sequences respectively. 
 

Figure 13: Cumulative oil production Figure 14: water cut 

 
 

As a conclusion, polymer impacts critically depend on the permeability distributions. If the reservoir 
permeability is too weak it will be difficult to inject polymer without damaging the reservoir or the 
injection wells. If the reservoir is too permeable earlier water breakthroughs or stronger water cut may 
be observed which have a negative impact on oil production. Finally, the fractured reservoir shows to 
be the best candidate for polymer flooding. Then, this permeability distribution will be considered for 
our field development studies and is presented in Figure 10. The reservoir permeability range is 
between 1 to 1000 mD. Three permeability picks may be observed with mean values of 5, 50 and 
500mD correlated to facies distributions. Permeability is assumed transversely isotropic in any facies, 
with a vertical axis of rotational invariance. Vertical permeability is assumed smaller than horizontal 
permeability for heterolithics and mudstone-clast conglomerate by a factor respectively of 10 and 20 
because of mudstone beds or inclusions. 
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2. Field development 

2.1. Waterflooding 
 
A water flooding is simulated for a period of 14 years. The oil is drained with a five-spot model. 
Long-range heterogeneities features, such as vertical contrasts, have significant effects on flow 
behavior (Figure 15). 
 

 

Figure 15 : Oil saturation at the end of the water flood simulation 

The initial oil accumulation is 2.09 hm3 of which 18% is produced at the end of the water flooding 
(final OIP 1.71 hm3). However, from Figure 15, it is possible to see that there are zones with residual 
oil saturation larger than 40%. In addition a layering effect may be observed on Figure 15-16. The 
high facies and permeability heterogeneities of the reservoir contribute to form preferential flow paths 
that we call layering effect. Earlier water breakthroughs are the consequences of these preferential 
flow paths which may be reduced by using polymer injection as showed in the following section. 
 

 

Figure 16 : Oil saturation at the end of the water flood simulation 
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2.2. Polymer injection 
 
The following injection constraints are taken into account to perform the polymer injection simulation 
over the whole reservoir: 

• The base case is a water injection implemented for 14 years with a pressure constraint of 500 

bar.  

• The polymer solution injection starts after a year of water flood for five years. Three 

scenarios are modeled (Figure 17): 

o A polymer injection of two years at 1500ppm (P1). 

o A polymer injection of five years at 1500ppm (P2). 

o A polymer injection whose concentration decreases as a time function. 1500ppm the 

first two year, 1000ppm for next two years and finally 500ppm a last year (P3). 

• Finally, a water post-flush is injected after the polymer injection. The same pressure 

constraint is established.  

 

 

Figure 17 : polymer injection scenarios 

In addition the polymer model takes into account the polymer adsorption (10 µg/g), a permeability 
reduction and an inaccessible pore volume (IPV=0.10). The IPV is due to a limited access because of 
the size of macromolecules or a wall exclusion effect because of the increase in the speed of the 
solution. 
As a result an oil recovery of 24%, 32% and 30% is achieved depending on P1, P2 or P3 injection 
scenario, respectively. Thus the polymer injection is very efficient compared to the water flood 
(Figure 18). The water breakthrough impact is limited thanks to polymer (Figure 19) while the volume 
of water produced is reduced by 15%, 28% or 22% for P1, P2 or P3 respectively. 
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Figure 18 : Cumulative oil production for three polymer injection scenarios (P1, P2 ,P3) and a water 
flood injection (W) 

 

 

Figure 19 : Polymer effect over water cut 

W 

P1 

P3 

P2 

W P1 P2 P3 
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To limit the polymer injection volume while obtaining a good enhanced oil recovery the scenario P3 
seems to be the best. At the end of the P3 simulation, it is possible to see that the low permeability 
zones are better swept (Figure 15 / Figure 20 and Figure 16 / Figure 21). 
 

 

Figure 20 : Oil saturation at the end of the P3 scenario 

 

Figure 21 : Oil saturation at the end of the P3 scenario 

To conclude this section, using polymer, an oil recovery of 30% is obtained. The injected volume of 
polymer may be optimized considering the injected concentration and slug volume. In this case there 
is not a sensible reduction of oil produced. Nevertheless, there are still zones where 40% of the oil 
remains in the reservoir after the polymer injection (Figure 21).  
In order to reduce this saturation, different chemical systems; surfactant, alkaline-surfactant (AS), 
surfactant-polymer (SP) and alkaline-surfactant-polymer (ASP) flooding are tested to finally find the 
most viable and profitable method in terms of final recovery. 
Several cases are examined ranging from continuous injection with different periods of flooding, to 
cyclic injection with different intervals. In addition, appropriate chemical concentration is determined 
and the most profitable chemical combinations are analyzed. For all of chemical combinations, 
chemical treatments begin after one year of water flooding. 
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2.3. Surfactant injection 
 
A surfactant model is now considered. The impact on the solubilization of oil is modeled with 
dynamic Kr endpoints and chemical Kr curves. The impact on the interfacial tension is modeled based 
on the surfactant concentrations (Figure 22). The critical capillary number is established as 1E-6 
(Figure 23). The effect of lowering the IFT on the chemical relative permeabilities is defined by 
dynamic Corey coefficients (Figure 24). A capillary pressure correction, a maximum adsorption of 50 
µg/g and a Langmuir coefficient of 0.10 m3/kg is applied (Figure 25). 

 

Figure 22 : Surfactant concentration effect on IFT 

Figure 23 : Capillary desaturation 
curve 

 

Figure 24 : Chemical permeabilities definition 

 

Figure 25 : Surfactant adsorption profile 
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A 2-year continuous surfactant injection at 2000 ppm is simulated (Figure 26).  
 

 

Figure 26: surfactant injection scenario 

As a result, just 0.5% of improvement is achieved in comparison to water injection (Figure 27). The 
cause of this low recovery is the quick displacement of surfactant solution through the high 
permeability layers resulting in an early breakthrough. Nevertheless, one important observation is the 
very low oil saturations attained near the injection well as well as in the high permeability facies 
(Figure 28). The profile of surfactant concentration at the end of the simulation shows that no 
surfactant is left at the final time near the injector due to adsorption (Figure 29). 
  
 

 

Figure 27 : Surfactant effect (S) on oil recovery compared to water flooding (W) 

S 

W 
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Figure 28 : Oil saturation near de injector after surfactant flooding 

 

Figure 29 : Surfactant concentration in water profile 

To conclude this section, incremental production obtained using surfactant is closed to 0.5%. The high 
permeable layers are the primary reason of the poor final performance. As a result, the polymer 
injection seems to be more efficient because polymer helps to control the water mobility. In a word 
high permeability layer flows are reduced contributing to a better sweep of lower permeable layer. In 
addition as surfactant adsorption is not important a simultaneous alkaline surfactant injection gives the 
same result as the surfactant injection. However, by combining polymer and surfactant, a better 
recovery could be achieved and this will be studied in next section.  
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2.4. Surfactant – polymer flooding system 
 
As seen section 2.2, the mobility control is the key parameter to prevent layering effects while helping 
to obtain a good sweep of the reservoir. By applying a combined polymer/surfactant process, we look 
for ways to improve sweep efficiency while keeping the flow displacement efficiency. 
The chosen polymer scenario (section 2.2) is applied. During the second polymer injection surfactant 
is simultaneously injected (Figure 30). 
 

 

Figure 30:SP injection scenario 

The figure below shows the incremental recovery of this sequence. By applying the optimal 
parameters in terms of surfactant concentration found in the section 2.3., 45% OOIP was recovered 
with a 4-year SP injection. (Figure 39). 
 

 

Figure 31: cumulative oil production of Water, Polymer and polymer/Surfactant injection 

As a conclusion, by combining the effect of mobility control given by the injection of polymer and the 
reduction of interfacial tension obtained by the injection of surfactant, no significant increment of 
recovery is observed comparing to polymer injection. To validate this result we now inject 15g/L of 
alkaline with the surfactant. The injection scenario is given Figure 32. 

W 

P 

SP 
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Figure 32: ASP injection scenario 

The following curves resume the different injection scenarios. As a result the use of polymer increases 
significantly the oil production. In another side no significant incremental production is observed if 
surfactant or alkaline are added to the polymer. 
 

 

Figure 33 : cumulative oil production of Water, Polymer, Polymer/Surfactant and 
Alkaline/Polymer/Surfactant injection 
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2 FINAL EVALUATION 

Table 4 shows the percentage of oil recovery. Among all the scenarios tested, the best oil recovery is 
achieved through a polymer flooding with an oil recovery of 30%. Polymer helps to produce 210 
sm3/day during 4 years. Considering the same period a water flooding only produce 50 Sm3/day 
(Figure 34).  
 

Chemical injection Produced 
Oil (hm3) 

% oil 
recovery 

Water flood 0.375 18% 
Polymer 0.62 30% 
Surfactant 0.39 19% 
AS 0.39 19% 
SP 0.62 30% 
ASP 0.62 30% 

Table 3 : Comparison of chemical treatments tested 

 

Figure 34: oil production rate for  
Water, Polymer, Polymer/Surfactant and Alkaline/Polymer/Surfactant  

injection scenario 

According to the obtained results, the injection of polymer is the main parameter to increase the oil 
recovery due to the reservoir heterogeneity. As a result on Ainsa field, surfactant injection is not 
profitable without a mobility reduction agent. Without polymer in the surfactant slug, a layering effect 
does not allow to obtain a good reservoir sweep. It is important to remark that for polymer and 
surfactant models, adsorption reduced their efficiency. However, the fact of testing adsorption helps to 
decide if a method to reduce adsorption is profitable. 
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3 CONCLUSIONS 

The exposed results show that the initial water flooding recovery (18%) may be improved by the 
application of an appropriate chemical treatment. To develop this reservoir, through an interesting 
technique, an improved injection sequence is applied and the development of the reservoir is 
forecasted. The most profitable system found is a polymer injection which reached an oil recovery of 
30% OOIP over the whole reservoir (Figure 35). The volume of produced water is reduced by 22%. 
Furthermore, a cyclic injection may be applied if there are economic constraints since the quantity of 
chemicals may be reduced by a half.  
 

 

Figure 35 : cumulative oil production for water and 
polymer injection scenarios 

 

Figure 36 : oil production rate for water 
and polymer injection scenarios 

 
The figures below show the variation in oil saturation after the water injection and SP system. Both 
allow the comparison in terms of residual oil saturation. It’s clear that the polymer injection optimizes 
the reservoir drainage. 
 

 

Figure 37 : Water flooding residual oil saturation 

 

Figure 38 : Polymer flooding residual oil saturation 
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