
HAL Id: hal-01857743
https://ifp.hal.science/hal-01857743

Submitted on 17 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grains3D, a flexible DEM approach for particles of
arbitrary convex shape - Part II: Parallel
implementation and scalable performance

Andriarimina Daniel Rakotonirina, Anthony Wachs

To cite this version:
Andriarimina Daniel Rakotonirina, Anthony Wachs. Grains3D, a flexible DEM approach for parti-
cles of arbitrary convex shape - Part II: Parallel implementation and scalable performance. Powder
Technology, 2018, 324, pp.18 - 35. �10.1016/j.powtec.2017.10.033�. �hal-01857743�

https://ifp.hal.science/hal-01857743
https://hal.archives-ouvertes.fr


Grains3D, a flexible DEM approach for particles of arbitrary
convex shape - Part II: parallel implementation and scalable

performance

Andriarimina Daniel Rakotonirinaa, Anthony Wachsb,c,∗

aIFP Energies nouvelles, Fluid Mechanics Department, Rond-point de l’Echangeur de Solaize, BP 3,
69360 Solaize, France.

bDepartment of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC,
Canada, V6T 1Z2.

cDepartement of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall,
Vancouver, BC Canada, V6T 1Z3.

Abstract

In [1] we suggested an original Discrete Element Method that offers the capability to con-

sider non-spherical particles of arbitrary convex shape. We elaborated on the foundations

of our numerical method and validated it on assorted test cases. However, the implemen-

tation was serial and impeded to examine large systems. Here we extend our method to

parallel computing using a classical domain decomposition approach and inter-domain MPI

communication. The code is implemented in C++ for multi-CPU architecture. Although

object-oriented C++ offers high-level programming concepts that enhance the versatility

required to treat multi-shape and multi-size granular systems, particular care has to be de-

voted to memory management on multi-core architecture to achieve reasonable computing

efficiency. The parallel performance of our code Grains3D is assessed on various granular

flow configurations comprising both spherical and angular particles. We show that our

parallel granular solver is able to compute systems with up to a few hundreds of millions

of particles. This opens up new perspectives in the study of granular material dynamics.

Keywords: Granular flow; Discrete Element Method; Angular particles; Parallel

computing;

1. Introduction

Discrete Element Method (DEM) based simulations are a very powerful tool to sim-

ulate the flow of a granular media. The foundations of the method were introduced by

Cundall and Strack [2] in the late seventies. Originally developed for contacts between

spherical particles, the method was later extended to polyhedra by Cundall in 1988 [3].

∗Corresponding author
Email address: wachs@math.ubc.ca (Anthony Wachs)

Preprint submitted to Powder Technology September 22, 2017



The conceptual simplicity combined with a high degree of efficiency has rendered DEM

very popular. However, there are essentially still two bottlenecks in DEM simulations: (i)

the non-sphericity of most real life particles and (ii) the generally large number of particles

involved even in a small system.

In [1] we addressed issue (i), i.e., the non-sphericity of particles by reviewing the various

existing techniques to detect collisions between two non-spherical particles and by suggest-

ing our own collision detection strategy that enables one to consider any convex shape and

any size. Issue (ii) can be tackled in two different and complementary ways. The former

involves improving the computational speed of classical serial implementations of DEM.

This can be achieved by a higher quality programming and smarter algorithms, but there

is admittedly a limit in that direction, even with the most advanced implementations. The

latter involves dividing the work load between different computing units and hence using

distributed computing. Nowadays, there are two (potentially complementary) technologies

for DEM distributed computing: CPU [4, 5, 6, 7, 8, 9] vs GPU [10, 11, 12, 13, 14, 15, 16, 9].

Both technologies have assets and drawbacks. Interestingly, the definitiom of large-scale

computing fluctuates quite a lot from one publication to another publication as well as

changes with time and fast-evolving supercomputing resources. While GPU is parallel in

essence (multi-threaded), fast on-chip memory is limited in size and global memory access

is very slow, which can result in a weak performance of the code [11]. Besides, the built-in

parallelism of GPU is not yet fully designed for multi-GPU computations, which may limit

the overall performance to that of a single GPU, in particular in terms of system size, i.e.,

number of particles. However, recent developments have shown that reasonable scalabil-

ity can be achieved with single- and multi-GPU computations, as summarized in Tab. 1.

Please note that, as emphasized by Shigeto and Sakai [9], the speed ratio 1 GPU/1 CPU

in Tab. 1 and in general one-to-one GPU vs CPU comparisons might not always be fair.

CPU-based DEM codes generally exhibit no limit in number of communicating CPUs

(cores) and hence no limit in number of particles, provided the scalability is maintained at

a reasonable level. Communications between cores is achieved using MPI [17]. Although

computations with up to a few tens of millions of particles are emerging with GPU-based

implementations [10, 11, 15, 12], simulations with up to a few billions of particles can be

envisioned with CPU-based implementations, provided computational practitioners have

access to large supercomputers with many thousands of cores [6, 7, 8]. The forthcoming

new GPU technology is likely to offer similar parallel computing capabilities as the CPU

technology, either by improving inter-GPU communications without using CPUs or by

2



speeding up data exchange between GPUs and CPUs. At the time we write this article,

this enhanced GPU technology is not available yet. Multi-CPU implementations already

have or will soon have to address other challenges related to the evolution from multi-core

to many-core technology, i.e., computing nodes have more CPUs that each have more cores.

The current multi-core technology also poses tough challenges in terms of memory access

and management (that we partly address in this work) but the next generation many-core

technology will render these challenges even more crucial. One option to address them

involves developing hybrid shared/distributed computing models, i.e., shared on a node

with OpenMP and distributed among nodes using MPI [18]. These hybrid implementations

might have been optional so far with 8, 16 or even 24 cores per node only, but may

become mandatory in the future as the number of cores per node is likely to keep on

increasing. Another option is to rethink the programming paradigm, both for many-CPU

[19] and many-GPU [20] computing. This is an on-going effort in the scientific computing

community.

DEM is used both in dry granular flow computations and in particle-laden flow com-

putations. Collision detection and resolution is generally the most time-consuming part of

a DEM computation. When particles are immersed in a fluid, hydrodynamic interactions

reduce the number of collisions between particles and hence computations (corresponding

to the DEM solver only, not the solution of the fluid mass and momentum conservation

equations) for the same number of particles are faster or conversely a higher number of

particles can be considered for the same computing time. Fluidized bed simulations are a

typical case of a relatively low number of collisions with respect to the number of parti-

cles in the system once the bed is sufficiently fluidized, e.g., the inlet velocity is at least

2-3 times the minimum fluidization velocity. In a simple configuration of fluidization in a

box, Pepiot and Desjardins [21] perform computations with up to 382 million of spheres

on 4096 cores with a parallel efficiency of 85%. In the field of particle-laden flow simula-

tions, let us mention the long term effort of the National Energy Technology Laboratory

in the development of the open source code MFIX. In the past few years, MFIX, which has

historically been known for its Two-Fluid model (MFIX-TFM) and Particle in Cell model

(MFIX-PIC), has been enriched by an Eulerian/Lagrangian model (also called DEM-CFD)

that relies on a DEM solver for the Lagrangian tracking of particles with collisions. The

performance of the parallel DEM solver involved in the so-called MFIX-DEM model is ana-

lyzed by Gopalakrishnan and Tafti in [22]. Computations with up to 10 million of spheres

in a fully 3D fluidized bed configuration on up to 256 cores with a reasonably satisfac-

3



tory parallel efficiency are presented. Using the MFIX-DEM model, Liu and Hrenya [23]

also investigate its parallel performance in pseudo-2D rectangular fluidized beds. Com-

putations with up to 10 million of spheres on up to about 80 cores show a satisfactory

scalability provided the number of particles per core is 105. Liu and Hrenya also address

the important question of the physical time that can be computed versus the number of

particles that can be computed and show that the balance is controlled by the domain size

to particle size ratio, as smaller particles require smaller time steps to resolve collisions.

MFIX possesses an active and large community of users and the literature comprises nu-

merous works using MFIX to examine particle-laden flows and in particular fluidized bed

configurations. Among many others, let us mention the recent work of Yang et al. [24, 25]

using MFIX-DEM to study the flow dynamics in a double slot-rectangular spouted bed

that contains around 2.6 million of spheres. Finally, Gel et al. [26] recently attempted

to improve the parallel performance of MFIX by partly refactoring the code at a rather

deep programming level to better fit modern high-performance computing architectures.

Significant computing time reductions, up to 8 times improvement, are obtained. This is

in line with our effort, presented later in this work, in refactoring our own code Grains3D

to attain a satisfactory parallel performance.

Our goal in this paper is to elaborate on a simple domain decomposition based parallel

extension of our granular code Grains3D and to assess its computing performance on

systems of up to a few hundreds of millions of particles. Please note that most references

given above considered spheres or spheroids. The main strength of our implementation

is the ability to combine our simple but efficient parallel implementation to our collision

detection strategy for non-spherical and angular particle shapes [1], and hence to target

large-scale DEM computations of many millions of particles of, e.g., polyhedral shape. In

Section 2, we quickly recall the features of our numerical model as already explained in [1].

We then present our parallel strategy in Section 3. In Section 4 we measure the computing

performance of our parallel implementation in various granular flow configurations (particle

shape, particle load by core, weak scalability). Finally, we discuss parallel computing

performances exhibited by Grains3D in Section 5 and highlight the remaining intrinsic

limitations of Grains3D and how to relax them.

2. Numerical model

The motion of the granular material is determined by applying Newton’s second law

to each particle i ∈< 0, N − 1 >, where N is the total number of particles. The rigid body

4



motion assumption leads to the decomposition of the velocity vector v as v = U +ω ∧R,

where U , ω and R denote the translational velocity vector of the center of mass, the

angular velocity vector of the center of mass and the position vector with respect to the

center of mass, respectively. The complete set of equations to be considered is the following

one:

Mi
dUi
dt

= Fi (1)

Ji
dωi
dt

+ ωi ∧ Jiωi = Mi (2)

dxi
dt

= Ui (3)

dθi
dt

= ωi (4)

where Mi, Ji, xi and θi stand for the mass, inertia tensor, center of mass position and

angular position of particle i. Fi and Mi are the sum of all forces and torques applied on

particle i, respectively, and can be further decomposed in purely granular dynamics (i.e.,

without accounting for any external forcing as e.g. hydrodynamic or electrostatic) into a

torque-free gravity contribution and a contact force contribution as:

Fi = Mig +
N−1∑

j=0,j 6=i
Fij (5)

Mi =

N−1∑
j=0,j 6=i

Rj ∧ Fij (6)

where Fij is the force due to collision with particle j and Rj is a vector pointing from the

center of mass of particle i to the contact point with particle j. In our contactc force model,

Fij comprises a normal Hookean elastic restoring force, a normal dissipative force and a

tangential friction force. In particular, we do not consider any history term in our contact

force model as, e.g., for tangential friction. The rationale for this intentional choice is as

follows: a contact force model with a history term is significantly more computationally

intensive than the selected simple contact force model without any history term. Com-

puting contact forces is a serial task, hence using a simple contact force model that leads

to speed up the serial parts of the code enables us to be more demanding on the paral-

lel performance of our code (conversely, using a contact force model with a history term

that requires more serial computations would artificially improve the parallel performance,

although more data would need to be communicated by MPI).

The set of equations Eq. (1)-Eq. (4) is integrated in time using a second order leap-frog

Verlet scheme. Rotations of particles are computed using quaternions for computational

5



efficiency as well as to avoid any gimbal lock configurations. The collision detection algo-

rithm is a classical two-step process. Potential collisions are first detected via a linked-cell

list and then actual collisions are determined using a Gilbert-Johnson-Keerthi (GJK) algo-

rithm. The GJK algorithm is an iterative procedure that computes the minimal distance

between two convex bodies. The distance function is based on a support function specific

to each convex shape. The support function is known for a sphere, a polygon, a polyhe-

dron, a cylinder and a cone, which enables us to consider a large variety of convex shapes

and size. The whole collision detection algorithm is a 3-step procedure that operates as

follows: (i) convex bodies that potentially collide are shrunk by their crust width, (ii) the

GJK algorithm is used to compute the minimal distance between the shrunk bodies, and

(iii) the bodies are swollen back to their original size and the contact features are recon-

structed. For more detail about our GJK-based collision detection strategy, we refer the

reader to Grains3D-Part I [1] and the references therein.

3. Domain Decomposition parallel strategy

Our parallel strategy is classical and is based on a domain decomposition technique.

We consider below only the case of a constant in time domain decomposition, assuming

that we know how to guarantee a reasonable load balancing of number of particles between

subdomains over the whole simulation. The extension to dynamic load balancing in gran-

ular flows with large particle volume fraction heterogeneities will be shortly discussed in

Section 5 as an extension of this work.

We employ a cartesian domain decomposition. Each process hosts a single subdomain

and we hence define a cartesian MPI communicator using the MPI_Cart_create com-

mand. It is then very convenient to identify the neighbouring subdmains on each subdo-

main as well as to implement multi-periodic boundary conditions. On each subdomain, we

construct a cartesian linked-cell list with an additional layer of cells at the boundary with

neighbouring subdomain to serve as an overlapping zone. This overlapping zone hosts clone

particles used to compute collisions with particles located on a neighbouring subdomain

(process). As a consequence, cells in a linked-cell list are tagged based on their location on

the subdomain: 0 = interior, 1 = buffer and 2 = clone, as illustrated on Fig. 1(a). At each

time step, clone particles are either created, deleted or updated. All particles are tagged

based on the cell they belong to. Hence they consistantly change status as they move

in the subdomain. Corresponding operations are performed on neighbouring subdomains

when a particle change status. For instance, if a particle moves from an interior cell (tag

6



= 0) to a buffer cell (tag = 1), a clone particle (tag = 2) is automatically created on the

neighbouring subdomain.

The serial code is implemented in C++ which equips us with the required versatility to

handle multiple particle shapes and sizes, based on inheritance mechanism, virtual classes

and dynamic typing. Each particle is an instance of a C++ class and all active particles

on a subdomain, including particles in buffer and clone zones, are stored in a primary list.

Two additional separate lists for buffer and clone particles, respectively, are also created.

As a consequence, when information of buffer particles needs to be sent to a neighbouring

subdomain, we first loop on the list of buffer particles, extract the relevant information

and copy it to a buffer memory container (a standard 1D array, i.e., a standard vector, of

doubles or integers). Each subdomain keeps a list of reference particles corresponding to

all the types of particle in the simulation. These reference particles store generic data as

mass, moment of inertia tensor and geometric features, such that MPI messages contain

velocity and position information only and their size is reduced to the minimum.

Assorted communication strategies between processes (subdomains) can be designed,

ranging from the simplest strategy to the most advanced (to the best of our knowledge

for a cartesian MPI decomposition) strategy. We list below the different strategies we

implemented and tested, ranked in growing complexity:

• the AllGatherGlobal strategy

All processes send information from their buffer particles to all other processes, re-

gardless of their location in the MPI cartesian grid using a MPI_Allgather command.

A huge amount of useless information is sent, received and treated by each process.

It is however a good starting point and performs well up to 8 (maybe 16) processes

maximum.

• the AllGatherLocal strategy

All processes send information from their buffer particles to all their neighbouring

processes. The amount of useless information is reduced, but it is still far from

optimal. This strategy performs reasonably well up to 16 (maybe 32) processes, but

beyond the scalability markedly deteriorates.

• the AllGatherLocal strategy with non-blocking sending

The next level of sophistication involves performing the following among neighbouring

processes: non-blocking sending of messages with the MPI_Isend command combined

with classical blocking receiving with the MPI_Recv command. Incoming messages

7



are first checked with the MPI_Probe command and their size is detected with the

MPI_Get_count command such that the receiving buffer is properly allocated for each

received message [7, 8]. Using non-blocking sending speeds up communications as

the MPI scheduler can initiate receiving operations even if sending operations are

not completed, but still a lot of useless information is sent, received and treated.

• the adopted optimal strategy called SendRecv_Local_Geoloc

Not only cells (and hence particles belonging to these cells) are tagged in terms

of their status (0 = interior, 1 = buffer and 2 = clone, see Fig. 1(a)) but cells

in the buffer zone are also tagged in terms of their location with respect to

the neighbouring subdomains using a second tag, named GEOLOC for geographic

location, that takes the 26 following values (whose meaning is rather obvious

on a 3D cartesian grid as can be seen in Fig. 1(b)): EAST & WEST in the x

direction, NORTH & SOUTH in the y direction, TOP & BOTTOM in the z direc-

tion are the main neighbours, NORTH_EAST, NORTH_WEST, SOUTH_EAST, SOUTH_WEST,

NORTH_BOTTOM, NORTH_TOP, SOUTH_BOTTOM, SOUTH_TOP are the edge neighbours,

and NORTH_WEST_TOP, NORTH_WEST_BOTTOM, SOUTH_WEST_TOP, SOUTH_WEST_BOTTOM,

NORTH_EAST_TOP, NORTH_EAST_BOTTOM, SOUTH_EAST_TOP, SOUTH_EAST_BOTTOM are

the corner neighbours. The aftermath is an exact tailoring of sent messages with

the appropriate information only, thus reducing the size of each sent message to the

minimum.

Depending on the particle’s GEOLOC tag, information from a buffer particle is copied

to one or more buffer vectors to be sent to neighbouring subdomains. There are

essentially three situations as illustrated below:

– a buffer particle with a main GEOLOC tag: for instance a particle tagged SOUTH

is sent to the SOUTH neighbouring subdomain only (Fig. 2),

– a buffer particle with an edge GEOLOC tag: for instance a particle tagged

SOUTH_EAST is sent to the SOUTH, EAST and SOUTH_EAST neighbouring subdo-

mains only (Fig. 3),

– a buffer particle with a corner GEOLOC tag: for instance a particle tagged

SOUTH_WEST_TOP is sent to the SOUTH, WEST, TOP, WEST_TOP, SOUTH_WEST,

SOUTH_TOP and SOUTH_WEST_TOP neighbouring subdomains only.

Similarly to the AllGatherLocal strategy, exchange of information between neigh-

bouring subdomains is performed by a combination of non-blocking sending opera-

8



tions using MPI_Isend and blocking receiving operations using MPI_Recv.

The buffer vectors sent and received by processes are of the C double type. A buffer

vector contains for each particle the following data: particle identity number, particle

reference type, MPI rank of sending process, velocity, position and orientation for a total

of 29 numbers. Particle identity number, particle reference type and MPI rank of sending

process are integer numbers and are cast into double numbers such that all features can

be concatenated into a single vector of doubles. Hence each process sends to and receives

from another neighbouring process a single message containing a vector of doubles with

the MPI_DOUBLE data type (instead of sending and receiving separately in two different

messages a vector of doubles with the MPI_DOUBLE data type and a vector of integers with

the MPI_INT data type, respectively). Each message size is then 29 times the size of a

double times the number of buffer particles with the appropriate GEOLOC tag. Due to the

considerable latency involved in any MPI message, efficient parallel performance involves

keeping the number of messages as low as possible. This explains why we cast integer

to double as a way to avoid heterogeneous data types and/or twice more messages (the

computing cost of the cast operation from integer to double when sending and back from

double to integer when receiving is much smaller than the one associated to sending and

receiving 2 messages instead of 1). Another option that we have not tried is to convert

all data types to raw bytes and send a single vector of raw bytes using the MPI_BYTE data

type. Each neighbouring process is then responsible to convert back the received raw byte

messages to their original data types. This strategy has been successfully implemented in

[7, 8].

At each time step, the full solving algorithm on each subdomain reads as follows:

1. for all particles with status 0 or 1: initialize force to gravity and torque to 0

2. for all particles:

(i) detect collisions

(ii) compute contact forces & torques

3. for all particles with status 0 or 1:

(i) solve Newton’s law: Eq. (1) for translational velocity and Eq. (2) for angular

velocity

(ii) update position Eq. (3) and orientation Eq. (4)

9



4. search for particles whose status changed from 0 to 1 add them to the list of buffer

particles

5. MPI step using the SendRecv_Local_Geoloc strategy (in the 3D general case of 26

neighbouring subdomains):

(i) copy buffer particles features into the different buffer vectors of doubles depend-

ing on their GEOLOC tag,

(ii) perform non-blocking sendings of each of the 26 buffer vectors of doubles to the

corresponding neighbouring subdomains,

(iii) for j = 0 to 25 (i.e., for each of the 26 neighbouring subdomains):

(I) perform a blocking receiving of the vector of doubles sent by neighbouring

subdomain j,

(II) Treat the received vector of doubles containing particles information

• Create or update clone particles

• Delete clone particles moved out of the subdomain

6. for all particles: based on their new position, update status and GEOLOC tags and the

corresponding lists of buffer and clone particles

4. Computational performance

In this section, we assess the computational performance of our parallel DEM code

Grains3D on assorted flow configurations in which load balancing in terms of number of

particles per subdomain (process) is approximately constant over the whole simulation.

All the test cases considered thereafter are fully three-dimensional. In all computations,

each core hosts a single subdomain and a single process. Hence, the terms "per core", "per

subdomain" and "per process" are equivalent. All parallel computations presented there-

after are performed on the supercomputer ENER110, IFPEN, Lyon, France. ENER110

comprises 378 16-core nodes for a total of 6048 cores and a peak performance of 110Tflops.

Processors are Xeon E5-2670 8C 2.6GHz and the interconnect is high-speed Infiniband

FDR. The OS is Linux CentOS 6.4 and our code is compiled with IntelMPI-4.1 and GNU-

4.8.5. Additional computations (not shown for the sake of conciseness) performed on

the supercomputer Occigen, CINES, Montpellier, France and the supercomputer Jasper,

WestGrid, Edmonton, Canada, gave parallel performances similar to those obtained on

ENER110.

10



Our primary goal is to compute larger systems for a given computing time. We therefore

assess the computational performance of Grains3D in terms of weak scaling. We compute

the parallel scalability factor S(n) by the following expression:

S(n) =
T (1, N)

T (n,N × n)
(7)

where T (1, N) denotes the computing time for a problem with N particles computed on a

single core or a single full node and T (n,N × n) denotes the computing time for a similar

problem with N × n particles computed on n cores or nodes.

4.1. Assessing memory management on multi-core node architecture

4.1.1. Discharge flows in silos

The first test case is a discharge of particles from a silo. Before performing weak scaling

tests, we validate our DEM solver versus experimental data. For that purpose, we select the

work of González-Montellano et al. [27] as a reference because of its conceptual simplicity.

Their study consists in comparing their own DEM simulation results to experimental data

of spherical glass beads of 13.8mm diameter discharging from a silo. The silo has a 0.5m

height (H) and 0.25 m sides (L) (Fig. 4(a)). The bottom has a truncated pyramid shape

with a square hopper opening of 57 mm sides whose walls make an angle θ = 62.5◦ with

respect to the horizontal plane. In our simulations, we extend the bottom of the silo to

collect all particles flowing through the opening of the hopper (see Fig. 4(b)). Obviously,

this does not affect the discharge dynamics and rate.

As in [27], we fill the silo with 14000 spherical particles by performing a first granular

simulation with the opening of the hopper sealed by a plate. In this preliminary simulation,

we insert all particles together as a structured array in order to reduce the computing time

(see Fig. 5 at t = 0). To this end, we extend the height of the silo in a way that all

particles fit into the silo before they start to settle. The initial particles positions at the

insertion time are actually slightly perturbed with a low amplitude random noise in order

to avoid any artificial microstructural effect. Particles then settle by gravity and collide

until the system reaches a pseudo steady state corresponding to a negligible total kinetic

energy (see Fig. 5 at t = Tfill). As observed in [27], the 14000 spherical particles fill the

silo up to Hm ' 0.86H. After the filling of the silo, the plate that blocks the particles is

removed by imposing a fast translational frictionless displacement to start the discharge.

Simulations are run until all particles have exited the silo (see Fig. 5 at t = Tdis).

As in [1] our contact model is the linear damped spring with tangential Coulomb friction

for both particle-particle and particle-wall contacts. The magnitude of the parameters

11



involved in the silo discharge simulations is given in Tab. 2. In [1], we elaborated on the

fact that the spring stiffness kn in our contact model can be linearly related to the Young

modulus E of the material. Since the contact duration is inversely proportional to kn, a

high E leads to a short contact duration, and hence a correspondingly small time-step ∆t.

For glass beads, the Young modulus E is approximately 50 GPa. It leads to a time step

magnitude of the order of ∆t ∼ 10−7s, which would require to compute an unnecessary

large number of time steps to simulate the whole discharge of the silo. In fact, as explained

in [1], the stiffness coefficient kn is generally not set in accordance with Hooke’s law and

Hertzian theory, but rather in a way to control the maximum overlap between particles

as they collide. The meaningful parameters from a physical viewpoint are the coefficient

of restitution en and the Coulomb friction coefficient µc. A smaller kn enables us to use

much larger time steps without affecting the whole dynamics of the system. This is rather

customary in DEM simulations of non-cohesive materials. For more detail about how

to determine kn, the reader is referred to [1, 28, 29, 30] and the references therein. In

Tab. 3, the meaningful physical parameters en and µc are set to exactly same values as

those selected by González-Montellano et al. [27]. Using an estimate of the maximum

collisional velocity of vcol = 4.5m/s, the selected value of kn leads to a maximum overlap

distance of 3% of the sphere radius. Please note that this estimate is highly conservative

as vcol = 4.5 m/s is the free fall velocity of particles as they collide with the bottom wall

of the collecting bin underneath the hopper opening. In fact, the collecting bin height is

≈ 1 m, hence we get
√

2× 9.81× 1 ≈
√

20 ≈ 4.5 m/s. In the dense discharging granular

material above the hopper opening, the actual collisional velocity is much less. As a result,

the maximum overlap between colliding particles in this part of the granular flow is less

than 0.1% of the sphere radius, a value commonly deemed to be a very satisfactory (and

almost over-conservative) approximation of rigid bodies in DEM simulations.

We report in Tab. 3 the values of the discharge time experimentally measured by

González-Montellano et al. [27] together with our simulation result. González-Montellano

et al. [27] carried out three times the same experiment but it seems that the observed

deviation of the discharge time with respect to the mean value is very limited (of the

order of 0.2%). In other words, the initial microstructure of the particles in the silo

before removing the hopper gate is essentially similar and does not markedly affect the

discharge process. Based on this observation, we perform a single discharge simulation.

Our model shows a (even surprisingly) good agreement with the discharge time measured

in the experiments of González-Montellano et al. [27]. Snapshots of the discharge process

12



also exhibit a highly satisfactory agreement between our simulations and the experiments

in [27], as presented in Fig. 6. Although our goal in this work is not to carry out an

extensive analysis of the discharge, it is computationally cheap and important to validate

our model and gain confidence in the computed results. We are now in a sensible position

to perform weak scaling tests and assess the scalability properties of our parallel DEM

solver.

4.1.2. Parallel scalability

On the single-core architecture of the 90s, each core had its own levels of cache and its

own random-access memory (RAM). The limitation of parallel implementations was hence

essentially the communication overhead. This overhead depends on the MPI strategy (size

of message, synchronous/asynchronous communication, blocking/non-blocking communi-

cation, etc). Since the early 2000s, the new emerging architecture relies on multi-core

processors. In a supercomputer, these multi-core processors are bundled in computing

nodes, i.e., a computing node hosts multiple processors that each hosts multiple cores.

Cores share levels of cache on the processor they belong to and processors share RAM on

the computing node they belong to. The aftermath is a more complex and competitive

access to memory by all the cores of a computing node. Hence, parallel implementations

running on modern supercomputers can be limited as much by the communication overhead

as by the intra-processor and intra-node memory management and access. Our parallel

DEM solver Grains3D is programmed in C++ and has gone through a deep refactoring

along the following guidelines: (i) use object-oriented programming concepts at a very

high level of design only, (ii) use standard old-fashioned C/F77-like containers whenever

possible and (iii) slightly over-allocate memory and reduce to the absolute minimum dy-

namic memory management. There is still room for improvement in our implementation

but we are now in a position to present acceptable parallel properties. In this section,

we design two slightly different multi-silo discharge configurations in order to discriminate

the computing overhead related to (i) memory competitive access and management and

pure MPI communication latency from (ii) actual MPI communications and treatment of

received information.

The first flow configuration consists in discharging particles from several silos using

the previous configuration (Fig. 4). The multiple silos case is designed in a way that

a silo is handled by a single core without any actual communication with neighbouring

sub-domains (Fig. 7). In fact, silos are located far enough from each other to avoid the

creation and destruction of clone particles. This flow configuration is hence illustrative of

13



case (i): memory competitive access and management and MPI communication latency.

In fact, the code runs in MPI but messages are empty. The overhead coming from MPI is

hence essentially related to the latency of the MPI scheduler to send and receive messages.

We adopt a two dimensional domain decomposition (Ncores,x × Ncores,y × 1 = Ncores)

to guarantee exact load balancing between the cores. We evaluate the scalability of our

code by gradually increasing the size of our system. To this end, we perform discharge

simulations of 2, 000 cubic particles and 2, 000, 14, 000, and 100, 000 spherical particles per

silo, starting from one silo till 256 silos. Varying the load of particles per core changes

the amount of memory allocated, managed and accessed by the code on each core. This

enables us to discriminate further between memory management and MPI latency so that

the effects of these two factors are not mixed up. In fact, MPI latency is independent of

the particle load as the number of messages sent and received scales with the number of

cores. The total number of particles NT in the system is a multiple of that in a single core

system and is defined as follows:

NT = Np,1 ×Ncores (8)

where Np,1 and Ncores are respectively the number of particles on a single core system

and the number of cores. The largest system comprises 100, 000 × 256 = 25, 600, 000 of

spherical particles. As the granular media is dense in most of the domain, the largest

part of the computing time (more than 85%) is spent in computing interactions between

particles, i.e., contact detection and contact forces. For the weak scaling tests, we run all

discharge simulations over 300, 000 time steps. Reference times on a single core job are

listed in Tab. 4. A first interesting comment about Tab. 4 is that the computing time per

particle and per time step is not constant and slightly increases with the size of the system.

Even when running in serial mode, memory access is apparently not optimal as containers

of larger size (as e.g. a larger list of particles) seem to slow down the computation. Some

additional efforts in refactoring the serial implementation of the code are required but this

is beyond the scope of the present paper.

The second flow configuration is very similar except that right now all silos are merged

together into a big silo. The whole domain is thus shared by each core and actual communi-

cations (in the sense communications with non-empty messages) between sub-domains are

exchanged (see Fig. 8). For this purpose, we performed discharge simulations of 10, 000

cubic particles, 2, 000, 14, 000 and 100, 000 spherical particles. As for the first flow config-

uration, a two dimensional domain decomposition is chosen such that each sub-domain has

approximately the same number of particles as if the silos were independent. This hence

14



guarantees again an almost perfect load balancing between the cores.

Fig. 9 illustrates the scalability of our code of these two flow configurations. At first

sight, results are very similar without (separate silos) and with (merged silos into a big silo)

actual communications. We plot in Fig. 9(a) the parallel performance of Grains3D on the

first test case, i.e., without any overlap between separate silos and empty MPI messages.

This figure indicates that for low numbers of particles per core, the limiting factor is clearly

MPI latency while for high numbers of particle per core, the serial computations per core

prevail and the MPI latency becomes negligible. Hence, the loss of performance is primarily

related to a yet non-optimal memory access and management on multi-core architectures.

However, for a high enough number of particles per core as e.g. 100, 000 spheres, the

scaling factor S(n = Ncores) is independent of n up to n = 256 cores and is around 0.85.

As the contact detection of convex bodies is more time-consuming than that of spheres

(generally around 5 to 10 times longer for convex bodies than for spheres [1]), S(n) for

cubes is higher than S(n) for spheres for the same number of particles per core. Hence, we

expect that for more than 100, 000 particles per core, the observed scaling factor of 0.85

for spheres is actually a lower bound and that the scaling factor for non-spherical particles

should be higher. We plot in Fig. 9(b) the parallel performance of Grains3D on the second

test case, i.e., a big silo split into sub-domains and non-empty MPI messages. The 2000

spheres per core is a special case as on each sub-domain there are almost as many particles

on the actual sub-domain, i.e., interior and buffer zones, than in the clone layer, leading

to a high global communication overhead (size of messages and treatment of information

received). This is getting worse and worse as the number of cores increases (see blue line

in Fig. 9(b)). The general outcome is in line with the first test case with empty messages:

for a large enough number of particles per core, the scaling factor S(n) is satisfactory (it

is actually 0.78 for 100, 000 spheres and is likely to be higher for 100, 000 non-spherical

particles). This is again emphasized in Fig. 10 where we compare the communication

overhead to the serial computational task for a sphere and a polyhedron (here a cube but

this statement applies to any polyhedron). The difference shown there is primarily due to

the contact detection that requires to use a GJK algorithm for non-spherical particles while

it is analytical (and hence faster) for spheres (see [1] for more detail). Interestingly, for

100, 000 spheres, the scaling factor S(n) drops from 0.85 with empty messages to 0.78 with

non-empty messages and treatment of the received information. Therefore, the actual

overall parallel overhead is around 7% and the rest of the loss of performance, i.e., the

remaining 15%, is predominantly due to non-optimal memory access and management on

15



multi-core chips. For a dense granular flow with a minimum load of 100, 000 of particles per

core, we can expect a good overall parallel performance with a scaling factor S(n) & 0.75

on up to 512 to 1024 cores. This is deemed to be very satisfactory for engineering and

fundamental physics purposes. Systems with a low particles load per core, i.e., of the

order of a few thousands, show an unsatisfactory, although not dramatically poor, parallel

performance that exhibits the obvious tendency to degrade with the number of cores n.

4.2. Granular slumping

4.2.1. Dam break collapse

Granular column collapse is a very classical flow configuration to understand the fun-

damental dynamics of granular media [31, 32, 33, 34, 35]. The "dam break" configuration

in a rectangular channel has been extensively studied by many authors, experimentally

[34, 35, 32], analytically [32] and numerically [36], among others. The experimental set

up is cheap and experiments are easy to conduct. The overall picture of granular column

collapse has been described in many papers and books (and in particular in the aforemen-

tioned papers) but a fully comprehensive understanding is still lacking. To summarize, the

macroscopic features of the collapse, i.e., the final height H∞/H and the run-out distance

(L∞ − L)/L = Xf/L, scale with the initial aspect ratio a = H/L of the column, where

H and L denote the initial height and initial length of the column, respectively, and H∞

and L∞ denote the final height and final length of the column, respectively. It has been

established and verified by many authors that H∞/H and (L∞ − L)/L are essentially

functions of a and vary as H∞/H ' λ1a
α and (L∞ − L)/L ' λ2a

β , with α ≈ 1 for

a . 0.7 and α ≈ 1/3 for a & 0.7, and β ≈ 1 for a . 3 and β ≈ 2/3 for a & 3, although

Balmforth and Kerswell found slightly different exponents [32]. Anyhow, the constants λ1

and λ2 are largely undetermined. In the inertia dominated regime a & 3, Lube et al. [35]

suggested that λ2 = 1.9. Although the qualitative description of granular column collapse

in a rectangular channel is acknowledged by all contributors to the field, significant quan-

titative discrepancies can be found in terms of experimentally measured run-out distances

between e.g. [35] and [32]. It is admitted that the problem is primarily governed by the

initial aspect ratio a but the various existing studies also suggest that λ1 and λ2 might

not be true constants but functions of the transverse dimension of the channel (narrow or

wide slots), the type of material and the shape of the particles, although this functional

dependence might be weak. In any case, the scaling analysis is assumed to be valid, which

implies that the general behavior and hence H∞/H and (L∞ − L)/L are independent of

the dimensional system size.

16



In [36], we used Grains3D to carry out an extensive analysis of dam break granular

collapses in a rectangular channel and satisfactorily reproduced the experimental data of

Lajeunesse et al. [34]. Here our objective is twofold: (i) show that the scaling analysis is

indeed valid by computing systems of increasing size but constant a and that the computed

run-out distance is within the reported experimental range of values, and (ii) use the largest

system as a reference point for weak scaling parallel tests.

4.2.2. Numerical simulation

Simulations are performed based on a well-known experimental set-up: a box with a

lifting gate (see Fig. 11). The simulation procedure consists in filling the parallelepipedic

reservoir of length L and width W up to a height H with granular media. Particles are

inserted at the top of the reservoir. They settle by gravity and collide until the system

reaches a pseudo steady state corresponding to a negligible total kinetic energy. Then, the

gate is lifted over a time scale much smaller than that of the collapsing media in a sense

that it does not affect the dynamics of the whole system. The moving gate is also chosen

to be frictionless to avoid particle located close to the gate to be artificially lifted in the

air. The lateral boundaries of our system are subjected to periodic conditions to mimic

an infinite granular media in the transverse direction to the flow. Particles are assumed to

have a mono-sized icosahedral shape that mimics quartz-sand grains. Icosahedral particles

have an equivalent diameter dp (diameter of a sphere of same volume as the icosahedron)

of 3 mm. The magnitude of the parameters involved in the granular collapse simulations

is given in Tab. 5. We take the free-fall settling velocity of the highest heap of particles

(Size 5, H = 0.905m) as an estimate of the maximum collisional velocity. We hence get

vcol =
√

2× 9.81× 0.905 ≈ 4.2 m/s. The theoretical maximum overlap is of the order

of maximum 5% of the particle equivalent radius as shown in Table 5. In practice, the

average overlap and maximum overlap in all simulation are of the order of 0.1% and 1%,

respectively.

We fix a to roughly 7.3 and select five systems of increasing dimensional size. The way

we proceed is as follows: we set W = 0.5 m and select L = L1 = 0.025m has the length

of the smallest system. We fill the reservoir with N1 = 98, 000 mono-disperse icosahedral

particles and the resulting height is H = H1 = 0.187 m. The 4 other systems have the

following features: i ∈< 2, 5 >,Li = iL1, Ni = i2N1, Hi ≈ iH1. The simulation of the

filling process results in the following actual height and aspect ratio of the reservoir of

particles for the different systems:

• Size 1: 98000 particles (H = 0.187m,L = 0.025m, a = 7.475)

17



• Size 2: 392000 particles (H = 0.365m,L = 0.05m, a = 7.305)

• Size 3: 882000 particles (H = 0.547m,L = 0.075m, a = 7.296)

• Size 4: 1568000 particles (H = 0.731m,L = 0.1m, a = 7.31)

• Size 5: 2450000 particles (H = 0.905m,L = 0.125m, a = 7.238)

The resulting aspect ratio a is 7.3 ± 2.3%. The observed limited deviation of 2.3% is the

aftermath of systems of slightly different compaction. In fact, the initial height is a result

of the filling simulation and cannot be set a priori. It is only known after all particles have

settled in the reservoir and the system exhibits a negligible total kinetic energy. It has been

noticed that once the free fall phase of all particles is complete, the system relaxes and

densifies extremely slowly over a time scale of a few seconds at least. Slow microstructural

re-arrangements lead to a progressively more compact granular media in the reservoir.

Actually, starting from a loose packing, the compaction of the system can be very slow,

even with successive vertical taps [37]. In terms of computational cost, this situation may

lead to an extremely long simulation time since the typical time step is of the order of

a micro-second. We assume that these slight variations of the initial aspect ratio a and

correspondingly of the initial volume fraction and microstructure of the granular media

have a very low impact on the whole granular collapse. In the worst case, it will result in

similar slight variations of the final height and the final run-out distance.

Measuring the run-out distance in an unbiased way is not straightforward as once the

collapse is complete the front of the deposit of particles is diffuse (detached particles are

spread out). We estimate the total length of the final deposit L∞ as the minimal length

that satisfies φ(L∞) ≤ φmin = 0.1, where φ(X) is the solid volume fraction in a box-like

control volume Vb = dp ×W × dp that spans the whole transverse dimension of the flow

domain and is centered at (X,W/2, dp/2). Note that changing φmin from 0.1 to 0.05 or

0.025 does not change significantly L∞.

Fig. 12 and Fig. 13 illustrate the dynamics of the granular collapse and the time

evolution of the free surface in a 2D X −Z cut plane and in 3D, respectively, for case Size

4. As observed by [35], the early transient of the collapse correspond to a free-fall regime

(Fig. 12 (a)-(c)) until the flow transitions to a phase over which the advancing front of the

collapsing granular media reaches a quasi-constant velocity (Fig. 12 (d)-(f)), and finally

the flow is friction-dominated and slows down to rest. Interestingly, over the second phase,

the front of the collapsing granular media shows a rather chaotic dynamics. Although the

front advances at a quasi-constant velocity, the singularity that the front represents leads

to a high level of particles agitation with many particles being ejected/detached from the

18



mass to balistically free-fly until they settle back on the deposit.

As experimentally observed by many authors, our computed results confirm that the

overall dynamics and in particular the final height, run-out distance and cross-sectional

profile of the deposit are independent of the size of the system and solely controlled by

the initial aspect ratio a. We present in Fig. 14 a view from the top of the final deposit

together with the scaled total length of the deposit L∞/L obtained with the criterion

φ ≤ 0.1 (red line) for all systems. The variation of the run-out distance (L∞ − L)/L is

quantitatively plotted in Fig. 15. It is pretty obvious that (L∞ − L)/L is quasi-constant

as a function of the size of the system. The limited variations obtained are primarily a

result of the slight variations of a for the different sizes in the computations.

Finally, the final scaled cross-sectional profiles of the deposit for all system sizes nicely

collapse on a unique master plot, as shown in Fig. 16, emphasizing once again the depen-

dence to a and not to the dimensional size of the system. Let us complete this subsection

by shortly discussing the value of the obtained run-out distance. [34] and [35] agree on

the scaling exponents while [32] suggests slightly different values. Please note that all

these works are experimental. For inertia-dominated regimes a & 3, Lube et al. [35] even

determine that the value of the constant λ2 is around 1.9 and independent of the granular

material properties and shape. Using their correlation (L∞ − L)/L ' 1.9a2/3, we get for

a ≈ 7.3, (L∞ − L)/L = 1.9 × 7.32/3 ' 7.15, a value significantly less than our numerical

prediction of ≈ 10.5. In their experiments, Lube et al. have lateral walls while we have

periodic conditions, i.e., no frictional resistance from any lateral walls. This difference in

the flow configuration may qualitatively justify that our run-out distance is larger (less

frictional resistance leads to a larger spread out of the granular media) but is probably

not sufficient to quantitatively explain the discrepancy. The so-called Series B experiments

of Lube et al. have the following features: (i) the channel is 20cm wide, (ii) they used

coarse quartz sand of average size 1.5mm, hence the channel width to average grain size

ratio is W/dp ' 133, and (iii) the initial basal length for a = 7.3 is either 4.5cm or 8.3cm,

hence the initial basal length to channel width ratio L/W is less than ∼ 0.41. In their

experiments, Lube et al. reported that effects of the limiting channel walls are minimal.

Our Size 2 case is the one that ressembles the most Lube et al. ’s experiments. Anyhow,

in the 5 cases we consider, we have W/dp ' 167 and L/W ranging from 0.05 to 0.25.

We have run a series of additional simulations with lateral walls instead of periodic con-

ditions. Lateral walls are made of the same material as the bottom wall. Corresponding

run-out distances are also plotted in Fig. 15. As expected, additional friction with lateral

19



walls decreases the run-out distance as more energy is dissipated by friction with respect

to periodic conditions, but our results confirm that changing lateral boundary conditions

for a channel with such a small L/W has a limited quantitative impact on the run-out

distance. However, Fig. 15 shows that the run-out distance decreases as L/W increases,

emphasizing the fact that the relative importance of frictional resistance from lateral walls

is getting stronger as L/W increases. In [32], Balmforth and Kerswell claim that λ2 is a

function of the granular material properties and shape, based on their own experimental

results. Figure 11 in [32] suggests that for a = 7.3, the run-out distance roughly spans

the range [7 : 13] for wide channels, with the largest value found for fine glass. Fine

glass grains seem to look moderately angular (see Figure 3 in [32]) and could presumably

be well represented by icosahedra. Our computed run-out distance hence falls almost in

the middle of the range of values reported in [32]. Overall, our numerical prediction is

in good agreement with the assorted experimental values reported in the literature. But

additional simulations are required to further determine the right scaling and the potential

dependence of that scaling to the granular material properties and shape.

4.2.3. Parallel scalability

We use the Size 5 granular column collapse flow configuration to perform weak scaling

tests and further assess the parallel scalability of Grains3D. From Section 4.1.2, we learnt

that a good parallel performance requires a minimum of ≈ 100, 000 particles per core.

Therefore our reference case on a single core approximately corresponds to Size 5 case of

Section 4.2.2 but 24 times narrower. The system on a single core comprises Np,1 = 101850

icosahedra and its width is W1 = 0.021875m. For parallel computing, we increase the sys-

tem width and the number of particles accordingly. We adopt a 1D domain decomposition

in the Y direction such that each core hosts approximately 101850 particles. Hence, a

Ncores-core computation corresponds to a system with NT = Np,1×Ncores particles and of

width W = Ncores ×W1 as detailed in Tab. 6. The weak scaling tests are performed over

the 20, 000 first time steps of the collapse.

Fig. 17 shows the overall scalability of our code Grains3D. The code exhibits a very

satisfactory performance for a particles load per core of ≈ 100, 000 of regular polyhedra.

The scaling factor S(n = Ncores) is ≈ 0.93 on 512 cores for a system with a quasi-perfect

load balancing. The plot seems to indicate a very slight degradation of the performance

above 256 cores but the general trend suggests that S(n) should still be & 0.9 on 1024

cores for a system comprising more than 100, 000, 000 of regular polyhedra.

20



4.3. Coupling with a fluid in an Euler/Lagrange framework, application to fluidized beds

The final test case is a fluidized bed, i.e., a flow configuration in which the particles

dynamics is not only driven by collisions by also by hydrodynamic interactions with the

surrounding fluid. The model implemented here is of the two-way Euler/Lagrange or

DEM-CFD type [38, 39, 40, 21]. The principle of the formulation is to write fluid porosity

averaged conservation equations with an additional source representing the reaction of

the particles on the fluid and to add a hydrodynamic force to the translational Newton’s

equation for the particles representing the action of the fluid on the particles. In our weak

scaling tests below, our objective is primarily to evaluate the parallel scalability of the solid

solver only and not to provide any new physical insight in the dynamics of fluidized beds

(for the reader interested in physical analysis of fluidized beds performed with our model,

please see [41, 42, 43, 44, 45]).

4.3.1. Formulation

The formulation of the set of governing equations dates from Anderson and Jackson

[38] in the late 60s and was recently clarified in [46]. In essence, for the fluid part, the mass

conservation equation and the momentum conservation equation are averaged by the local

fluid porosity. In most formulations, the set of governing equations is integrated in con-

trol volumes larger than the particle diameter, although recent advances in this field have

shown that it is possible to use a projection kernel disconnected from the grid size [21, 46].

Particles trajectories with collisions and hydrodynamic forces are tracked individually and

computed by our granular dynamics code Grains3D. The two-way Euler/Lagrange formu-

lation has been detailed many times in the past literature (see [39, 40, 47] among many

others) and we shortly summarize the main features of our own two-way Euler/Lagrange

numerical model.

The fluid is assumed to be Newtonian and incompressible. The set of governing equa-

tions for the fluid-solid coupled problem reads as follows:

• Fluid equations

We solve the following fluid porosity averaged mass and momentum conservation

equations:

∂ε

∂t
+∇ · εu = 0 (9)

ρf

(∂(εu)

∂t
+∇ · (εuu)

)
= −∇p− Ffp + 2µ∇ · (εD) (10)

where ρf , µ, ε andD stand for the fluid density, the fluid viscosity, the fluid porosity

(also referred to as fluid volume fraction) and the rate-of-strain tensor, respectively.

21



The pressure gradient term only contains the hydrodynamic pressure and Ffp repre-

sents the fluid-particle hydrodynamic interaction force.

• Particles equations

We solve Eq. (1) and Eq. (2) with addtional hydrodynamic interaction contributions

Fi and Mi, respectively. The translational and angular momentum conservation

equations of particle i hence read as follows:

Mi
dUi
dt

= Mi(1− ρf/ρp)g +

N−1∑
j=0,j 6=i

Fij + Ffp,i (11)

Ji
dωi
dt

+ ωi ∧ Jiωi =
N−1∑

j=0,j 6=i
Rj ∧ Fij +Mfp,i (12)

where ρp, Ffp,i and Mfp,i stand for the particle density, the fluid-particle hydro-

dynamic interaction force exerted on particle i and the fluid-particle hydrodynamic

interaction torque exerted on particle i, respectively.

The fluid-particle hydrodynamic interaction force Ffp,i exerted on particle i (and sim-

ilarly for the torque) derives from the momentum exchange at the particle surface:

Ffp,i =

∫
∂Pi

τ · n dS (13)

where τ denotes the point-wise fluid stress tensor and n is the normal vector to the

particle surface ∂Pi. In the two-way Euler-Lagrange framework, point-wise variables are

not resolved. A closure law is hence needed to compute the fluid-solid interaction at the

position of each particle [39, 40, 21]. Following previous contributions to the literature,

we assume that the dominant contribution to the hydrodynamic interaction is the drag

and that the hydrodynamic torque is small enough to be neglected, i.e., we setMfp,i = 0.

In our fluidized bed simulations, particles are spherical and we select the drag correlation

proposed by Beetstra et al. [48, 49] which reads as follows:

Fi,fp = Fd,i = 3πdµ(u−Ui)g(ε,Rep,i) (14)

g(ε,Rep) =
10(1− ε)

ε2
+ ε2(1 + 1.5

√
1− ε)

+
0.413Rep

24ε2

(
ε−1 + 3ε(1− ε) + 8.4Re−0.343p

1 + 103(1−ε)Re−0.5−2(1−ε)p

)

Rep,i =
ρfdpε|u−Ui|

µ

(15)

To compute the reaction term −Ffp of the particles on the fluid flow, we need to use a

projection operator from the Lagrangian description of the particles motion to the Eule-

rian description of the fluid flow. Here we use the simple embedded cube projection kernel

22



introduced by Bernard et al. [41, 42]. The fluid equations are discretized with a classical

second-order in space Finite Volume/Staggerred Grid discretization scheme and the solu-

tion algorithm is of the first-order operator splitting type. The two-way Euler/Lagrange

model used here is implemented in the PeliGRIFF platform to which Grains3D is plugged

to compute particles trajectories, see [50, 51] among others. For more detail about the for-

mulation of the model and its implementation, the interested reader is referred to [41, 42].

The set of governing equations above can be easily made dimensionless by introducing

the following scales: Lc for length, Vc for velocity, Lc/Vc for time, ρfV 2
c for pressure and

ρfV
2
c L

2
c for forces. In a dimensionless form, the govening equations contain the following

dimensionless numbers: the Reynolds number Rec =
ρfVcLc
µ

, the density ratio ρr =
ρp
ρf

and the inverse Froude number Fr =
gLc
V 2
c

.

4.3.2. Simulation set-up and parameters

We consider the fluidization of mono-disperse solid spherical particles in a simple box-

like reactor. We use the uniform inlet velocity Uin as the characteristic velocity Vc and the

spherical particle diameter dp as the characteristic length Lc. The Reynolds and Froude

numbers hence read as follows:

Rein =
ρfUindp

µ
(16)

Frin =
gdp
U2
in

(17)

Results hereafter are presented in a dimensionless form and dimensionless variables are

written with a ·̃ symbol. Particles positions are initialized as a cubic array arrangement

with a solid volume fraction of π/6. The computational domain is shown in Fig. 18. Inlet

boundary condition corresponds to an imposed velocity u = (0, 0, 1) and outlet boundary

condition corresponds to a standard free-flow condition with an imposed reference pressure.

Lateral (vertical) boundaries are periodic.

The principle of our weak scaling tests is similar to the one adopted in the scaling tests

of the previous sections except that here the reference case is a full node that comprises 16

cores. The domain is evenly decomposed and distributed in the horizontal x− y plane to

guarantee an optimal load balancing over the whole simulation, i.e., we adopt a Ncores,x×

Ncores,y × 1 = Ncores domain decomposition. The reference case on a full 16-core node

has the following dimensionless size: L̃x = 200, L̃y = 80 and L̃z = 1500 and initially

hosts 200 × 80 × 300 = 4, 800, 000 of spheres. With a 4 × 4 × 1 domain decomposition,

each sub-domain has the following dimensionless size 50 × 20 × 1500 and hosts initially

23



Np,1 = 50 × 20 × 300 = 300, 000 of spheres. The total number of particles in a system is

NT = 300, 000 × Ncores = 4, 800, 000 × Nnodes. The initial height H̃0 of the bed is 300,

such that we also have L̃z/H̃0 = 5. The additional physical and numerical dimensionless

parameters of our simulations are listed in Tab. 7. We use the same contact parameters

for particle-bottom wall and particle-particle collisions.

Another important dimensionless parameter is the ratio of the inlet velocity Uin to the

minimum fluidization velocity of the system Umf . Here we select Uin/Umf = 3 to run

our weak scaling tests. To avoid a strong overshoot of the bed over the early transients,

we first set Uin/Umf = 2 for t̃ ∈ [0 : 1785] and then Uin/Umf = 3 for t̃ > 1785. The

weak scaling tests are performed by increasing the length L̃x of the system together with

the number of particles, as shown in Tab. 8, with L̃y and L̃z kept unchanged. As L̃x

increases, the domain horizontal cross-section looks more and more like a narrow rectangle

and the bed behaves like a pseudo-3D/quasi-2D bed, as transverse secondary instabilities

in the y direction are artificially strongly damped by the narrow periodic length L̃y while

transverse secondary instabilities in the x direction are free to develop. This configuration

is purposedly selected to facilitate the visualisation of the bubbles dynamics inside the

bed. As expected, the flow field does not vary much in the y direction (see Fig. 19). Note

that this does not affect our weak scaling tests since with 4 sub-domains in the y direction

and bi-periodic boundary conditions, each sub-domain has exactly 8 neighbors, regardless

of the fact that the cross-section is a narrow rectangle or a square. In other words, the

cartesian domain decomposition is fully 2D. The evaluation of the scaling factor is carried

out over 20, 000 time-steps as Uin/Umf = 3 for t̃ > 1785.

Fig. 19(a)-(d) illustrates the early transients for Uin/Umf = 2 of the simulation with

19, 200, 000 of particles over which the primary streamwise (in the z direction) instability

develops, as well documented in the literature. Then a secondary transversal (horizontal

in the x direction) instability triggers, grows and leads to the creation of a first big bubble

that eventually bursts. Fig. 19(e)-(i) shows the time evolution of the fluid porosity in a

x − z cut plane located at L̃y/2 over the transition from Uin/Umf = 2 to Uin/Umf = 3.

For t̃ > 1785, the system progressively transitions to its bubbling regime. The level of

intermittency decreases with time until the system reaches a pseudo-stationary bubbling

regime. The presented results are qualitatively in line with the expected behavior of a

fluidized in the selected flow regime [21].

Fig. 20 shows the parallel scalability of our granular solver Grains3D in our fluidized

bed parallel simulations. The overall parallel efficiency of our granular solver is very satis-

24



factory. The scaling factor S(n = Nnodes) is 0.91 for the largest system investigated, i.e.,

for 230, 400, 000 of particles and 48 nodes/768 cores. This very high scalability for such

a high number of particles derives from less frequent collisions between particles than in

a dense granular media. Although collisions are constantly happening in the system, the

presence of the fluid and the overall observed dynamics lead to particles often advancing

over a few solid time steps without collide with another particle. We would like to em-

phasize that, in such a fluidized bed simulation, most of the computing time is spent in

computing particles trajectories with collisions, i.e., in the granular solver. This has been

shown as well in a companion paper [42]. So overall, measuring the parallel efficiency of

the granular solver only in such systems still supplies a rather reliable indication of how

the whole fluid-solid solver scales. Although Fig. 20 shows that the scaling factor seems

to slightly degrade with increasing the number of nodes, the trend reveals that simulations

with a 1 billion of particles on a few thousands of cores can be performed with a reasonably

satisfactory scalability. This is indeed very encouraging.

5. Discussion and Perspectives

We have suggested a simple parallel implementation of our granular solver Grains3D

based on a fixed cartesian domain decomposition and MPI communications between sub-

domains. The MPI strategy with tailored messages, non-blocking sendings and type con-

version has proven to be particularly efficient when the flow configuration does not require

any particular dynamic load balancing of the number of particles per core. In the three flow

configurations investigated in this work, the parallel performance of the code is deemed to

be more that acceptable, and even satisfactory to very satisfactory. For systems with more

than 100, 000 particles per core, the scaling factor S(n) is consistantly larger than 0.75. In

case particles are non-spherical, S(n) is actually larger than 0.9 for computations on up to

a few hundreds of cores.

We have also shown than the parallel performance is not only limited by the parallel

overhead in terms of messages sent by and received from cores combined to copying the

required information in buffers before sending and treating the information received, but

also by the competitive access to and proper management of random-access memory on

a multi-core architecture. The aftermath of this known limitation is the requirement to

enhance even the serial parts of the code. This reprogramming task might be tedious but

should be very beneficial on the long run as new architectures are likely to have more and

more cores per processor and more and more processors per node. Although Grains3D

25



went through this refactoring process, there is still room for further improvement.

In its current state, Grains3D offers unprecedented computing capabilities. Systems

with up to 100, 000, 000 of non-spherical particles can be simulated on a few hundreds of

cores. Besides, the trend shown by the scaling factor as a function of the number of cores or

nodes suggests that the milestone of a billion of particles is attainable with a decent parallel

performance, without fluid or with fluid in the framework of a two-way Euler/Lagrange

coupling method. This will create incentives to examine flow configurations that were

beyond reach before and strengthen the position of numerical simulation associated to

high performance computing as an indispensable tool to extend our comprehension of

granular flow dynamics.

The next research directions that we will explore short-term on the purely computing

side to further enhance the computing capabilities of Grains3D are the following ones:

• the developement of a dynamic load balancing algorithm to supply a good parallel

performance in flow configurations with high particle volume fraction heterogeneities

and significant particle volume fraction time variations. We will focus first on purely

granular systems, i.e, without any surrouding fluid, and will proceed in two steps.

The problem of dynamic load balancing in particle-laden flows introduces another

class of challenges related to balancing both the DEM solver and the fluid solver

simultaneously. As a first step, we will implement an algorithm that dynamically

balances the load of particles per core in one direction only and make sure this

algorithm exhibits a good parallel performance. As a second step, we will extend

this algorithm to dynamic load balancing in 3 directions. Conceptually, dynamic

load balancing is not particularly complex but a parallel implementation that scales

well is the true challenge,

• the intra-processor and intra-node limitation due to competitive access to memory

and/or MPI latency may be partly corrected by moving to an hybrid OpenMP/MPI

parallelisation instead of an all-MPI one, such as the one suggested by Berger et al.

[18],

• as the number of cores attains a few thousands, the MPI latency as well as the

number of messages sent and received might start to become a serious limitation,

although we have not explored yet this range of number of cores. In case this should

happen, our simple though very efficient so far MPI strategy might necessitate to

be upgraded too, with at least improvements in the scheduling of messages or other

26



techniques,

• finally, although the ability to compute granular flows with non-spherical convex

shape opens up fascinating perspectives to address many open questions in the dy-

namics of real life granular systems, this does not cover all possible particle shapes.

In fact, many non-spherical particles are also non-convex. There is hence a strong

incentive to devise a contact detection algorithm that can address granular media

made of non-convex particles. We will examine this issue in Grains3D-Part III:

extension to non-convex particles.

Acknowledgements

This work was granted access to the HPC resources of CINES under the alloca-

tions 2013-c20132b6699 and 2014-c20142b6699 made by GENCI. This research was en-

abled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada

(www.computecanada.ca) through Prof. Wachs 2016’s computing ressource allocation qpf-

764-ab. The authors would like to thank Dr. Manuel Bernard who developed the two-way

Euler/Lagrange numerical model for the coupled fluid/particles computations.

27



References

[1] A. Wachs, L. Girolami, G. Vinay, and G. Ferrer. Grains3D, a flexible DEM approach for particles of

arbitrary convex shape - Part I: numerical model and validations. Powder Technology, 224:374–389,

2012.

[2] P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique,

29(1):47–65, 1979.

[3] P. A. Cundall. Formulation of a three-dimensional distinct element model–Part I. A scheme to detect

and represent contacts in a system composed of many polyhedral blocks. International Journal of

Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3):107–116, 1988.

[4] D.A. Horner, J.F. Peters, and A. Carrillo. Large scale Discrete Element Modeling of vehicle-soil

interaction. Journal of Engineering Mechanics, 127(10):1027–1032, 2001.

[5] M. Lemieux, G. Léonard, J. Doucet, L.-A. Leclaire, F. Viens, J. Chaouki, and F. Bertrand. Large-scale

numerical investigation of solids mixing in a V-blender using the Discrete Element Method. Powder

Technology, 181(2):205–216, 2008.

[6] J. H. Walther and I. F. Sbalzarini. Large-scale parallel discrete element simulations of granular flow.

Engineering Computations, 26:688–697, 2009.

[7] K. Iglberger and U. Rüde. Massively parallel rigid body dynamics simulations. Computer Science-

Research and Development, 23(3-4):159–167, 2009.

[8] K. Iglberger and U. Rüde. Large-scale rigid body simulations. Multibody System Dynamics, 25(1):81–

95, 2011.

[9] Y. Shigeto and M. Sakai. Parallel computing of Discrete Element Method on multi-core processors.

Particuology, 9(4):398–405, 2011.

[10] C. A. Radeke, B. J. Glasser, and J. G. Khinast. Large-scale mixer simulations using massively parallel

GPU architectures. Chemical Engineering Science, 65:6435–6442, 2010.

[11] N. Govender, D.N. Wilke, and Shalk K. Collision detection of convex polyhedra on the NVIDIA GPU

arhictecture for the discrete element method. Applied Mathematics and Computation, 267:810–829,

2015.

[12] S. Tsuzuki and T. Aoki. Large-scale granular simulations using Dynamic load balance on a GPU

supercomputer. In Proceedings of the 2014 ACM/IEEE conference on Supercomputing, 2014.

[13] T. Washizawa and Y. Nakahara. Parallel computing of discrete element method on GPU. arXiv

preprint arXiv:1301.1714, 2013.

[14] D. Jajcevic, E. Siegmann, C. Radeke, and J.G. Khinast. Large-scale CFD–DEM simulations of

fluidized granular systems. Chemical Engineering Science, 98:298–310, 2013.

[15] J.Q. Gan, Z.Y. Zhou, and A.B. Yu. A GPU-based DEM approach for modelling of particulate systems.

Powder Technology, 301:1172–1182, 2016.

[16] J. Xu, H. Qi, X. Fang, L. Lu, W. Ge, X. Wang, M. Xu, F. Chen, X. He, and J. Li. Quasi-real-

time simulation of rotating drum using Discrete Element Method with parallel GPU computing.

Particuology, 9(4):446–450, 2011.

[17] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2Nd Ed.): Portable Parallel Programming with the

Message-passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[18] R. Berger, C. Kloss, A. Kohlmeyer, and S. Pirker. Hybrid parallelization of the LIGGGHTS open-

source DEM code. Powder Technology, 278:234 – 247, 2015.

28



[19] A. Vajda. Programming many-core chips. Springer Science & Business Media, 2011.

[20] M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for High-Level Programming of Multi-GPU

Systems, pages 258–272. Springer Berlin Heidelberg, 2013.

[21] P. Pepiot and O. Desjardins. Numerical analysis of the dynamics of two-and three-dimensional flu-

idized bed reactors using an Euler-Lagrange approach. Powder Technology, 220:104–121, 2011.

[22] P. Gopalakrishnan and D. Tafti. Development of parallel DEM for the open source code MFIX.

Powder Technology, 235:33–41, 2013.

[23] P. Liu and C.M. Hrenya. Challenges of DEM: I. Competing bottlenecks in parallelization of gas–solid

flows. Powder Technology, 264:620–626, 2014.

[24] S. Yang, K. Luo, K. Zhang, K. Qiu, and J. Fan. Numerical study of a lab-scale double slot-rectangular

spouted bed with the parallel CFD–DEM coupling approach. Powder Technology, 272:85–99, 2015.

[25] S. Yang, K. Zhang, and J.W. Chew. Computational study of spout collapse and impact of partition

plate in a double slot-rectangular spouted bed. AIChE Journal, 61(12):4087–4101, 2015.

[26] A. Gel, J. Hu, E. Ould-Ahmed-Vall, and A.A. Kalinkin. Modernization and optimization of a legacy

open-source CFD code for high-performance computing architectures. International Journal of Com-

putational Fluid Dynamics, 31(2):122–133, 2017.

[27] C. González-Montellano, A. Ramirez, E. Gallego, and F. Ayuga. Validation and experimental cal-

ibration of 3D discrete element models for the simulation of the discharge flow in silos. Chemical

Engineering Science, 66(21):5116–5126, 2011.

[28] P. W. Cleary and M. L. Sawley. DEM modelling of industrial granular flows: 3D case studies and the

effect of particle shape on hopper discharge. Applied Mathematical Modelling, 26(2):89–111, 2002.

[29] P. W. Cleary. Industrial particle flow modelling using discrete element method. Engineering Compu-

tations, 26(6):698–743, 2009.

[30] P. W. Cleary. DEM prediction of industrial and geophysical particle flows. Particuology, 8(2):106–118,

2010.

[31] A. Ritter. Die fortpflanzung de wasserwellen. Zeitschrift Verein Deutscher Ingenieure, 36(33):947–954,

1892.

[32] N. J. Balmforth and R. R. Kerswell. Granular collapse in two dimensions. Journal of Fluid Mechanics,

538:399–428, 9 2005.

[33] C. Ancey, R. M. Iverson, M. Rentschler, and R. P. Denlinger. An exact solution for ideal dam-break

floods on steep slopes. Water Resources Research, 44(1):n/a–n/a, 2008. W01430.

[34] E. Lajeunesse, J. B. Monnier, and G. M. Homsy. Granular slumping on a horizontal surface. Physics

of Fluids, 17(10), 2005.

[35] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt. Collapses of two-dimensional granular

columns. Phys. Rev. E, 72:041301, Oct 2005.

[36] L. Girolami, V. Hergault, G. Vinay, and A. Wachs. A three-dimensional discrete-grain model for

the simulation of dam-break rectangular collapses: comparison between numerical results and exper-

iments. Granular Matter, 14(3):381–392, 2012.

[37] J.B. Knight, C.G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel. Density relaxation in a

vibrated granular material. Phys. Rev. E, 51:3957–3963, May 1995.

[38] T. B. Anderson and R. Jackson. Fluid mechanical description of fluidized beds. equations of motion.

Industrial & Engineering Chemistry Fundamentals, 6(4):527–539, 1967.

29



[39] T. Kawaguchi, T. Tanaka, and Y. Tsuji. Numerical simulation of two-dimensional fluidized beds using

the discrete element method (comparison between the two-and three-dimensional models). Powder

Technology, 96(2):129–138, 1998.

[40] T. Tsuji, K. Yabumoto, and T. Tanaka. Spontaneous structures in three-dimensional bubbling gas-

fluidized bed by parallel DEM-CFD coupling simulation. Powder Technology, 184(2):132–140, 2008.

[41] M. Bernard. Multi-scale approach for particulate flows. PhD thesis, Institut National Polytechnique

de Toulouse, 2014.

[42] M. Bernard, A. Wachs, and E. Climent. Controlling the quality of two-way Euler/Lagrange numerical

modeling of bubbling and spouted fluidized beds dynamics. Industrial & Engineering Chemistry

Research, 56(1):368–386, 2017.

[43] A. Esteghamatian, M. Bernard, A. Lance, A. Hammouti, and A. Wachs. Micro/meso simulation of a

fluidized bed in a homogeneous bubbling regime. International Journal of Multiphase Flow, 92:93–111,

2017.

[44] A. Esteghamatian, A. Hammouti, M. Lance, and A. Wachs. Particle resolved simulations of liq-

uid/solid and gas/solid fluidized beds. Physics of Fluids, 29(3):033302, 2017.

[45] A. Esteghamatian, F. Euzenat, A. Lance, A. Hammouti, and A. Wachs. A stochastic formulation for

the drag force based on multiscale numerical simulation of fluidized beds. in revision in International

Journal of Multiphase Flow, 2017.

[46] J. Capecelatro and O. Desjardins. An Euler–Lagrange strategy for simulating particle-laden flows.

Journal of Computational Physics, 238:1–31, 2013.

[47] B. H. Xu and A. B. Yu. Numerical simulation of the gas-solid flow in a fluidized bed by com-

bining discrete particle method with computational fluid dynamics. Chemical Engineering Science,

52(16):2785–2809, 1997.

[48] R. Beetstra, M. A. Van der Hoef, and J. A. M. Kuipers. Drag force of intermediate Reynolds number

flow past mono-and bidisperse arrays of spheres. AIChE Journal, 53(2):489–501, 2007.

[49] R. Beetstra, M. A. Van der Hoef, and J. A. M. Kuipers. Numerical study of segregation using a new

drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations. Chemical

Engineering Science, 62(1):246–255, 2007.

[50] A. Wachs. A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimen-

tation of polygonal isometric particles in a Newtonian fluid with collisions. Computers & Fluids,

38(8):1608–1628, 2009.

[51] A. Wachs, G. Vinay, and A. Hammouti. PeliGRIFF Home Page. http://www.peligriff.com, 2007-2016.

30



List of Tables

1 Summary of recent contributions to DEM computations on GPUs. "np"

stands for "not reported". . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Contact force model parameters, estimate of contact features at vcol =

4.5m/s and time step magnitude used in the silo discharge simulation. . . . 33

3 Comparison between experimental data of [27] and our simulation results

with Grains3D for the discharge time of the silo. . . . . . . . . . . . . . . . 34

4 Silo discharge for different systems: reference times of a serial job over

300, 000 time steps of 10−5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Contact force model parameters, estimate of contact features at vcol =

4.2m/s and time step magnitude used in the dam break simulations. . . . . 36

6 System size in granular dam break weak scaling tests. . . . . . . . . . . . . 37

7 Fluid and particles physical and numerical dimensionless parameters. . . . . 38

8 System size in the fluidized bed weak scaling tests. Each node hosts 16 cores,

i.e., Ncores = 16 × Nnodes, and each core initially hosts Np,1 = 300, 000 of

spheres, thus NT = 300, 000×Ncores = 4, 800, 000×Nnodes. . . . . . . . . . 39

31



Authors Max Number Max Number Speed ratio

of GPUs of particles 1 GPU/1 CPU

Xu et al. [16] 270 10, 000, 000 nr

Washizawa and Nakahara [13] 1 131, 072 6

Shigeto and Sakai [9] 1 1, 280, 000 0.87− 3.4

Tsuzuki and Aoki [12] 512 129, 000, 000 nr

Gan et al. [15] 34 10, 000, 000 10

Table 1 Summary of recent contributions to DEM computations on GPUs. "nr" stands

for "not reported".

32



Parameter Value

Particle-Wall

kn (N m−1) 1× 106

en , µn (s−1) 0.62 , 3.63× 103

µc 0.3

kms 1× 10−5

δmax (m) , δmax/R 2.25× 10−4 , 0.033

TC (s) 1.85× 10−4

Particle-Particle

kn (N m−1) 7.2× 105

en , µn (s−1) 0.75 , 1.87× 103

µc 0.3

kms 1× 10−5

δmax (m) , δmax/R 1.92× 10−4 , 0.028

TC (s) 1.55× 10−4

∆t (s) 1× 10−5

Table 2 Contact force model parameters, estimate of contact features at vcol = 4.5m/s

and time step magnitude used in the silo discharge simulation.

33



Repetition Experiments (s) [27] Grains3D (s)

1 29.32 29.36

2 29.28

3 29.2

Mean discharge time (s) 29.27 29.36

Table 3 Comparison between experimental data of [27] and our simulation results with

Grains3D for the discharge time of the silo.

34



Configuration/core Total computing time Computing time per particle

and per time step

2000 spheres 59min 56s 6µs

14000 spheres 12h 24min 27s 10µs

100000 spheres 104h 41min 12s 12µs

2000 cubes 3h 58min 32s 24µs

10000 cubes 30h 30min 16s 36µs

Table 4 Silo discharge for different systems: reference times of a serial job over 300, 000

time steps of 10−5s.

35



Parameter Value

Particle-Box (PB) & Particle-Gate (PG)

kn (N m−1) 1× 105

en , µn (s−1) 0.75 , 6.86× 103

µc,PB, µc,PG 0.5, 0

kms 0

δmax (m) , δmax/R 7.16× 10−5 , 0.048

TC (s) 5.91× 10−5

Particle-Particle

kn (N m−1) 1× 105

en , µn (s−1) 0.75 , 6.86× 103

µc 0.5

kms 0

δmax (m) , δmax/R 4.87× 10−5 , 0.0325

TC (s) 4.19× 10−5

∆t (s) 2.5× 10−6

Table 5 Contact force model parameters, estimate of contact features at vcol = 4.2m/s

and time step magnitude used in the dam break simulations.

36



Ncores 1 16 32 64 128 256 512

W (m) 0.021875 0.35 0.7 1.4 2.8 5.6 11.2

NT 101,850 1,627,500 3,255,000 6,510,000 13,020,000 26,040,000 52,080,000

Table 6 System size in granular dam break weak scaling tests.

37



Parameter Value

Fluid

ρr 2083.333

Rein 79.333

Frin 6.927× 10−3

∆t̃f 0.0119

Particle

en 0.9

µc 0.1

kms 0

δ̃max 0.025

∆t̃p 0.00595

Table 7 Fluid and particles physical and numerical dimensionless parameters.

38



L̃x 200 400 800 1600 3200 9600

Nnodes 1 2 4 8 16 48

Ncores 16 32 64 128 256 768

NT (million) 4.8 9.6 19.2 38.4 76.8 230.4

Table 8 System size in the fluidized bed weak scaling tests. Each node hosts 16 cores,

i.e., Ncores = 16 × Nnodes, and each core initially hosts Np,1 = 300, 000 of spheres, thus

NT = 300, 000×Ncores = 4, 800, 000×Nnodes.

39



List of Figures

1 Tags (status and geolocalisation) of particles in the linked-cell grid. . . . . . 42

2 2D illustration of inter-process communication for a particle tagged SOUTH. 43

3 2D illustration of inter-process communication for a particle tagged

SOUTH_EAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Shape and dimensions of the 3D silo. . . . . . . . . . . . . . . . . . . . . . . 45

5 Simulation results of filling and discharge of the 3D silo with Grains3D.

Coloured by the particle velocity magnitude. . . . . . . . . . . . . . . . . . . 46

6 Comparison between experimental data of [27] and our simulation results

with Grains3D: snapshots of discharge dynamics at different times. . . . . . 47

7 Multi-silo simulation set-up without overlap between silos (communications

with empty messages between sub-domains). . . . . . . . . . . . . . . . . . . 48

8 Multi-silo simulation set-up with all silos merged (connected hoppers) into

one big silo (actual communications with non-empty messages between sub-

domains). Each hopper corresponds to a sub-domain. . . . . . . . . . . . . . 49

9 Weak scaling parallel performance of Grains3D in the multi-silo configura-

tions with (a) disconnected silos and (b) merged silos into one big silo. . . . 50

10 Ratio between parallel overhead and serial tasks for systems made of spher-

ical particles and polyhedral particles. . . . . . . . . . . . . . . . . . . . . . 51

11 Granular dam break set-up. The granular media is made of icosahedral

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12 3D view of the granular dam break flow for Size 4 case. . . . . . . . . . . . . 53

13 2D view of the granular dam break flow for Size 4 case. (a)-(f) correspond

to snapshots every 0.1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

14 Variation of L∞/L. L∞ (red) for ε ≤ 0.1. Blue dots are particles positions. 55

15 Variation of run-out distance (L∞−L)/L with dimensional size of the system

for a ≈ 7.3. Complementary results with lateral walls instead of periodic

conditions are plotted in green. . . . . . . . . . . . . . . . . . . . . . . . . . 56

16 Final scaled profiles of the deposit as a function of dimensional size of the

system for a ≈ 7.3. All profiles collapse on a single master profile. . . . . . . 57

17 Weak scaling parallel performance of Grains3D in granular dam break com-

putations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

18 Fluidized bed computational domain. . . . . . . . . . . . . . . . . . . . . . . 59

40



19 Fluidized bed dynamics in the case Ncores = 64, NT = 19, 200, 000: (a)-

(d) Uin/Umf = 2, ε = 0.75 fluid porosity contours colored by pressure

magnitude, velocity contours in a x − z cut plane located at ỹ = L̃y and

pressure contours in a y − z cut plane located at x̃ = 0, (e)-(i) porosity

field ε in a x − z cut plane located at ỹ = L̃y/2 over the transition from

Uin/Umf = 2 to Uin/Umf = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

20 Weak scaling parallel performance of Grains3D relative to a full 16-core node

in fluidized bed computations. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

41



Interior = 0
Buffer = 1
Clone = 2

0
1

2

Cells in the white layer 
have a GEOLOC tag

(a) 2D illustration of the status of a particle depend-

ing on their location on the domain, i.e., depending

on the tag of the cell it belongs to

NWB NB NEB

SWB SB SEB

WB EBB

NENW

SW SE

W E

S

N

NWT NT NET

T ETWT

SWT ST SET

(b) GEOLOC tag of cells in the buffer zone. N, S, W,

E, T and B denote respectively the North, South,

West, East, Top and Bottom directions.

Figure 1 Tags (status and geolocalisation) of particles in the linked-cell grid.

42



Interior zone

Buffer zone

Clone zone

Cell tagged SOUTH

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
1

2

3

5

6

7

9

10

11

0

1

2

4

5

6

8

9

10

Figure 2 2D illustration of inter-process communication for a particle tagged SOUTH.

43



Interior zone

Buffer zone

Clone zone

Cell tagged
SOUTH_EAST

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
1

2

3

5

6

7

9

10

11

5

6

7

9

10

11

13

14

15

0

1

2

4

5

6

8

9

10

4

5

6

8

9

10

12

13

14

Figure 3 2D illustration of inter-process communication for a particle tagged

SOUTH_EAST.

44



(a) From González-Montellano et al. [27] (b) Equivalent extended silo in our simulations

Figure 4 Shape and dimensions of the 3D silo.

45



t = 0 0 < t < Tfill t = Tfill Tfill < t < Tdis t = Tdis

Figure 5 Simulation results of filling and discharge of the 3D silo with Grains3D.

Coloured by the particle velocity magnitude.

46



Test DEM Test DEM Test DEM Test DEM

t = 0T t = 0.25T t = 0.5T t = 0.75T

Figure 6 Comparison between experimental data of [27] and our simulation results with

Grains3D: snapshots of discharge dynamics at different times.

47



(a) Decomposition of the domain into 16 sub-

domains. Each silo is handled by a single core.

(b) Discharge of 14000 spherical particles per

silo from 16 independent silos. Silos are hidden.

Coloured by the particle velocity magnitude (blue

= min, red = max).

Figure 7 Multi-silo simulation set-up without overlap between silos (communications

with empty messages between sub-domains).

48



(a) Top view of the simulation domain in which

16 silos are merged into one big silo.

(b) Discharge of 16000 spherical particles

per sub-domain from 16 connected hoppers.

Hoppers are hidden. Coloured by the particle

velocity magnitude (blue = min, red = max).

Figure 8 Multi-silo simulation set-up with all silos merged (connected hoppers) into one

big silo (actual communications with non-empty messages between sub-domains). Each

hopper corresponds to a sub-domain.

49



32 64 128 256
Cores

32

64

128

256

Sp
ee

d-
up

Ideal
2000 spheres
14000 spheres
2000 cubes
100000 spheres

(a) Communication disabled.

32 64 128 256
Cores

32

64

128

256
Sp

ee
d-

up
Ideal
2000 spheres
14000 spheres
10000 cubes
100000 spheres

(b) Communication enabled.

Figure 9 Weak scaling parallel performance of Grains3D in the multi-silo configurations

with (a) disconnected silos and (b) merged silos into one big silo.

50



Parallel overhead

Serial tasks

Sphere Polyhedron

Figure 10 Ratio between parallel overhead and serial tasks for systems made of spherical

particles and polyhedral particles.

51



 

-�

6

? �
���
�
�	

H

L

W-
X
6

Z
���
Y

Granular media

-

Figure 11 Granular dam break set-up. The granular media is made of icosahedral

particles.

52



(a) t = 0.0s (b) t = 0.3s

(c) t = 0.5s (d) t = 0.7s

(e) t = 0.8s (f) t = 1.5s

Figure 12 3D view of the granular dam break flow for Size 4 case.

53



(a) (b) (c) (d) (e) (f) t = 0.5s

(g) t = 0.64s (h) t = 1.5s

Figure 13 2D view of the granular dam break flow for Size 4 case. (a)-(f) correspond

to snapshots every 0.1s.

54



(a) Size 1 (b) Size 2 (c) Size 3 (d) Size 4 (e) Size 5

Figure 14 Variation of L∞/L. L∞ (red) for ε ≤ 0.1. Blue dots are particles positions.

55



 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

Periodic
Walls

Size

pL
8

´
L

q{L

Figure 15 Variation of run-out distance (L∞−L)/L with dimensional size of the system

for a ≈ 7.3. Complementary results with lateral walls instead of periodic conditions are

plotted in green.

56



Size	 
Size	 
Size	 
Size	 
Size

Figure 16 Final scaled profiles of the deposit as a function of dimensional size of the

system for a ≈ 7.3. All profiles collapse on a single master profile.

57



3264 128 256 512
Cores

32
64

128

256

512

Sp
ee

d-
up

Ideal
Grains3D

Figure 17 Weak scaling parallel performance of Grains3D in granular dam break com-

putations.

58



 

-�

6

?

���	

6 6
Uin

Lz

LxLy

-
x

6
z
���
y

6

?

H0

@
@
@
@
@@R

Particles

Figure 18 Fluidized bed computational domain.

59



(a) t̃ = 595 (b) t̃ = 952 (c) t̃ = 1190 (d) t̃ = 1404 (e) t̃ = 1785

(f) t̃ = 1904 (g) t̃ = 2023 (h) t̃ = 2142 (i) t̃ = 2261

Figure 19 Fluidized bed dynamics in the case Ncores = 64, NT = 19, 200, 000: (a)-(d)

Uin/Umf = 2, ε = 0.75 fluid porosity contours colored by pressure magnitude, velocity

contours in a x− z cut plane located at ỹ = L̃y and pressure contours in a y− z cut plane

located at x̃ = 0, (e)-(i) porosity field ε in a x− z cut plane located at ỹ = L̃y/2 over the

transition from Uin/Umf = 2 to Uin/Umf = 3.

60



3264 128 256 768
Cores

32
64

128

256

768

Sp
ee

d-
up

Ideal
Grains3D

Figure 20 Weak scaling parallel performance of Grains3D relative to a full 16-core node

in fluidized bed computations.

61


